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Abstract

To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of

topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology

optimization method is based on continuous material interpolation functions in the density and bulk modulus. The

objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown

that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a

design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well

defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering

low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the

sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when

using two barriers are achieved compared to utilizing conventional sound barriers.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This article describes how topology optimization can be applied to acoustic design either to reduce noise in a
certain part of a room or to design sound barriers. The first type of problem has many interesting applications
such as reducing engine noise in car cabins at the positions of the driver and the passengers, controlling the
noise in industrial halls where people are working at certain locations among noisy machinery or to protect
electronic equipment on which sound waves can have a damaging effect. Sound barriers are typically used to
reduce traffic noise along roads.

A reduction of noise can be obtained by minimizing the sound pressure, the sound intensity or the
reverberation time in the room and optimization can be done either by practical experiments or numerical
calculations. One can choose to use active or passive methods. In active noise control the sound is canceled by
using techniques from electroacoustics [1], and in passive noise control the optimal shape of the room is found
or the noise is reduced by sound absorbers as porous materials, resonators or membrane absorbers [2]. This
article is concerned with noise reduction using passive methods by optimized material distributions.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In Ref. [3] it is studied how the shape of a conference room is influencing the speech intelligibility for 10
different room shapes and with horizontal or sloping ceiling and floor. Distribution of absorbing material has
been considered to control different acoustic properties in rooms. In Ref. [4] the speech intelligibility in a class
room is improved by optimizing the distribution of a fixed amount of absorbing material. Another type of
problem is considered in Ref. [5] where the positioning of absorbing material is used to improve the amplitude
response from a loudspeaker in a room and in Ref. [6] the reverberation time is reduced using absorbing
material. However, in all four cases a number of fixed configurations are compared—a systematic approach is
to use an optimization algorithm. An example of such an approach is presented in Ref. [7] where the depths of
a number of rectangular wells along a wall are optimized to improve the low frequency response in a room.
Another example is found in Ref. [8] where noise is reduced by optimizing a part of a boundary with shape
optimization. In these articles nonintuitive optimized shapes are found, but since only the boundaries can be
changed it is not possible to obtain holes in the structure and parts which are not attached to the boundary.

A method that provides as much freedom in the optimized design as possible is topology optimization and it
is therefore chosen for this work. This method was developed in the late eighties to find the maximum stiffness
material distributions for structures [9]. Since then, the topology optimization method has successfully been
applied to other engineering fields such as mechanisms and fluids (see e.g. Ref. [10] for an overview) as well as
for wave propagation problems [11]. So far topology optimization has only been applied to a few problems in
acoustics. In Refs. [12–14] results are presented for an inverse acoustic horn and an acoustic horn, respectively,
and complicated designs are obtained with parts not attached to the boundary. In Refs. [15,16] it is shown how
acoustic–structure interaction problems can be treated and in Ref. [17] radiation and scattering of sound from
thin-bodies is optimized by genetic algorithms. Topology optimization has also been applied to minimize the
sound power radiation from vibrating bi-material plate and pipe structures [18]. In Ref. [19] an example is
shown where the shape of a reflection chamber is optimized to reflect waves, first for a single frequency and
then for an entire frequency interval. The equation governing the wave propagation is the Helmholtz equation
and in the article suitable interpolation functions are suggested to formulate the topology optimization
problem. This model is used as the basis for the model in this paper.

The first part of the article describes the acoustic model governed by Helmholtz equation and associated
boundary conditions. Design variables and material interpolation functions are introduced and the topology
optimization problem is stated with the average of the squared sound pressure amplitude as the objective
function and a volume constraint. The model is discretized and solved by the finite element method and the
sensitivity analysis needed for the optimization algorithm is described. In the last part, applications of the
proposed optimization algorithm are illustrated by three examples. The first problem is to find the optimal
shape of a room. A rectangular room in 2 or 3D, bounded by rigid walls, and with a source emitting sinusoidal
sound waves is considered. The task is to distribute material in a design domain along the ceiling such that the
objective function is minimized in a certain part of the room. In the next example, the problem is changed such
that an optimized distribution of reflecting and absorbing material along the walls is generated. In the final
example we optimize the shape of outdoor sound barriers, a problem which has been widely studied using both
experimental and numerical methods. In Refs. [20,21] experiments with scale models of barriers with various
shapes were studied and it was observed that for rigid barriers the T-shaped barrier performed better than
other shapes, but Y and arrow shaped barriers were performing almost as good. Also numerical results show
the same tendency. In Refs. [22,23] the performance of barriers with different shapes is calculated by a
boundary element method and again the T-shaped barrier performed the best. Finally a systematic way of
designing barriers utilizing genetic algorithms was proposed in Ref. [24] where optimized designs are obtained
which perform better than a straight and a T-shaped barrier for both low and high frequencies. The results
obtained here using topology optimization are compared with the results for the low frequency case in
Ref. [24] as well as with the straight and T-shaped barriers.

