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Abstract

In this paper, the effects of tooth crack on the vibration response of a one-stage gearbox with spur gears are studied. The

growth in a tooth crack is reflected in the total mesh stiffness of the gear system. A lumped parameter model is used to

simulate the vibration response of the pair of meshing gears. Several statistical indicators reported in the literature are used

to reflect the change in the vibration response caused by the tooth crack. The performance of these indicators are

compared. Their pros and cons are outlined.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Gearboxes are among the most important mechanisms in industrial machinery, automotive applications,
and our daily lives. They are widely used to transmit power and produce high rotational speed changes and/or
change the direction of motion. Because of their growing use in modern technology, gearbox health
monitoring and early fault detection has become the subject of intensive investigation and research [1].

A great deal of research has been undertaken to study the dynamic modelling of spur gears. Kasuba and
Evans [2] used a digitization approach to calculate gear mesh stiffness. Yang and Lin [3] used the so-called
potential energy method to express the total mesh stiffness of a pair of meshing gears as a function of the
rotation angle of the gear. Their model was further refined by Tian [4] by taking the shear mesh stiffness into
consideration. Bartelmus [5] applied mathematical modelling and computer simulation to gearbox dynamic
examinations. Both torsional and lateral vibrations were included in his study of a one-stage spur gearbox
system. An eight degrees of freedom model including friction was also given in Ref. [5]. Tammigana et al. [6],
Vedmar and Anderson [7], Kartik and Houser [8], Velex and Ajmi [9], and He et al. [10] have recently reported
more sophisticated dynamic models of spur and/or helical gears including various degrees of freedom, various
excitation factors such as gear transmission errors, and various nonlinearities such as variable mesh stiffness,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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mesh damping, and gear geometrical errors. These models provide more realistic representations of the
dynamic behavior of the meshing gears. However, they have not considered the effects of mechanical damages
on the dynamic response of the system.

These various gear dynamic models may provide useful information for fault detection. Vibration-based
time domain, frequency domain, and time-frequency domain analyses constitute the most powerful tools
available for fault detection of rotating machinery. One traditional technique is based on statistical
measurements of the vibration signal. The simplest indicators include peak, root mean square (rms), and crest
factor (CF). Kurtosis is a widely used higher order statistic, and its successful use has been reported for
bearing condition monitoring [11]. Fault Growth Parameter (FGP) and its revised version FGP1 are two other
newly proposed indicators which have been proved to provide a clear way to track the development of cracks
(or spalls) in gear teeth [12].

The scope of this paper is limited to a spur gear pair. This paper reports the results developed by Wu [13]
and a simpler version of this paper is reported in Wu and Zuo [14]. Computer simulation is used to study the
effects of tooth crack on the vibration response of a one-stage gearbox with spur gears. A tooth root crack
with a range of sizes is introduced to one of the pinion teeth, and the corresponding vibration responses are
simulated. Different statistic indicators are applied to detect the tooth damage. The performance of these
indicators is investigated. Since we are focusing on the effects of a growing crack on the vibration response of
the meshing gears, we have ignored the effects of manufacturing errors in the gears, the frictions between the
gear teeth, and other practical phenomena such as backlash.
2. Modelling of gear mesh stiffness when a tooth is cracked

The gear mesh stiffness model described in this study was based on the work by Yang and Lin [3] in 1987.
They used the potential energy method to analytically model the effective mesh stiffness. The total potential
energy stored in the meshing gear system was assumed to include three components: Hertzian energy, bending
energy, and axial compressive energy. This model was refined by Tian [4] in 2004 in which shear energy was
taken into account as well. Thus, for the single-tooth-pair meshing duration, the total effective mesh stiffness
can be expressed as [4]

kt ¼
1

1=kh þ 1=kb1 þ 1=ks1 þ 1=ka1 þ 1=kb2 þ 1=ks2 þ 1=ka2
, (1)

