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Abstract

This paper deals with the analysis and discussion of nonlinear dynamic response of a laminated composite plate subjected

to blast load. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity

effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a

simply supported plate are assumed for the space domain. The single term approximation functions are selected by

considering the nonlinear static deformations of plate, which is obtained using finite element method. The Galerkin Method

is used to obtain the nonlinear differential equations in the time domain. The finite difference method is applied to solve the

system of coupled nonlinear equations. The results of approximate-numerical analysis are obtained and compared with the

literature and finite element results. Good agreement is found for the character and frequencies of vibrations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are extensively used in various engineering applications such as space stations,
aircrafts, automobiles and submarines. Thin laminated composite plates are structural components, which
have considerable importance to build the lightweight vehicles. The thin plates easily undergo the large
amplitude vibrations if exposed to time-dependent pulses, such as blast loads occurring from fuel, bomb and
nuclear explosions, gusts and sonic boom pulses.

Several studies related to the effects of air blast loading on the panel structures are investigated in the
literature. Kazancı and Mecitoğlu [1] have studied the nonlinear damped vibrations of a laminated composite
plate subjected to blast load. Kazancı et al. [2] have considered in-plane stiffness and inertias in the analytical
solution of the laminated composite plate under blast load. Tanrıöver and S-enocak [3] have performed
analytical-numerical approach on the large deflection analysis of unsymmetrically laminated composite plates.

Librescu et al. [4] have addressed the problem of the dynamic response of sandwich panels exposed to blast
loadings. Nayak et al. [5–8] have investigated the transient response of composite sandwich plates by using
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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new finite element formulations. Some of the parametric effects on the transient response of sandwich plates
are investigated in these studies. Türkmen and Mecitoğlu [9,10] have performed some experimental, analytical
and numerical studies on the nonlinear structural response of laminated composites subjected to blast load.
Librescu and Nosier [11] have investigated the response of laminated composite flat panels to sonic boom and
explosive blast loadings. Wei and Dharani [12] have developed a solution based on the large deflection plate
theory for a laminated glass panel subjected to blast loading. Wei et al. [13] have studied the dynamic response
of a laminated glass subjected to blast loading from a bomb explosion on the ground.

There have been a few studies dealing with the response of simply supported plates subjected to blast load.
The analysis of simply supported orthotropic plates subject to static and dynamic loads was presented by
Dobyns [14] who analyzed the response to pulses of different shapes. Louca and Pan [15] have analyzed the
response of stiffened and unstiffened plates subjected to blast loading by using a single energy-based
formulation. Amabili [16,17] compared theoretical and experimental results for geometrically nonlinear
vibrations of rectangular plates with different boundary conditions. Chandrasekharappa and Srirangarajan [18]
investigated the nonlinear response of elastic plates subjected to blast load for several boundary conditions.

However, only a few studies in the nonlinear response of simply supported laminated composite plates
subjected to blast loading are investigated. Birman and Bert [19] considered the response of simply supported
anti-symmetrically laminated angle-ply plates to explosive blast loading. Chen et al. [20] developed a semi-
analytical finite strip method for the analysis of the nonlinear response to dynamic loading of simply
supported rectangular laminated composite plates. Kazancı and Mecitoğlu [21] compared results for nonlinear
dynamic behavior of a laminated composite plate subjected to blast load for different boundary conditions.

Present work includes the analyses of a simply supported laminated composite plate under blast load taking
into account the in-plane stiffness and inertia effects. The geometric nonlinearity effects are taken into account
with the von Kármán large deflection theory of thin plates. The equations of motion for the plate are derived
by the use of the virtual work principle. Approximate displacement functions are assumed for the space
domain by considering the nonlinear static deformations obtained using ANSYS software. They are
substituted into the equations of motion and then the Galerkin Method is used to obtain the nonlinear
differential equations in the time domain. The finite difference method is applied to solve the system of
coupled nonlinear equations. The results of approximate-numerical analyses are obtained and compared with
ANSYS software and literature results. Good agreement is found for the character and frequencies of
vibrations.

2. Equations of motion

In this section, a mathematical model for the laminated composite plate subjected to blast load is presented.
The rectangular plate with the length a, the width b, and the thickness h, is depicted in Fig. 1. The Cartesian
axes are used in the derivation.