2. Topology optimization for acoustic problems

The problems studied in the first part of this article are of the type illustrated in Fig. 1. The aim is to
distribute solid material in the ceiling in order to optimize room acoustics. The room is described by a domain
O filled with air. The sound comes from a source which is vibrating with the vibrational velocity U such that
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Fig. 1. Dimensions of the rectangular room in 2D with design domain Od , output domain Oop and a point source with the vibrational

velocity U.
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sinusoidal sound waves are emitted. In the output domain Oop the average of the squared sound pressure
amplitude is minimized in order to reduce the noise in this area. The minimization is done by finding a proper
distribution of air and solid material (scatterer) in the ceiling area (design domain Od).
2.1. The acoustic model

The governing equation of steady-state linear acoustic problems with sinusoidal sound waves of angular
frequency o is the Helmholtz equation [2]

r � ðr�1rp̂Þ þ o2k�1p̂ ¼ 0. (1)

The physical sound pressure p is the real part of p̂ where p̂ appearing in Eq. (1) is the complex sound pressure
amplitude which depends on the position r. r is the density and k is the bulk modulus of the acoustic medium
and they also depend on r. The design freedom is the pointwise distribution of air and solid material i.e.
r ¼ rðrÞ and k ¼ kðrÞ where r 2 Od . For air the material properties are ðr;kÞ ¼ ðr1;k1Þ and for the solid
material ðr;kÞ ¼ ðr2;k2Þ. The material values used are r1 ¼ 1:204 kgm�3 and k1 ¼ 141:921� 103 Nm�2 for
air and r2 ¼ 2643:0 kgm�3 and k2 ¼ 6:87� 1010 Nm�2 for solid material (aluminum). It is convenient to
introduce the two nondimensional variables ~r and ~k defined as

~r ¼
r
r1
¼

1 air;
r2
r1

solid;

8<
: ~k ¼

k
k1
¼

1 air;
k2
k1
; solid:

8<
: (2)

When Eq. (1) is rescaled with these variables the Helmholtz equation takes the form

r � ð ~r�1rp̂Þ þ ~o2 ~k�1p̂ ¼ 0. (3)

Here ~o ¼ o=c is a scaled angular frequency and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=r1

p
is the speed of sound in air. Finally, two types of

boundary conditions are employed

n � ð ~r�1rp̂Þ ¼ 0; n � ð ~r�1rp̂Þ ¼ �i ~oU
ffiffiffiffiffiffiffiffiffiffi
k1r1
p

, (4)

where n is the normal unit vector pointing out of the domain. The first boundary condition describes a
perfectly reflecting surface and is employed for the rigid walls of the room. The second boundary condition
expresses a vibrating surface with the vibrational velocity U and is used to imitate a near point source emitting
sinusoidal sound waves.
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2.2. Design variables and material interpolation

The problem of finding the optimal distribution of material is a discrete optimization problem (there should
be air or solid material in each point of the design domain), but in order to allow for efficient gradient-based
optimization the problem is formulated with continuous material properties that can take any value in
between the values for air and solid material. To control the material properties a continuous material
indicator field 0pxðrÞp1 is introduced, where x ¼ 0 corresponds to air and x ¼ 1 to solid material:

~rðxÞ ¼
1 x ¼ 0;
r2
r1

x ¼ 1;

8<
: ~kðxÞ ¼

1 x ¼ 0;
k2
k1

x ¼ 1:

8<
: (5)

Although x is continuous the final design should be as close to discrete (x ¼ 0 or 1) as possible in order to be well
defined. The choice of interpolation functions may aid in avoiding intermediate (gray) material properties in the
final design. In Ref. [19] it is suggested to find the interpolation function by looking at a 1D acoustic system
where a wave with amplitude of unit magnitude propagates in air and hits an interface to an acoustic medium
under normal incidence. Experience shows that good 0–1 designs in general can be obtained if the reflection
from the acoustic medium in this system is a smooth function of x with nonvanishing slope at x ¼ 1. This is
obtained by interpolating the inverse density and bulk modulus between the two material phases as follows:

~rðxÞ�1 ¼ 1þ x
r2
r1

� ��1
� 1

 !
, (6)

~kðxÞ�1 ¼ 1þ x
k2
k1

� ��1
� 1

 !
, (7)

which clearly fulfills the discrete values specified in Eq. (5).