where kh, kb, ks, and ka represent the Hertzian, bending, shear, and axial compressive mesh stiffness,
respectively. For the double-tooth-pair meshing duration, the total effective mesh stiffness is the sum of the
two pairs’ stiffnesses, which is shown as [4]

kt ¼
X2
i¼1

1

1=kh;i þ 1=kb1;i þ 1=ks1;i þ 1=ka1;i þ 1=kb2;i þ 1=ks2;i þ 1=ka2;i
, (2)

where i ¼ 1 represents the first pair of meshing teeth and i ¼ 2 represents the second. The derivations of these
two equations are given in Tian [4]. Calculation of each of the components in these two equations when there
are no cracks in any gear is given in Refs. [3,4,15], where Ref. [15] is a shorter version of Ref. [4]. The
expressions of these components when cracks are introduced will be provided later in this paper.

For typical gear parameters given in Table 1, we wrote simple Matlab programs and obtained numerical
values of the total effective mesh stiffness as a function of the gear rotation angle. This total effective mesh
stiffness within one shaft period of the gear is plotted in Fig. 1. Fig. 1 represents the total meshing stiffness of
the pair of gears when the gear teeth are perfect (that is, have no cracks).

On crack development in a gear, Refs. [16–19] consider that a crack is developing at the root of a single
tooth of the pinion. A tooth root crack typically starts at the point of the largest stress in the material. In
Ref. [20], a computational model which applies the principles of linear elastic fracture mechanics is used to
simulate gear tooth root crack propagation. Based on the computational results, the crack propagation path
shows a slight curve extending from the tooth root as shown in the left side of Fig. 2 [20]. Lewicki [21] also
indicates that crack propagation paths are smooth, continuous, and in most cases, rather straight with only a
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Fig. 1. The total effective mesh stiffness, kt vs. the pinion’s angular displacement, y1, within one shaft period, when the gear teeth are

perfect.

Table 1

Main parameters of the gear and pinion [15]

Young’s modulus E ¼ 2:068� 1011 Pa

Poisson’s ratio n ¼ 0:3
Pressure angle 20�

Diametral pitch P ¼ 0:2032m�1

Width of teeth L ¼ 0:16m
Number of teeth on pinion N1 ¼ 19

Number of teeth on gear N2 ¼ 48

Fig. 2. Assumed crack propagation path.
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slight curvature. He has also studied the effects of rim and web thickness on crack propagation path and
showed that different paths exist.

In this paper, based on the results shown in Ref. [20], we further simplify the crack model. We will consider
the crack path to be a straight line as shown in the right side of Fig. 2. The crack starts at the root of the pinion
and then proceeds as shown in Fig. 2. Further referring to Figs. 3–6, the intersection angle, u, between the
crack and the central line of the tooth is set at a constant 45�. The crack length, q1, grows from zero with an
increment size of Dq1 ¼ 0:1 mm until the crack reaches the tooth’s central line. At that point, q1, reaches its
maximum value of 3.9mm. After that, the crack then changes direction to q2 (see Fig. 5), which is assumed to
be exactly symmetric around the tooth’s central line. Theoretically, the maximum length of q2 should be the
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Fig. 3. The cracked tooth model for case 1.

Fig. 4. The cracked tooth model for case 2.

S. Wu et al. / Journal of Sound and Vibration 317 (2008) 608–624 611
same as q1, however, the tooth is expected to suffer sudden breakage before the crack runs through the
whole tooth. Thus the maximum length of q2 is assumed to be 60% of q1max and the increment size, Dq2,
is also 0.1mm. In later reference of the crack growth, we will use a relative length. The highest crack
level will be 3:9þ 60%� 3:9 ¼ 6:24mm, or 80% (¼ 6:24=7:8) of the theoretical total length of the full through
crack.
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Fig. 5. The cracked tooth model for case 3.

Fig. 6. The cracked tooth model for case 4.