For the sake of completeness, kinematical relations can be given concisely. The strain–displacement
relations for the von Kármán plate can be written as [22]

�x ¼ �
0
x þ zkx (1a)

�y ¼ �
0
y þ zky (1b)

�xy ¼ �
0
xy þ zkxy (1c)

where
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Fig. 1. Laminated composite plate.
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and

kx ¼ �
q2w0

qx2
(3a)

ky ¼ �
q2w0

qy2
(3b)

kxy ¼ �2
q2w0

qxqy
(3c)

where u, v and w are the displacement components in the x, y and z directions and z is the distance of the
arbitrary point of the plate from the reference surface. ( )0 indicates the displacement components of reference
surface. The effective elastic constants are used for defining the constitutive model of the laminated composite.
The constitutive equations can then be expressed as

sx

sy

sxy
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where sx, sy and sxy are stress components, Q̄ij ’s are the elastic constants for a laminated composite. The
relations between the force and moment resultants and strain components can be derived from the constitutive
relations of laminated composite plate as
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where A, B and D are the extensional, coupling and bending stiffness matrices, respectively. The coefficients in
the matrices are

Aij ¼
Xn

k¼1

ðQ̄ijÞkðhk � hk�1Þ (6)

Bij ¼
1

2

Xn

k¼1

ðQ̄ijÞkðh
2
k � h2

k�1Þ (7)

Dij ¼
1

3

Xn

k¼1

ðQ̄ijÞkðh
3
k � h3

k�1Þ (8)

If the blast source is distant enough from the plate, the blast pressure can be described in terms of the
Friedlander exponential decay equation [23] as

PðtÞ ¼ pmð1� t=tpÞe
�at=tp (9)

where the negative phase of the blast is included. In this equation, pm is the peak blast pressure, tp is positive
phase duration, and a is waveform parameter.

Using the constitutive equations and the strain–displacement relations in the virtual work and applying the
variational principles, nonlinear dynamic equations of a laminated composite plate can be obtained in terms
of mid-plane displacements as follows:

L11u0 þ L12v0 þ L13w0 þN1ðw
0Þ þ m̄ €u0 � qx ¼ 0 (10a)

L21u0 þ L22v0 þ L23w0 þN2ðw
0Þ þ m̄€v0 � qy ¼ 0 (10b)

L31u0 þ L32v0 þ L33w0 þN3ðu
0; v0;w0Þ þ m̄ €w0 � qz ¼ 0 (10c)

where Lij and Ni denote linear and nonlinear operators, respectively. m̄ is the mass of unit area of the mid-
plane. qx, qy and qz are the load vectors in the axes directions. The explicit expressions of the operators can be
found in Kazancı and Mecitoğlu [1].

The boundary conditions are in the following form for a simply supported plate:

u0 ¼ v0 ¼ w0 ¼ 0 at x ¼ 0; a and y ¼ 0; b

Mx ¼ 0 at x ¼ 0; a

My ¼ 0 at y ¼ 0; b

and initial conditions are given by

u0 ¼ v0 ¼ w0 ¼ 0; _u0 ¼ _v0 ¼ _w0 ¼ 0 at t ¼ 0.

3. Methods of solution

Two methods of solution are applied to the simply supported laminated composite plate under the blast
pressure: finite element solution and approximate-numerical solution.

3.1. Finite element solution

The laminated composite plate is analyzed using ANSYS finite element software. The plate is discretized
using by the eight-node laminated shell elements (SHELL 91), which have geometric nonlinear capability.
Four hundred elements are used for the discretization. Large deformation static analyses and transient
response analyses are performed for the laminated composite plate under the blast. Transient response
analysis is based on the Newmark method.
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3.2. Approximate-numerical solution

The equations of motion given by Eq. (10) can be reduced in time domain by choosing some approximation
functions for displacement field and applying the Galerkin method. The coupled nonlinear equations in the
time domain are solved by using the finite difference method.

The approximation functions are selected so as to satisfy the natural boundary conditions

u0 ¼
XI

i¼1

XJ

j¼1

UijðtÞfijðx; yÞ (11a)

v0 ¼
XK

k¼1

XL

l¼1

V klðtÞcklðx; yÞ (11b)

w0 ¼
XM
m¼1

XN

n¼1

W mnðtÞwmnðx; yÞ (11c)

The simplest multiterm approximations even results in hundreds of integral terms during the application of
the Galerkin procedure and therefore they are impractical. For this reason, one-term approximation functions
for the displacement components are used in this study. As mentioned by Strang [24], choosing the
approximation functions is a crucial point. It should be most important for the one-term solutions.