2.3. The optimization problem

The purpose of the topology optimization is to minimize the objective function F which is the average of the
squared sound pressure amplitude in the output domain, Oop. The formulation of the optimization problem
takes the form

minx logðFÞ ¼ log
1R

Oop
dr

Z
Oop

jp̂ðr; xðrÞÞj2dr

 !
objective function, (8)

subject to
1R

Od
dr

Z
Od

xðrÞdr� bp0; volume constraint, (9)

0pxðrÞp1 8 r 2 Od ; design variable bounds. (10)

A volume constraint is included to put a limit on the amount of material distributed in the design domain Od in order
to save weight and cost. Here b is a volume fraction of allowable material and takes values between 0 and 1, where
b ¼ 1 corresponds to no limit. To obtain better numerical scaling the logarithm is taken to the objective function.

2.4. Discretization and sensitivity analysis

The mathematical model of the physical problem is given by the Helmholtz equation (3) and the boundary
conditions (4), and to solve the problem, finite element analysis is used. The complex amplitude field p̂ and the
design variable field x are discretized using sets of finite element basis functions ffi;nðrÞg

p̂ðrÞ ¼
XN

n¼1

p̂nf1;nðrÞ; xðrÞ ¼
XNd

n¼1

xnf2;nðrÞ. (11)
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The degrees of freedom (dofs) corresponding to the two fields are assembled in the vectors p̂ ¼

fp̂1; p̂2; . . . ; p̂Ng
T and n ¼ fx1; x2; . . . ; xNd

gT. For the model in 2D a triangular element mesh is employed and
tetrahedral elements are used in 3D. Quadratic Lagrange elements are used for the complex pressure
amplitude p̂ to obtain high accuracy in the solution and for the design variable x linear Lagrange elements
are utilized.

The commercial program Comsol Multiphysics with Matlab [25] is employed for the finite element analysis.
This results in the discretized equation

Sp̂ ¼ f, (12)

where S is the system matrix and f is the load vector which are both complex valued.
To update the design variables in the optimization algorithm the derivatives with respect to the design

variables of the objective and the constraint function must be evaluated. This is possible as the design variable
is introduced as a continuous field. The complex sound pressure vector p̂ is via Eq. (12) an implicit function of
the design variables, which is written as p̂ðnÞ ¼ p̂RðnÞ þ ip̂I ðnÞ, where p̂R and p̂I denote the real and the
imaginary part of p̂. Thus the derivative of the objective function F ¼ Fðp̂RðnÞ; p̂I ðnÞ; nÞ is given by the
following expression found by the chain rule

dF
dn
¼

qF
qn
þ

qF
qp̂R

qp̂R

qn
þ

qF
qp̂I

qp̂I

qn
. (13)

As p̂ is an implicit function of n the derivatives qp̂R=qn and qp̂I=qn are not known directly. The sensitivity
analysis is therefore done by employing an adjoint method where the unknown derivatives are eliminated at
the expense of determining an adjoint and complex variable field k from the adjoint equation

STk ¼ �
qF
qp̂R

� i
qF
qp̂I

� �T

, (14)

where

qF
qp̂R

� i
qF
qp̂I

¼
1R

Oop
dr

Z
Oop

ð2p̂R � i2p̂I Þf1;n dr. (15)

The sensitivity analysis follows the standard adjoint sensitivity approach [26]. For further details of the adjoint
sensitivity method applied to wave propagation problems, the reader is referred to Ref. [27]. Eq. (13) for the
derivative of the objective function then reduces to

dF
dn
¼

qF
qn
þRe kT

qS
qn

p̂

� �
. (16)

Finally, the derivative of the constraint function with respect to one of the design variables is

q
qxn

1R
Od

dr

Z
Od

xðrÞdr� b

 !
¼

1R
Od

dr

Z
Od

f2;nðrÞdr. (17)

The vectors qF=qn,
R
Oop
ð2p̂R � i2p̂I Þf1;n dr and

R
Od

f2;nðrÞdr as well as the matrix qS=qn are assembled in
Comsol Multiphysics as described in Eq. [28].

2.5. Practical implementation

The optimization problem (8)–(10) is solved using the Method of Moving Asymptotes, MMA [29] which is
an algorithm that uses information from the previous iteration steps and gradient information. To fulfill the
volume constraint from the first iteration of the optimization procedure the initial design is usually chosen as a
uniform distribution of material with the volume fraction b. It should be emphasized that the final design
depends both on the initial design and the allowable amount of material to be placed and is therefore
dependent on b. Here the best solutions out of several tries will be presented. To make the model more realistic
and to minimize local resonance effects a small amount of mass-proportional damping is added.
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When the mesh size is decreased the optimization will in general result in mesh-dependent solutions with
small details which make the design inconvenient to manufacture. To avoid these problems a morphology-
based filter is employed. Such filters make the material properties of an element depend on a function of the
design variables in a fixed neighborhood around the element such that the finite design is mesh-independent.
Here a close-type morphology-based filter is chosen [30], which has proven efficient for wave-propagation type
topology optimization problems. The method results in designs where all holes below the size of the filter
(radius rmin) have been eliminated. A further advantage of these filter-types is that they help eliminating gray
elements in the transition zone between solid and air regions.