S. Wu et al. / Journal of Sound and Vibration 317 (2008) 608–624612
With the crack introduced as described above, we need to calculate all components of the total mesh
stiffness, that is, Hertzian stiffness, axial compressive stiffness, bending stiffness, and shear stiffness. Based on
the work documented in Ref. [15], the Hertzian and axial compressive stiffnesses remain the same when a
crack is introduced. However, the bending and shear stiffnesses will change due to the appearance of the crack,
and their derivation are provided under each of the following four cases.

Case 1 Tian [4]: When hc1Xhr & a14ag, where a1 ¼ 90� � ðpressure angleÞ.
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The potential energy stored in a meshing gear tooth can be calculated by

Ub ¼

Z d

0

M2

2EIx

dx ¼

Z d

0

½F bðd � xÞ � Fah�2

2EIx

dx, (3)

Us ¼

Z d

0

1:2F 2
b

2GAx

dx ¼

Z d

0

½1:2F cos a1�2

2GAx

dx, (4)

where Ix and Ax represent the area moment of inertia and area of the section where the distance from the
tooth’s root is x, and G represents the shear modulus. They can be obtained by

Ix ¼

1

12
ðhc1 þ hxÞ

3L if xpgc;

1

12
ð2hxÞ

3L if x4gc;

8>><
>>: (5)

Ax ¼
ðhc1 þ hxÞL if xpgc;

2hxL if x4gc;

(
(6)

G ¼
E

2ð1þ nÞ
, (7)

where hx represents the distance between the point on the tooth’s curve and the tooth’s central line where the
horizontal distance from the tooth’s root is x.

The bending mesh stiffness of the cracked tooth is

1

kbcrack

¼

Z a2

�ag

12f1þ cos a1½ða2 � aÞ sin a� cos a�g2ða2 � aÞ cos a

EL½sin a2 � ðq1=Rb1Þ sin uþ sin aþ ða2 � aÞ cos a�3
da

þ

Z �ag

�a1

3f1þ cos a1½ða2 � aÞ sin a� cos a�g2ða2 � aÞ cos a

2EL½sin aþ ða2 � aÞ cos a�3
da (8)

and the shear mesh stiffness of the cracked tooth is

1

kscrack

¼

Z a2

�ag

2:4ð1þ nÞða2 � aÞ cos aðcos a1Þ
2

EL½sin a2 � ðq1=Rb1Þ sin uþ sin aþ ða2 � aÞ cos a�
da

þ

Z �ag

�a1

1:2ð1þ nÞða2 � aÞ cos aðcos aÞ2

EL½sin a2 � ðq1=Rb1Þ sin uþ sin aþ ða2 � aÞ cos a�
da: (9)

Case 2 Tian [4]: When hc1ohr or when hc1Xhr & a1pag.
The bending mesh stiffness of the cracked tooth is

1

kbcrack

¼

Z a2

�a1

12f1þ cos a1½ða2 � aÞ sin a� cos a�g2ða2 � aÞ cos a

EL½sin a2 � ðq1=Rb1Þ sin uþ sin aþ ða2 � aÞ cos a�3
da (10)

and the shear mesh stiffness of the cracked tooth is

1

kscrack

¼

Z a2

�a1

2:4ð1þ nÞða2 � aÞ cos aðcos a1Þ
2

EL½sin a2 � ðq1=Rb1Þ sin uþ sin aþ ða2 � aÞ cos a�
da. (11)

Case 3: When hc1ohr or when hc1Xhr & a1pag.
This case was not covered in Ref. [4]. The bending mesh stiffness of the cracked tooth is

1

kbcrack

¼

Z a2

�a1

12f1þ cos a1½ða2 � aÞ sin a� cos a�g2ða2 � aÞ cos a

EL½sin a� ðq2=Rb1Þ sin uþ ða2 � aÞ cos a�3
da (12)
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and the shear mesh stiffness of the cracked tooth is

1

kscrack

¼

Z a2

�a1

2:4ð1þ nÞða2 � aÞ cos aðcos a1Þ
2

EL½sin a� ðq2=Rb1Þ sin uþ ða2 � aÞ cos a�
da. (13)