The approximation function should closely resemble the first mode of the plate. It can be determined by
considering the results of static large deformation analysis of laminated composite plate under the uniform
pressure load by using ANSYS 10.0 [25] software. The approximation functions are determined by examining
the finite element results obtained from the static large deformation results as follows:

u0 ¼ U11ðtÞsin
2px

a
y2ðy� bÞ2 (12a)

v0 ¼ V 11ðtÞx
2ðx� aÞ2sin

2py

b
(12b)

w0 ¼W 11ðtÞsin
px

a
sin

py

b
(12c)

Substituting Eq. (12) into Eq. (10) and then applying the Galerkin method [1], the time-dependent nonlinear
differential equations can be obtained:

a0
€U þ a1U þ a2V þ a3W þ a4W 2 þ a5 ¼ 0 (13a)

b0
€V þ b1V þ b2U þ b3W þ b4W

2 þ b5 ¼ 0 (13b)

c0 €W þ c1W þ c2W
2 þ c3W 3 þ c4U þ c5V þ c6UW þ c7VW þ c8 ¼ 0 (13c)

where the dot denotes the derivative with respect to time. The coefficients in Eq. (13) are given in the
Appendix. The initial conditions can be expressed as

Uð0Þ ¼ 0; V ð0Þ ¼ 0; W ð0Þ ¼ 0

_Uð0Þ ¼ 0; _V ð0Þ ¼ 0; _W ð0Þ ¼ 0

Nonlinear coupled equations of motion are solved by using finite difference method. Therefore we may
arrange Eq. (13) in the matrix format:

M €Qþ KLQþ KNLQþ F ¼ 0 (14)
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where Q ¼ U V W
� 	T

and €Q ¼ €U €V €W
� 	T

denote the displacement and acceleration vectors,
respectively. In Eq. (14), M, KL and KNL matrices are

M ¼

a0 0 0

0 b0 0

0 0 c0

2
64

3
75;KL ¼

a1 a2 a3

b2 b1 b3

c4 c5 c1

2
64

3
75;KNL ¼

0 0 a4W

0 0 b4W

c6W c7W ðc2W þ c3W
2Þ

2
64

3
75 (15a)

and F vector is

F ¼ a5 b5 c8
� 	T

(15b)

If we replace the q2Q=qt2 term with q _Q=qt in Eq. (14), we can write

M
q _Q
qt
þ KQþ F ¼ 0 (16)

where K ¼ KL þ KNL. Using the definition of derivation, Eq. (16) can be written as

M
_Q

nþ1
� _Q

n

Dt
þ KQnþ1 þ F ¼ 0 (17)

Substituting _Q
nþ1
¼ Qnþ1 �Qn=Dt in Eq. (17) and rearranging it, we obtain

M

ðDtÞ2
þ K

� �
Qnþ1 ¼

M

Dt
_Q

n
þ

M

ðDtÞ2
Qn � F (18)

Finally, if the matrices and vector given in Eq. (15) are substituted into Eq. (18), equations of motion are
reduced to

A1U
nþ1 þ A2V

nþ1 þ A3W nþ1 ¼ A4

B1U
nþ1 þ B2Vnþ1 þ B3W

nþ1 ¼ B4

C1U
nþ1 þ C2Vnþ1 þ C3W

nþ1 ¼ C4 (19)

The coefficients in the equations are given in the appendix. From Eq. (19) we obtain the following solutions:

Unþ1 ¼
1

A1
½A4 � A2Vnþ1 � A3W

nþ1�; V nþ1 ¼
D3 �D2W

nþ1

D1
; W nþ1 ¼

E3 � E4

E5
(20)

Nonlinear terms in KNL are linearized by iterations as explained in Kazancı and Mecitoğlu [1]. The method
of linearization can be stated as follows: In the first iteration we used Wn, which is known from the previous
step. After the first iteration, Wn+1 is calculated and used in place of Wn. Iteration continues until convergence
criterion is obtained.

4. Numerical results

First of all, the results from the present paper are validated with literature and ANSYS results. Librescu and
Nosier’s [11] plate, which is labeled ‘‘Structure I’’, is chosen for comparison. The structure is a three-layered
cross ply (01/901/01) square plate whose mid-layer is two times thicker than the external ones. Ply material
properties used in the analyses are given as E1 ¼ 132.4GPa, E2 ¼ 10.8GPa, G12 ¼ 5.6GPa, r ¼ 1443 kg/m3

and n12 ¼ 0.24. The dimensions of the plate are a ¼ 2.54m, b ¼ 2.54m and h ¼ 0.17m. The analyses are
performed for the uniform blast pressure. The maximum blast pressure pm is taken to be 3447 kPa for the plate
all the edges simply supported. Other parameters of Friedlander’s exponential decay function given in Eq. (9)
that we choose are a ¼ 2.0 and tp ¼ 0.1 s. Comparison of the results for the non-dimensional deflection at the
center of three-layered square plate is shown in Fig. 2. As we can see from the figure, there is a good agreement
among the results obtained for the chosen structure.