3. Results

In this section results are presented for rooms in 2D and 3D as well as for outdoor sound barriers in 2D.

3.1. Optimization of a rectangular room in 2D

The average of the squared sound pressure amplitude is minimized in the output domain Oop by distributing
material in the design domain Od in the rectangular room as shown in Fig. 1. The maximum volume fraction is
chosen to b ¼ 0:15 and the initial design for the optimal design is a uniform distribution of 15% material in
the design domain. The vibrational velocity of the pulsating circle is U ¼ 0:01m s�1 and the target frequency is
f ¼ 34:56Hz, f ¼ o=2p, which is a natural frequency for the room with the initial material distribution. The
modeling domain is discretized by triangular elements with maximum side length hmax ¼ 0:3m and the filter
radius is rmin ¼ 1:0hmax. An absolute tolerance of 0.01 on the maximum change of the design variables is used
to terminate the optimization loop. The optimized design was found in 281 iterations and the objective
function was reduced from 110.9 to 76.1 dB. Fig. 2 shows the optimized design as well as the sound pressure
amplitude for the initial and optimized designs. It is clearly seen that in comparison to the initial design the
redistributed material in the design domain is influencing the sound pressure in the room such that it has a
very low value in the output domain Oop with a nodal line going through it. The material is placed at the nodal
lines for the initial design which is an observation that will be elaborated on later. On the top right of Fig. 2 the
frequency response for the initial design and the optimized design are shown, where F is plotted as function of
the frequency f. In comparison to the initial design, the natural frequencies for the optimized design have
changed and the natural frequency, which was equal to the driving frequency for the initial design, has been
moved to a lower value. It is noted that the solid material forms small cavities and that there is a tendency for
the sound pressure amplitude to be higher in these cavities than outside them. The cavities resemble Helmholtz
resonators (see Ref. [2] for a description of a Helmholtz resonator). It should be noted, that even though the
filter is used and the value of rmin is varied it is difficult to obtain fully mesh-independent solutions due to
many local minima.

In the previous example a low frequency has been used to obtain an optimized design. In the next example
the room is optimized for the frequency f ¼ 4� 34:56Hz, and the quantities b ¼ 0:5, hmax ¼ 0:2m, and
rmin ¼ 1:0hmax. The optimized design is seen in Fig. 3 where the objective function is decreased from 95.7 to
62.1 dB in 478 iterations. Compared to the design for the lower frequency the design is now a complicated
structure with many small features. The reason is that for increasing frequencies the distribution of the sound
pressure amplitude in the room gets more complex and the design needed to minimize the objective function
will naturally also consist of more complicated details. For higher frequencies well defined designs can still be
obtained, but it is hard to get a mesh-independent design as it is very sensitive to discretization, filtering radius,
starting guess as well as local minima.

In the next example the optimization is done for f ¼ 9:39 and 9.71Hz which is less and higher, respectively,
than the first natural frequency 9.55Hz for the room with the initial design with b ¼ 0:15. The corresponding
mode shape has a vertical nodal line in the middle of the room and high sound pressure amplitude along the
walls. The quantities used in both cases are hmax ¼ 0:3m and rmin ¼ 0:75hmax. The optimized designs and the
corresponding frequency response are seen in Fig. 4. For the case with f ¼ 9:39Hz the solid material is
distributed at the corners with the high pressure amplitude and the natural frequency is moved to a higher
frequency. However, in the case with f ¼ 9:71Hz the material is placed at the nodal plane in the middle of the
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Fig. 2. (a) The optimized ceiling design for target frequency 34.56Hz; (b) frequency plot for initial and optimized designs; (c) the sound

pressure amplitude for initial design; and (d) the sound pressure amplitude for optimized design.

Fig. 3. Optimized design for the rectangular room for the higher target frequency f ¼ 4� 34:56Hz.
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design domain and the natural frequency is now at a lower value than originally. The same tendency is
observed for the example in Fig. 2 where the material is distributed at the nodal lines and the natural
frequency is moved to a lower value. The response at the two target frequencies f ¼ 9:39 and f ¼ 9:71Hz for
both designs, are given in Table 1 and it is noticed that the objective function is minimized most for both
frequencies in the case where the solid material is placed at the nodal plane. So for the target frequency which
is smaller than the natural frequency the optimization converges to a solution that is not as good as when the
other target frequency is used. The explanation is that a natural frequency, which is originally at one side of
the driving frequency, can only be moved to a value on the same side during the optimization, else the
objective function would have to be increased during a part of the optimization. It is from this example and
the example from Fig. 2 concluded, that when optimizing for a driving frequency close to a natural frequency
there is a tendency for the material to be distributed at the nodal planes for the initial design when the natural
frequency is moved to a lower value. If the natural frequency is moved to a higher value the material is
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Table 1