Case 4: When hc2Xhr & a14ag.
This case was not covered in Ref. [4] either. We have found the bending mesh stiffness of the cracked tooth

to be

1

kbcrack

¼

Z a2

�ag

12f1þ cos a1½ða2 � aÞ sin a� cos a�g2ða2 � aÞ cos a

EL½sin a� ðq2=Rb1Þ sin uþ ða2 � aÞ cos a�3
da (14)
Table 2

A sample of different crack lengths

Crack size Belonging to

q1 ¼ 1:4mm Case 1

q1 ¼ 3:1mm Case 2

q1 ¼ 3:9mm, q2 ¼ 1:1mm Case 3

q1 ¼ 3:9mm, q2 ¼ 2:4mm Case 4
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Fig. 7. The total mesh stiffness, kt, at different crack levels: (a) Case 1: q1 ¼ 1:4mm, (b) Case 2: q1 ¼ 3:1mm, (c) Case 3: q1 ¼ 3:9mm,

q2 ¼ 1:1mm, (d) Case 4: q1 ¼ 3:9mm, q2 ¼ 2:4mm.
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and the shear mesh stiffness of the cracked tooth is

1

kscrack

¼

Z a2

�ag

2:4ð1þ nÞða2 � aÞ cos aðcos a1Þ
2

EL½sin a� ðq2=Rb1Þ sin uþ ða2 � aÞ cos a�
da. (15)

With the expressions of the components of the total mesh stiffness provided above, we are able to find the total
mesh stiffness value given each shaft rotation angle and each crack size. For a pair of standard steel involute
spur teeth whose main parameters are given in Table 1, take four specific crack sizes given in Table 2 as an
example. These selected crack sizes cover all the four cases classified in the above derivations. The total mesh
stiffness under each of the four crack sizes has been calculated as a function of the shaft rotation angle and
plotted in Fig. 7. From Fig. 7, it can be observed that as the size of the crack grows, the total mesh stiffness
when the cracked tooth is in meshing becomes much lower. This is important information for fault detection
and assessment.
3. Dynamic simulation of gearbox vibration response

We will adopt the mathematical model with torsional and lateral vibration reported by Bartelmus [5] in
2001. The model of a one stage gearbox system is given in Fig. 8. It is a two-parameter (stiffness and damping)
model with torsional and lateral vibration, which means that it includes both the linear and rotational
equations of the system’s motion. This model represents a system with six degrees of freedom, which is driven
by electric motor moment, M1, and loaded with external moment, M2. This model is simple enough to enable
to focus on the effects of crack growth on the vibration response of the system. Thus, in this paper, we have
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Fig. 8. A one stage gearbox system [5].
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assumed that all gears are perfectly mounted rigid bodies with ideal geometries. Inter-tooth friction is ignored
here for simplicity. The following notation is used in this study:
(1)
 Fk=Fc: stiffness/damping inter-tooth force

(2)
 Fu=F uc: internal stiffness/damping force of input bearing

(3)
 Fl=Flc: internal stiffness/damping force of output bearing

(4)
 Mpk=Mpc: stiffness/damping moment of input couplings

(5)
 Mgk=Mgc: stiffness/damping moment of output couplings

(6)
 kt: total mesh stiffness

(7)
 ct: mesh damping coefficient

(8)
 Im=Ib: mass moment of inertia of motor/load

(9)
 I1=I2: mass moment of inertia of pinion/gear
(10)
 M1: input motor torque

(11)
 M2: output torque from load

(12)
 m1=m2: mass of the pinion/gear

(13)
 Rb1=Rb2: base circle radius of pinion/gear

(14)
 RO1=RO2: outside circle radius of pinion/gear

(15)
 kp=kg: torsional stiffness of input/output flexible coupling

(16)
 cp=cg: damping coefficient of input/output flexible coupling

(17)
 k1=k2: vertical radial stiffness of input/output bearings

(18)
 c1=c2: vertical radial viscous damping coefficient of input/output bearings