After this validation study, a seven-layered fiber-glass fabric with (01/901) fiber orientation angle for one
layer is used in the numerical analyses. Ply material properties used in the analyses are taken to be
E1 ¼ 24.14GPa, E2 ¼ 24.14GPa, G12 ¼ 3.79GPa, r ¼ 1800 kg/m3 and n12 ¼ 0.11. The dimensions of the
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Fig. 2. Comparison of the non-dimensional deflection response of the center of a three-layered square plate: ——— approximate-numerical;

- - - - - - ANSYS; - � - � - � - � - � - Librescu and Nosier [11].
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plate are a ¼ 0.22m, b ¼ 0.22m and h ¼ 1.96(10�3)m. The plate is assumed to be simply supported along all
edges. The analyses are performed for the uniform blast pressure. The maximum blast pressure pm is taken to
be 28.9 kPa. The other parameters of the Friedlander’s exponential decay function given in Eq. (9) that we
choose are a ¼ 0.35 and tp ¼ 0.0018 s.

The solution of nonlinear coupled equations given by Eq. (13) is obtained by writing a FORTRAN program
based on the finite difference scheme explained in the previous section. The convergence studies are the goal of
a close proximity numerical solution. Time step convergence studies are conducted on plates subjected to
28.9 kPa peak blast load. It is found that time increment of 0.002ms is adequate for such a numerical solution.

Fig. 3 shows the non-dimensional displacement and blast pressure variations by time. The strong suction
effects considerably deflect the plate and it vibrates about this deformed shape. The maximum central
deflection of the plate is three times greater than the plate thickness. The fundamental frequency of the
laminated composite plate increases during the suction period due to the in-plane stiffness and geometric
nonlinearities.

Figs. 4 and 5 show the variation of normal strain ex versus time at the bottom and top surface center of the
plate, respectively. The variations of normal strain are quite different for the bottom and top surface centers in
the suction period. The reasons for differences can be explained as follows: the normal strain ex is a
combination of bending, in-plane, and nonlinear strain terms. It is well known that the values of bending term
are equal at the bottom and top surfaces. If we consider the average deflected shape of the plate in the suction
period as shown in Fig. 3, the sign of strain is positive at the top surface and negative at the bottom surface.
The nonlinear term is always zero and the contribution of in-plane strain is always positive at the plate center.
Therefore the total strain will get a large positive value at the top surface center and a small positive or
negative value at the bottom surface center in the suction period. Furthermore, if the plate moves from the
average deflected position in the suction direction, the plate deflection will increase and all the three terms of
strain will become larger and vice versa. The contribution of the in-plane strain can be greater than that of
bending strain after a certain level of plate deflection.

As can be seen from the approximate-numerical results in Figs. 4 and 5, there is a minimum bounding strain
value in the strain–time histories due to the nonlinear action of the laminated composite plate and the normal
strain on the top surface center is more critical than that of the bottom surface center with respect to failure.

Time histories of normal strain in the x direction at different points of the plate’s top surface are shown in
Fig. 6. The maximum normal strain occurs at the center of the plate. The normal strain ex at the plate edge
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Fig. 3. Time history of dimensionless central deflection: - - - - - - ANSYS; ——— approximate-numerical; - � - � - � - � - � - approximate-

numerical(average); blast load.

Fig. 4. Comparison of the strain–time history results at the center of bottom surface: - - - - - - ANSYS; ——— approximate-numerical.

Z. Kazancı, Z. Mecitoğlu / Journal of Sound and Vibration 317 (2008) 883–897890
(x ¼ 0) is always positive but the strains at the quarter and half-span can take small negative values during the
oscillation. The time history character of the strain at the plate edge shows a considerable difference from the
others during the free vibration phase of oscillation.