The value of the objective function for the two frequencies 9.39 and 9.71Hz for the two designs from Fig. 4

Frequency f (Hz) F for optimized design for f ¼ 9:39Hz (dB) F for optimized design for f ¼ 9:71Hz (dB)

9.39 99.7 96.4

9.71 120.1 90.8
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distributed at the high sound pressure amplitudes. The intuitive explanation of this phenomenon is that if a
natural frequency has to be decreased it must be made possible for the room to resonate at a lower frequency.
Thus the material from the high pressure amplitudes is moved to the nodal planes. If instead the natural
frequency has to be increased the system has to be made stiffer at the critical places. In this case the material is
removed from the nodal planes and distributed at the high pressure amplitudes. It is difficult to say in general
if one of these designs is best for all the frequencies close to the natural frequency and it looks like it depends
on how far away the natural frequency can be moved in one of the directions from the considered frequencies.
Similar effects have been observed for design of plates subjected to forced vibration [31].

The optimization problem is now changed such that the optimization can be done for an entire frequency
interval. The objective is to minimize the sum of responses for a number of target frequencies oi in the interval
considered as in Eq. [27]. The chosen interval is divided into M equally sized subintervals and the target
frequency in each subinterval, which results in the highest value of F, is determined. The room is then
optimized for the new objective function C which is the sum of F evaluated at the determined target
frequencies and divided by the number of intervals M to get the average value

minx C ¼

P
o1;:::;oM

maxoi2Ii
ðFðoiÞÞ

M
; I1 ¼ ½o1;o2½; :::; IM ¼�oM ;oMþ1�. (18)

Here oMþ1 � o1 is the entire frequency interval and I i are the equally sized subintervals. By this optimization
procedure F is minimized at all the target frequencies and these are updated at regular intervals during the
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Fig. 5. (a) The optimized design for the frequency interval [18;23]Hz and (b) the frequency response for the initial design and the

optimized design.
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optimization by approximating the objective function F as function of the frequency using Padé expansions,
see Ref. [32]. The room from Fig. 1 is then optimized for the frequency interval [18;23]Hz using five target
frequencies where the target frequencies are updated every 25th iteration step. The quantities used in the
optimization are b ¼ 0:85, hmax ¼ 0:3m and rmin ¼ 1:5hmax. The optimized design obtained after 415 iterations
is illustrated in Fig. 5 together with the response curve for the initial design and the optimized design. The
objective function is reduced from 111.2 to 75.7 dB. It is seen from the two response curves that the objective
function is minimized in the entire interval for the optimized design. Two of the high peaks have been moved
out of the interval and the last one has been significantly reduced. The solid material in the optimized design is
distributed such that a kind of Helmholtz resonator is formed.

3.2. Optimization of a rectangular room in 3D

The optimization problem is now extended to 3D problems and a rectangular room with the geometry
shown in Fig. 6 is considered. We optimize two examples for intervals around the first natural frequency
f ¼ 42:92Hz for the room with a vertical nodal plane at x ¼ 2m and high sound pressure amplitude at the end
walls at x ¼ 0 and 4m. The quantities used are b ¼ 0:5, hmax ¼ 0:4m and rmin ¼ 0:5hmax and the target
frequencies are updated for each 15 iterations. For the first example the optimization is done for the interval
[41.5;44.5]Hz and one target frequency. After 252 iterations the objective function C is reduced from 115.2 to
81.6 dB. The optimized design and the response for the initial design and the optimized design are seen in
Fig. 7. It is observed that the solid material is distributed at the walls with high sound pressure amplitude and
that the natural frequency has been moved to a higher value outside the interval. For the next example the
frequency interval is extended to [40.5;45.5]Hz and four target frequencies are used. C is minimized from 96.6
to 46.9 dB in 218 iterations and the results are illustrated in Fig. 8. In this case most of the solid material is
distributed at the nodal plane around x ¼ 2m rather than at the two shorter walls opposite to the previous
example. From the response curve in Fig. 8 it is seen that the first natural frequency is not contained in the
interval after the optimization and instead a natural frequency has appeared at a lower value. These two
examples show that if the frequency interval is slightly changed, the optimization can converge to two very
different, in fact opposite designs. The optimized designs here depend on what side of the interval the first
natural frequency is moved to after the optimization. The best design in this case is the design where the solid
material is placed at low pressure amplitude for the initial design. The two examples here can thus be
interpreted as an extension to 3D of the examples in Fig. 4.
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Fig. 6. The dimensions of the rectangular room in 3D with the design domain Od , the output domain Oop and the point source with the

vibrational velocity U.
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3.3. Distribution of absorbing and reflecting material along the walls