(19)
 y1=y2: linear displacement of pinion/gear in the y direction

(20)
 ym=yb: angular displacement of motor/load

(21)
 y1=y2: angular displacement of pinion/gear
Because friction is ignored, the vibration in the x direction is free response and will disappear due to inherent
damping. In this paper, we focus only on the motion in the y direction. Based on Bartelmus [5], the vertical
motion (in the y direction) equations of the pinion and gear are

m1 €y1 ¼ Fk þ F c � F u � Fuc,

m2 €y2 ¼ Fk þ F c � F l � Flc. (16)

The rotary motion equations of the pinion and gear are

I1 €y1 ¼Mpk þMpc � Rb1ðF k þ FcÞ,

I2 €y2 ¼ Rb2ðFk þ FcÞ �Mgk �Mgc. (17)

The rotary motion equations of the motor and load are:

Im
€ym ¼M1 �Mpk �Mpc,

Ib
€yb ¼ �M2 þMgk þMgc. (18)

The values of forces and moments are given by

Fk ¼ ktðRb1y1 � Rb2y2 � y1 þ y2Þ,

Fc ¼ ctðRb1
_y1 � Rb2

_y2 � _y1 þ _y2Þ, (19)

F u ¼ k1y1,

F uc ¼ c1 _y1,

F l ¼ k2y2,
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F lc ¼ c2 _y2, (20)

Mpk ¼ kpðym � y1Þ,

Mpc ¼ cpð
_ym �

_y1Þ,

Mgk ¼ kgðy2 � ybÞ,

Mgc ¼ cgð
_y2 � _ybÞ. (21)

With the established model, the next step is to use these sets of equations for computer simulation when the
gear is new or cracked to various degrees. To focus on the effects of crack size thorough the total mesh
stiffness, we have further assumed that the vertical radial stiffness of the input bearings, k1, and that of the
output bearings, k2, are identical and constant, that is, k1 ¼ k2 ¼ kr; the damping coefficient of the input
bearings, c1, and that of the output bearings, c2, are equal to a constant cr; the torsional stiffness of the input
flexible coupling, kp, and that of the output flexible coupling, kg, are equal to a constant kc; the damping
coefficient of the input flexible coupling, cp, and that of the output flexible coupling, cg, are equal to cc. Also,
the mesh damping coefficient, ct, is set to be proportional to the total mesh stiffness, kt, that is,

ct ¼ mkt, (22)

where m is the scale constant measured in seconds, and its value has been selected in this simulation as
3:99� 10�6ðsÞ. Furthermore, the other parameters of the gearbox system are listed in Table 3. Using Matlab’s
ODE15s function, the displacement plots can be derived for the perfect gear teeth and cracked gear tooth with
increasing deterioration levels.

As described before, the crack length grows from zero with an increment size of 0.1mm. This incremental
crack size is expressed as a percentage of the theoretical through-tooth crack size and is approximately 1%
ð¼ 0:1mm=7:8mmÞ. Since the tooth may suffer a sudden breakage before the crack develops to its full length,
the maximum crack level is assumed to be 80%. Fig. 9 shows the dynamic response of the meshing gears when
the crack levels are 0%, 2%, 6%, 18%, and 28%, respectively. Fig. 10 provides the dynamic response when the
crack levels are 42%, 53%, 71%, and 78%, respectively.

In Fig. 9, the fault influences are not very obvious to visual observation; the signals look very similar
compared to the perfect gear vibration signal (0% crack). The vibration signals generated with crack levels
lower than 30% look quite similar to one another. As shown in Fig. 10, tooth root crack of levels higher than
40% produces obvious changes in the gear vibration signals. The obvious periodical impulses caused by the
cracked tooth appear in the time domain signal as the crack level increases; this carries diagnostic information
Table 3

Main parameters of the gearbox system [4]

Mass of the pinion m1 ¼ 0:96 kg
Mass of the gear m2 ¼ 2:88 kg
Contact ratio Cr ¼ 1:6456
Mass moment of inertia of the motor Im ¼ 0:0021kgm2