Fig. 7 shows that the time histories of dimensionless central deflections at the center of plates which have
different aspect ratios. The results are obtained for the aspect ratios of 1.00, 0.75, 0.50 and 0.25 by keeping the
plate area constant. A comparison of strain (ex) time history results for the plates, which have different aspect
ratios is also shown in Figs. 8 and 9 for the center of bottom and top surfaces, respectively. The analyses are
performed for the seven-layered fiber-glass fabric that has [01/901] fiber orientation. The deflection amplitude
increases and the frequency of vibration decreases while the aspect ratio of plate increases, seen in Fig. 7. On
the other hand, while the aspect ratio of the plate decreases, the minimum bounding value of ex increases for
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Fig. 5. Comparison of the strain-time history results at the center of top surface: - - - - - - ANSYS; ——— approximate numerical.

Fig. 6. Time histories of normal strain ex at the different points of the plate’s bottom surface: x ¼ 0; - - - - - - x ¼ a/4;

x ¼ a/2.
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the bottom surface center, as shown in Fig. 8. Although the peak value of strain increases with decrease in
aspect ratio for the bottom surface center, the peak value of the strain at the top center takes a maximum value
for the aspect ratio 0.5. The frequency of the strain oscillation increases with the decrease in aspect ratio as
expected. Minimum peak strains for the both surfaces occur for the aspect ratio 1, i.e. square plate.

For the different layer numbers, the time histories of dimensionless central deflections at the center of plate
are shown in Fig. 10. The displacement amplitudes of plates decrease while the plate layer number, and so the
plate thickness, increases. Higher plate deflections due to the suction are observed for the thin plates as
expected. If only the plate bending stiffness is considered, it is anticipated that the amplitude of vibration
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Fig. 7. Effect of aspect ratio on deflection time history: ——— a/b ¼ 1.00; - - - - - - a/b ¼ 0.75; - � - � - � - � - � - a/b ¼ 0.50; a/b ¼ 0.25.

Fig. 8. Comparison of the strain–time histories for different aspect ratios at the center of bottom surface: ——— a/b ¼ 1.00; - - - - - -

a/b ¼ 0.75; - � - � - � - � - � - a/b ¼ 0.50; a/b ¼ 0.25.
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should exhibit a much greater increase with the decreasing layer number. However, increase in the in-plane
stiffness and nonlinear actions with the increasing plate deflection plays a role in reducing the plate deflection.
The vibration frequency of the plates increases with the layer number. The strain-time history results at the
centers of bottom and top surfaces are shown in Figs. 11 and 12, respectively. As seen from Fig. 11, the
absolute value of minimum bounding strain raises with the increasing layer number. On the other hand
the peak value of the strain decrease with the increasing layer number as shown in Figs. 11 and 12. These
results can be explained as follows: The relative effects of geometric nonlinearity decrease with the layer
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Fig. 9. Comparison of the strain–time histories for different aspect ratios at the center of top surface: ——— a/b ¼ 1.00; - - - - - - a/b ¼ 0.75;

- � - � - � - � - � - a/b ¼ 0.50; a/b ¼ 0.25.

Fig. 10. Effect of layer number on deflection time history: ——— 5; - - - - - - 7; 9.
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number, since the ratio of maximum deflection to the plate thickness decreases with the increasing layer
number. As a result, the relative contribution of the bending strain term increases in comparison to the in-
plane and nonlinear strain terms. Therefore, while the layer number increases the minimum bounding value of
strain increases and the expected decrease in strain does not occur as observed in the linear behavior.

Different fiber orientations for the simply supported plate are considered in this study but any significant
effect of the fiber orientation on the dynamic behavior is not found.
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Fig. 11. Effect of layer number on the strain–time history at the center of bottom surface: ——— 5; - - - - - - 7; 9.

Fig. 12. Effect of layer number on the strain–time history at the center of top surface: ——— 5; - - - - - - 7; 9.
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5. Conclusions

In this study, the equations of motion of the laminated composite rectangular plates under blast load are
derived in the frame of the von Kármán large deflection theory of thin plates. The Galerkin method is used to
obtain a set of the nonlinear differential equations in the time domain. The finite difference method is applied
to solve the system of coupled nonlinear equations. The approximate-numerical results are compared with the
literature and ANSYS finite element results. Good agreement is found for the character and frequencies of
vibrations.

A parametric study is conducted, considering the effects of aspect ratio, fiber orientation and layer number.
While the aspect ratio of the plate increases, the amplitude of the normal strain variation decreases, and the
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Z. Kazancı, Z. Mecitoğlu / Journal of Sound and Vibration 317 (2008) 883–897 895
corresponding frequency increases. The fiber orientations have negligible effect on the vibration
characteristics, since the plates are laminated from the fabric with (01/901) fiber orientation angle for one layer.