An alternative way of reducing noise in a room is to use absorbing material along the walls. This type of
design will in general be easier to manufacture and install compared to placing solid material and therefore
also cheaper. For this reason the optimization problem is now changed such that the goal is to find the
distribution of absorbing and reflecting material along the boundaries of a room which minimizes the
objective function. The problem is similar to the previous one, but there are some differences. The degrees of
freedom describing the boundary conditions are used as design variables and the sound field is now governed
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by Helmholtz equation for a homogeneous medium. The material properties for air in the room are ra and ka

and it is assumed that there is no damping effect in the air. The material on the boundaries is inhomogeneous
and the optimized design is a distribution of the usual reflecting material described by r2 and k2 and an
absorbing material with the properties r1 ¼ 3:04 kgm�3 and k1 ¼ 7:90� 105 Nm�2. The absorbing material
has an absorption coefficient equal to 0.1 which could be realized in practice by a cork sheet with the thickness
of a few millimeters. It is then convenient to use the new variables

~r ¼
r
ra

¼

r1
ra

absorbing;

r2
ra

reflecting;

8>><
>>: ~k ¼

k
ka

¼

k1
ka

absorbing;

k2
ka

reflecting:

8>><
>>: (19)

With this rescaling the acoustic model for the problem takes the form

r2p̂þ ~o2p̂ ¼ 0 Helmholtz equation, (20)

�n � rp̂ ¼
i ~o

ffiffiffiffiffiffiffiffiffiffi
kara

p

ZðrÞ
p̂; b:c: for surface with impedance Z (21)

�n � rp̂ ¼ i ~o
ffiffiffiffiffiffiffiffiffiffi
kara

p
U ; b:c: for pulsating surface. (22)

The inhomogeneities on the walls are described in the boundary condition (21) by the impedance boundary
ZðrÞ ¼ raca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kðrÞ ~rðrÞ

p
. The impedance boundary condition is only strictly valid for plane waves of normal

incidence but is used for simplicity in this work. The material interpolation functions for ~rðxÞ and ~kðxÞ must
now satisfy the requirements

~rðxÞ ¼

r1
ra

x ¼ 0;

r2
ra

x ¼ 1;

8>><
>>: ~kðxÞ ¼

k1
ka

; x ¼ 0;

k2
ka

; x ¼ 1;

8>><
>>: (23)

and again interpolation functions in the inverse material properties are used

~rðxÞ�1 ¼
r1
ra

� ��1
þ x

r2
ra

� ��1
�

r1
ra

� ��1 !
, (24)
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~kðxÞ�1 ¼
k1
ka

� ��1
þ x

k2
ka

� ��1
�

k1
ka

� ��1 !
. (25)

The optimization problem has the same form as Eqs. (8)–(10), except that an area constraint is used instead of
a volume constraint

�
1R

Od
dr

Z
Od

xðrÞdrþ bp0, (26)

where the amount of reflecting material must be at least the fraction b.

3.3.1. Results for 2D and 3D problems

Calculations have shown that when optimizing for a single frequency the absorbing material is in general
placed where the sound pressure amplitude is highest, as one would expect. However, when optimizing for a
frequency interval it gets more difficult to predict the design intuitively and in this case it is necessary to use
topology optimization to get an optimized solution. In the following example the room in 2D is optimized for
the frequency interval [38;43]Hz with seven target frequencies. The quantities used are b ¼ 0:5, hmax ¼ 0:3m,
rmin ¼ 0:5hmax and the number of iterations between the updates of the target frequencies is 20. The optimized
design and the response curve before and after the optimization are seen in Fig. 9. In 135 iterations the
objective function C is reduced from 80.3 to 78.8 dB and it is seen from the figure that the response curve for
the optimized design in general lies beneath the curve for the initial design. Five mode shapes have an influence
in this frequency interval and it is therefore difficult to predict the optimized design. Three of the mode shapes
have two horizontal nodal planes and from the design in Fig. 9 it is seen that at these nodal planes there is no
absorbing material. However, it is difficult to predict anything on the horizontal boundaries, but as none of
the mode shapes have nodal planes in the corners it is obvious that some absorbing material will be placed
here and this is also observed in the design.

In the next example a rectangular room in 3D with the length 4m, the width 3m and the height 2.5m is
optimized for the interval [79.5;90.5]Hz and seven target frequencies. The quantities used are b ¼ 0:5,
hmax ¼ 0:4m, rmin ¼ 0:5hmax and the target frequencies are updated for each 15th iteration. The results in
Fig. 10 are obtained after 197 iterations and C is reduced from 67.7 to 66.1 dB. From the response curves it is
seen that F is reduced in most of the interval. It is also observed that the natural frequency around 80Hz has
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the highest response in the interval and it is therefore expected that in order to minimize C the absorbing
material should be distributed where the sound pressure amplitude is high in the mode shape corresponding to
the mentioned natural frequency. The associated mode shape has a nodal plane for x ¼ 2m and z ¼ 1:25m
and as seen from the optimized design, reflecting material is distributed here, whereas the absorbing material is
placed in the corners with high sound pressure amplitude, as expected.