Mass moment of inertia of the load Ib ¼ 0:0105kgm2

Mass moment of inertia of the pinion I1 ¼ 4:3659� 10�4 kgm2

Mass moment of inertia of the gear I2 ¼ 8:3602� 10�3 kgm2

Input shaft frequency f 1 ¼ 30Hz

Mesh frequency f m ¼ 570Hz

Input motor torque M1 ¼ 11:9Nm

Output load torque M2 ¼ 48:8Nm

Torsional stiffness of the coupling kc ¼ 4:4� 104 Nm=rad
Damping coefficient of the coupling cc ¼ 5:0� 105 Nm=rad
Radial stiffness of the bearing kr ¼ 6:56� 107 N=m
Damping coefficient of the bearing cr ¼ 1:8� 105 N s=m
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Fig. 9. The pinion’s vibration displacement response in the y direction for a cracked gear tooth with different crack levels: (a) tooth with

0% crack, (b) tooth with 2% crack, (c) tooth with 6% crack, (d) tooth with 18% crack, (e) tooth with 28% crack.
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that is important for extracting features of tooth defects. Because the influence caused by the cracked tooth
repeats only once in a revolution, the duration between every two impulses is equal to one shaft period
(T1 ¼ 1=f 1 ¼ 0:033 s). The visually observable signs of the crack when the crack size are very large (more than
50%, say) has no practical usefulness. The tooth would have broken off when the crack is this large since most
gearboxes work under heavy load. But, the simulated vibration responses under various sizes of crack enable
us to compare the performance of different signal processing techniques and different fault growth indicators.
We are interested in those indicators that are able to reflect the presence of crack that is as small as possible,
say 10% or 15%. In the following sections, we examine several signal processing and statistical techniques for
early crack detection.
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Fig. 10. The pinion’s vibration displacement response in the y direction for a cracked gear tooth: (a) tooth with 42% crack, (b) tooth with

53% crack, (c) tooth with 71% crack, (d) tooth with 78% crack.
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4. Estimation of crack growth using statistical techniques

Since the vibration signals at different tooth crack levels have been simulated, we would like to evaluate
different statistical indicators for effective indication of tooth crack growth. Indicators using three different
types of signals derived from the simulated vibration signals will be examined.
4.1. Original signals

A number of simple signal metrics based on the time domain waveform still have widespread applications in
mechanical fault detection, the simplest of these being the rms value of the signal which is used for overall
vibration level measurements [22]. rms is a kind of average of the signal; for discrete signals, the rms value is



ARTICLE IN PRESS
S. Wu et al. / Journal of Sound and Vibration 317 (2008) 608–624620
defined as [22]

rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

ðxðnÞ � x̄Þ2

vuut ,

x̄ ¼
1

N

XN

n¼1

xðnÞ, (23)

where N is the number of data points taken in the signal, xðnÞ is the amplitude of the signal of the nth point,
and x̄ is the mean value of all the amplitudes.

In the past few years, higher order statistics have been generating intensive interest. Kurtosis is a parameter
that is sensitive to the shape of the signal and is well adapted to the impulse nature of the stimulating forces
generated by component damage [23]. Its value can be given by [23]

kurtosis ¼
ð1=NÞ

PN
n¼1ðxðnÞ � x̄Þ4

½ð1=NÞ
PN

n¼1ðxðnÞ � x̄Þ2�2
. (24)

Similar to kurtosis, a third statistical moment parameter, Sr, was developed in Ref. [24]. It was found to have
the same traditional merit as kurtosis, and it was less sensitive to spurious vibrations and more stable under
different loads and speeds. The equation for Sr is given as follows [25]:

Sr ¼
ð1=NÞ

PN
n¼1½ðxðnÞ � x̄Þ2�3=2

½ð1=NÞ
PN

n¼1ðxðnÞ � x̄Þ2�3=2
. (25)