The aspect ratio decrease results in a decrease of vibration amplitude and an increase of vibration frequency.
The layer number increase causes lower amplitudes of vibration as expected. However, vibration frequency
decreases while the layer number increases, unexpectedly. If the larger deflections as a result of thinner plate
are considered, it can be deduced that the nonlinear and in-plane stiffness effects will increase in the case of
thinner plate and it can result in a higher vibration frequency than that of the thicker plate. The peak values of
the strain decrease with increasing layer number.

Other boundary conditions can be analyzed using the same method. The effect of the blast pressure
character on the dynamic behavior can be investigated. The sandwich plates with laminated face sheets can be
analyzed by using the same method. Future studies may be devoted on these subjects.
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Appendix

Coefficients in the time-dependent nonlinear differential equations:

a0 ¼
ab9

1260
m̄; a1 ¼

3a2A66b7
þ A11b9p2

315a

a2 ¼
9a4b4

ðA12 þ A66Þ

p6
; a3 ¼

16b3
ðb2B11 þ a2ðB12 þ 2B66ÞÞð�12þ p2Þ

3a2p3

a4 ¼
b3
ðA11b2

ð45þ p4Þ þ a2ð90A66 � A12ð�45þ p4ÞÞ
240a2p

a5 ¼ 0

b0 ¼
9a9b

1260
m̄; b1 ¼

3a7b2A66 þ a9A22p2

315b

b2 ¼
9a4b4

ðA12 þ A66Þ

p6
; b3 ¼

16a3ða2B22 þ b2
ðB12 þ 2B66ÞÞð�12þ p2Þ

3b2p3

b4 ¼
a3ðA22a2ð45þ p4Þ þ b2

ð90A66 � A12ð�45þ p4ÞÞÞ

240b2p

b5 ¼ 0

c0 ¼
ab

4
m̄; c1 ¼

ðb4D11 þ a4D22 þ 2a2b2
ðD12 þ 2D66ÞÞp4

4a3b3

c2 ¼
8ðB12 � B66Þp2

3ab
; c3 ¼

ð9a4A22 þ 2a2ð3A12 þ 4A66Þb
2
þ 9A11b4

Þp4

128a3b3

c4 ¼
ð16b3

ð4b2B11 þ a2ðB12 þ 2B66ÞÞÞð�12þ p2Þ
3a2p3

; c5 ¼
ð16a3ð4a2B22 þ b2

ðB12 þ 2B66ÞÞÞð�12þ p2Þ

3b2p3
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Z. Kazancı, Z. Mecitoğlu / Journal of Sound and Vibration 317 (2008) 883–897896
c6 ¼
3b3
ðA12 þ A66Þ

4p
þ

A11ððb
5=60Þ þ ð3b5=4p4ÞÞp3

2a2
�

A12ðb
5=60þ 3b5=4p4Þp3

2b2

c7 ¼
3a3ðA12 þ A66Þ

4p
þ

A22ðða
5=60Þ þ ð3a5=4p4ÞÞp3

2b2
�

A12ðða
5=60Þ þ ð3a5=4p4ÞÞp3

2a2

c8 ¼ �
4ab

p2
qz

Coefficients in the finite difference equations:

A1 ¼
a0

ðDtÞ2
þ a1; A2 ¼ a2; A3 ¼ a3 þ a4W n; A4 ¼

a0

Dt
_U

n
þ

a0

ðDtÞ2
Un � a5,

B1 ¼ b2; B2 ¼
b0

ðDtÞ2
þ b1; B3 ¼ b3 þ b4W n; B4 ¼

b0

Dt
_V

n
þ

b0

ðDtÞ2
V n � b5,

C1 ¼ c4 þ c6W
n; C2 ¼ c5 þ c7W

n; C3 ¼
c0

ðDtÞ2
þ c1 þ c2W n þ c3ðW

nÞ
2,

C4 ¼
c0

Dt
_W

n
þ

c0

ðDtÞ2
W n þ c8

D1 ¼ B2 �
B1A2

A1
; D2 ¼ B3 �

B1A3

A1
; D3 ¼ B4 �

B1A4

A1
,

E1 ¼ C2 �
C1A2

A1
; E2 ¼ C3 �

C1A3

A1
; E3 ¼ C4 �

C1A4

A1
; E4 ¼

E1D3

D1
; E5 ¼ E2 �

E1D2

D1
.
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