Thus topology optimization appears as an efficient method to find an optimized distribution of reflecting
and absorbing material in a room for an interval of relatively low frequencies.

3.4. Design of sound barriers

In this section topology optimization is employed to design outdoor sound barriers and the problem setting
is illustrated in Fig. 11. The design domain Od is 0:5� 2 m and the sound source is placed at the ground 5m in
front of the barrier with the radius 0.1m. The output domain Oop is a circle with center (9.25,1.25)m and
radius 0.35m. The ground is reflecting and to describe an outdoor situation with an unbounded medium the
other boundaries are absorbing with the Sommerfeld radiation condition

n � ðr̂�1ðrÞrp̂ðrÞÞ ¼ i ~op̂ðrÞ. (27)

The geometry of the optimization problem is the same as in Ref. [24] where sound barriers are designed using a
boundary element method and genetic algorithms for both low and high frequencies. The output domain Oop

used here contains all the control points from the small output domain in that paper. As the optimization
algorithm is most suitable for low frequencies the results will be compared to the results in Ref. [24] only for
the frequency f ¼ 125Hz. The performance of the optimized designs will in each case be compared to the
performance of a straight barrier and a T-shaped barrier with the dimensions as indicated in Fig. 12. The
optimization is done for the two octave band center frequencies 63 and 125Hz, respectively, and in both cases
hmax is equal to 0.02 m in the design domain and 0.3m in the rest of the domain. In the first case rmin ¼ 1:5hmax

is used and in the second case rmin ¼ 3:5hmax is used. With these parameters the number of design variables is
around 5500 which is more than in Ref. [24]. In Table 2 the value of the objective function for the T-shaped
barrier and the optimized barrier are given relative to the straight barrier for each of the two frequencies. It is
first of all observed that the T-shaped barrier is performing better than the straight barrier in both cases as
expected from the references and that the reduction in the case f ¼ 125Hz is 0.9 dB — exactly as reported in
Eq. [24]. The first two examples are for the frequency 63Hz. The first is with b ¼ 0:24 which is the same
amount of material as in the T-shaped barrier. It is seen that a reduction of 5.88 dB is obtained compared to
the straight barrier. By increasing the amount of material in the initial design to b ¼ 0:9 it is possible to obtain
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Fig. 11. The geometry for the sound barrier problem in 2D with the design domain Od , the output domain Oop and the point source with

the vibrational velocity U.

0.1 m0.1 m
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2 m2 m
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x

y

Fig. 12. The dimensions of the barriers with which the performance of the optimized sound barriers will be compared: (a) straight barrier

and (b) T-shaped barrier.

Table 2

The value of the objective function for the T-shaped barrier and the optimized barrier relative to the straight barrier for each of the two

frequencies

Frequency f (Hz) Straight F (dB) T-shape DF (dB) Optimized DF (dB) Optimized DF (dB)

b ¼ 0:24 b ¼ 0:90

63 68.25 �1.70 �5.88 �7.04

125 70.02 �0.90 �9.13
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a further reduction of the objective function of more than one dB as more reflecting material can be
distributed. Note, however, that the amount of material used in the optimized design is well below the limit of
90%. In Fig. 13 the designs for f ¼ 63Hz with the two different values of b are shown. The two designs are
different, but in both cases they look like modified T-shapes and cavities are formed that act as Helmholtz
resonators at each side of the barriers. The optimization for the frequency 125Hz is then done for b ¼ 0:9 and
the result can be compared to the result in Ref. [24]. The reduction of the objective function is here 9.13 dB,
which is a few dB less than in Ref. [24], but the objective function is here minimized over an entire domain and
not only over a few point as in that reference. In Fig. 14 the optimized design for f ¼ 125Hz is given
together with the distribution of the sound pressure amplitude. The design obtained is different from the
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Fig. 13. The optimized designs for the target frequency f ¼ 63Hz: (a) with volume fraction b ¼ 0:24 and (b) with volume fraction b ¼ 0:9.

Fig. 14. (a) The optimized design for the target frequency f ¼ 125Hz and b ¼ 0:9 and (b) The distribution of the sound pressure

amplitude for the optimized design.
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design in Ref. [24] with a Helmholtz resonator formed at the edge pointing away from the source where the
sound pressure amplitude is high. From these results it is observed that the designs for the two frequencies are
very different and the reduction achieved is bigger the higher the frequency is. This tendency is expected,
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because the distribution of the sound pressure amplitude gets more complicated for higher frequencies and
therefore a detailed optimized design can have more influence.