Based on the comments given in Ref. [25], both kurtosis and Sr had their own advantages and disadvantages.
Thus, a new statistical moment, Sa was proposed in Ref. [25]; it was shown to have lower susceptibility to
spurious vibrations than kurtosis and higher sensitivity to impulse signals than Sr. It is defined as [25]

Sa ¼
ð1=NÞ

PN
n¼1jxðnÞ � x̄j3

ð1=NÞ
PN

n¼1jxðnÞ � x̄jÞ3
, (26)

Fault growth parameter (FGP) was another newly proposed indicator and its revised version FGP1 was
provided by Lin et al. [12]. Their definitions are given below:

FGP ¼ 100
XL

i¼1

1

L
Iðri4r̄þ 3s0Þ, (27)

where ri’s are the current residual error signal points, r̄ is the mean value of the signal, s0 is the baseline
standard deviation, and Ið:Þ is a zero-one indicator function:

FGP1 ¼ 100
XL

i¼1

wi

W
Iðri4r̄þ 3s0Þ, (28)

where

wi ¼ Iðripr̄þ 3s0Þ þ
r1 � r̄

3s0
� 1

� �
þ 1

� �
,

W ¼
XL

i¼1

wi

and b:c is the floor function.
We have calculated the indicators defined above directly from our simulated vibration signals. We get a

value for each indicator at each crack level. Our purpose is to find out which indicator is the most effective in
reflection of the crack growth level. Since the values of FGP and FGP1 represent the outlier percentage of the
signal values compared to the healthy tooth vibration signal, and the other indicators only show the actual
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Fig. 11. Comparison among Sa, Sr, kurtosis, rms, FGP, and FGP1; m: Sa, �: Sr, n: kurtosis, E: rms, &: FGP and FGP1.
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values of the cracked tooth vibration signals; to make them comparable, we express all indicators as a
percentage of change from the healthy condition. Let us use kurtosis as an example. We deduct the healthy
tooth signal kurtosis from the cracked tooth signal kurtosis, divide the difference by the healthy tooth signal
kurtosis, and express the result in the form of a percentage. This value shows the change of cracked tooth
signal kurtosis from the healthy tooth kurtosis. Repeat the same procedure for rms, Sa, and Sr, and the
calculation results are shown in Fig. 11.

From Fig. 11, we can observe that FGP and FGP1 are virtually not responsive to crack growth at all. rms
fluctuates around the x-axis and is slightly above 0 when the crack level is at its maximum (80%). It is
apparent that none of these three indicators provide any useful indication of the growth in the tooth crack. On
the other hand, both kurtosis and Sa exhibit a similar and obvious increasing trend when the crack level
becomes higher than 40%. When the crack level reaches 60%, both show sharp increases. This means that
kurtosis and Sa are effective indicators of crack tooth damage when the level of damage reaches around
40–60%. The performance of the last indicator, Sr , is right in the middle, neither the best and nor the worst.
Our conclusion is then, when the original signals are used directly, kurtosis and Sa are found to be the better
indicators of crack growth when the damage level reaches 40%. The other three indicators do not work
as well.

4.2. Residual signals

The idea of residual signal was first proposed by Stewart [26] in 1977. For healthy gears, the gear meshing
frequency and its harmonics and the shaft rotation frequencies and their harmonics, which constitute the so-
called regular signals, dominate the meshing vibration spectrum [27]. When a local gear fault such as a crack in
a tooth is present, the vibration signal in a complete revolution will be modified by the effects of a short
duration impact impulse, and thus the regular components of the signal are actually redundant for the purpose
of fault detection. Thus, in order to effectively detect the fault features in the vibration signal, the regular
components need to be removed; the rest is called the residual signal, which is supposed to be more sensitive to
crack growth.

In two separate subsections, we will examine two different methods of generating residual signals. The
indicators calculated based on these two different methods will be checked for effective indication of crack
growth. The first method is based on the literal definition of the residual signal given in Ref. [26], and the other
one is proposed in this paper.

4.2.1. Method 1 of generating residual signals

Based on the definition of residual signal given in Ref. [26], after removing gear meshing frequency and shaft
frequency and their harmonics, residual signals of simulated vibration signals have been obtained. The same
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set of indicators are used here and their values as a function of the crack level are plotted in Fig. 12. From
Fig. 12, it can be seen that trends of these indicators are similar to those shown in Fig. 11. The relative merits
of these indicators are identical too. FGP, FPG1, and rms perform the worst, Sr is in the middle, and again
kurtosis and Sa are the best. Both kurtosis and Sa show obvious increasing trends only when the crack level
has reached 40%. It can be concluded that there is no advantage of using residual signals generated with
Method 1. One can get results of similar value when the original signals are used directly.

4.2.2. Method 2 of generating residual signals

We now consider another method of deriving the residual signal. The objective of getting the residual signal
is to remove the influence of the regular vibration components and highlight the signal components generated
by crack damage. When there is no crack in any of the gears, the obtained vibration signal can be considered
to be the regular signals. Thus, if we select the vibration signal with 0% crack as a reference signal, and remove
it from each set of cracked gear vibration signals, the information contained in the remaining part is supposed
to be only related to the gear faults. Then, we apply the aforementioned indicators to the residual signal
obtained from Method 2 and their values as a function of the crack level are shown in Fig. 13.

As can be observed from Fig. 13, unlike the results obtained from the original signals and the residual
signals based on Method 1, rms stands out to be the best indicator of crack growth, kurtosis ranks as the
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second best, Sa becomes one of the worst, FGP, FGP1, and Sr are still pretty bad. rms shows obvious
increasing pattern when the crack level is as early as 20%. Kurtosis also exhibits earlier sharp increases when
the crack level reaches 35%. Both of these two indicators can be considered to be effective indicators of early
crack growth.

With tooth crack growing, the values of Sa keep decreasing rather than increasing; this makes it impossible
to indicate crack growth. A mathematical explanation for such a phenomenon is that the denominator of the
Sa formula increases faster than the numerator. Though the amplitude of several signal samples, xðnÞ, are
enhanced due to the appearance of tooth damage, the values of Sa are still reduced.

An explanation for rms’s excellent performance is that using the second method of generating residual
signals, the healthy tooth signal is totally removed, and there is no noise in the pure simulation signal, the
remaining parts must be all caused by gear crack damage. Thus, the periodical magnitudes are strong enough
to enhance the total signal average. This exactly matches the features of rms, which is used to represent the
signal’s average amplitude level. Therefore, rms becomes the most sensitive one in this set of test.

After comparing all these statistical indicators using original signals and residual signals generated with two
different methods, we can see that kurtosis emerges to be the most robust crack indicator no matter what
signals are used. If we use the second method of generating residual signals, rms is the best indicator to use.
We note that to apply Method 2 of generating residual signals, we need to collect a reference signal of the shaft
rotation so that the starting point of collecting healthy gearbox signals is the same as that of collecting
deteriorated gearbox signals.

5. Conclusions and future work

This paper studies through computer simulation the effects of tooth crack growth on the vibration response
of a one-stage gearbox with spur gears. A pair of meshing spur gears consisting of a perfect gear and a pinion
with a cracked tooth has been analyzed. The pinion is simulated with crack levels varying from 0% to 80% of
the tooth root thickness. An analytic model for calculating total mesh stiffness with a gear tooth cracked at
different levels is developed. The numeric values of the calculated total mesh stiffness are input into a lumped
parameter model to simulate the vibration response of the pair of meshing gears under different deterioration
levels of the tooth crack on the pinion. The simulated vibration signals are analyzed directly and also through
two different methods of generating residual signals. Several statistical indicators are evaluated to reflect the
crack growth in the simulated vibration signals. It has been found that rms performs the best when Method 2
of generating residual signals is used and kurtosis is the most robust indicator no matter what signals are used.
Future research topics include crack initiation points, more realistic crack propagation path, manufacturing
errors in gears, friction in meshing, noise in vibration response, and evaluation of various fault growth
indicators using laboratory vibration signals and field vibration signals.
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