In the next example the optimization is done for the frequency interval [63;125]Hz with seven target
frequencies which are updated every 25th iteration step. The quantities b ¼ 0:9, hmax ¼ 0:02m in the design
domain and rmin ¼ 2:5hmax are used. The objective function C is reduced from 71.4 to 64.4 dB after 889
iterations and in Fig. 15 the optimized design is seen to the left. The design has a cavity on both vertical edges
as in the cases for f ¼ 63Hz. To the right F as function of the frequency f is plotted for the optimized design as
well as for the straight and the T-shaped barrier. In the entire interval the optimized design is performing
better than the two others with a few dB. So these examples show that the topology optimization method
presented here is suitable for designing sound barriers for both a single frequency and frequency intervals.

Usually sound barriers are used on both sides of a sound source, for instance along roads. So to see how this
influences the optimized results the problem is modified such that a sound barrier is introduced on both sides
of the sound source. Again the optimization domain is placed behind the right barrier. The size of the barriers
and the output domain as well as the distances between the source, the barriers and the design domain are the
same as in the previous examples. Here f ¼ 125Hz is used and hmax is equal to 0.05m in the design domain.
The objective function for the same problem but with straight barriers is 64.1 dB and with T-shaped barriers
the objective function is slightly reduced to 63.9 dB. To get the optimized design b ¼ 0:4 and rmin ¼ 3:0hmax are
employed and after 609 iterations the objective function is reduced with 27.9 to 36.1 dB compared to the
example with the T-shaped barriers. The results of the optimization are shown in Fig. 16. The optimized
designs for the two barriers are different and the material has been moved to a position such that a destructive
interference pattern between the source and the right barrier is created. This has the effect that the sound
pressure in the direction of the output domain is reduced. As more material can be distributed to control the
sound as compared to the case with only one barrier the objective function is reduced more, and as noted,
another effect of reducing the sound is being utilized. Inspired by this result the example with the T-barriers is
recalculated where the inner edges of the columns, that are pointing towards the source, are moved to the
inner edges of the optimized designs. For this case it is possible to get an objective function equal to 54.2 dB.
This value is not reduced as much as for the optimized designs, but it is reduced with almost 10 dB compared
to the case where the T-shaped barriers were in their original position. This shows that topology optimization
can be employed to find new designs of sound barriers as well as to get inspiration to find an efficient position
of conventional sound barriers.
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the distribution of sound pressure amplitude for the optimized design.
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Fig. 16. (a) The optimized design with two sound barriers and one optimization domain for the target frequency f ¼ 125Hz and (b) the

distribution of the sound pressure amplitude for the optimized design.
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4. Conclusion

In this article it was shown that topology optimization can be employed to minimize the squared sound
pressure amplitude in a certain part of a room and behind noise barriers by distribution of air, reflecting or
absorbing material in a chosen design domain. The method is based on continuous material interpolation
functions in the inverse density and bulk modulus and was developed for problems in both 2D and 3D.

It was shown that the method in general is suitable for low frequencies where well-defined designs can be
obtained for a single frequency or a frequency interval. However, it was observed that it could be difficult to
obtain mesh-independent designs, hence an image morphology-based filter was used to eliminate small details
and grey scale domains. For higher frequencies the method is not suitable, mainly due to problems with
obtaining a sufficiently fine finite element mesh, but also due to problems with too many local minima.

For the first type of problem, where reflecting material is distributed in a design domain along the ceiling, it
was noted that small cavities acting as Helmholtz resonators were formed. It was also observed that the
optimized designs were dependent on wether a natural frequency close to a driving frequency was increased or
decreased. If a natural frequency was moved to a lower value, the solid material was removed from the high
pressure amplitudes and redistributed at the nodal planes for the initial design such that the system was able to
resonate at a lower frequency. The opposite happened when a natural frequency was moved to a higher value.
In this case the material was redistributed at the high pressure amplitudes in order to make it more difficult for
the system to resonate.

The second type of problem was concerned with the distribution of reflecting and absorbing material along
the walls. In general the material was distributed at high pressure amplitudes to minimize the objective
function and the method therefore appeared suitable for minimizing the objective function for bigger intervals
with more mode shapes for which the design cannot be predicted easily. However, as most mode shapes have
high pressure amplitudes in the corners a tendency for the absorbing material to be placed here was observed.

It was finally shown that the method can be utilized to design outdoor sound barriers where the objective
function in the shadow zone was reduced with up to 10 dB with one barrier and with almost 30 dB with two
barriers compared to conventional types. In the cases with one barrier cavities were again formed that were
acting as Helmholtz resonators. In the case with the design of two barriers the material was placed such that a
destructive interference pattern was formed resulting in a high noise reduction.

As the designs in general are sensitive to the choice of driving frequency or frequency interval as well as
other factors as the choice of the volume fraction b and the filter size, it is recommended to choose the driving
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frequency or the frequency interval carefully and to do more optimizations with several parameter
combinations to obtain the best possible design.
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