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Abstract

A novel nonlinear approach to suppress resonant vibrations is presented by employing a single degree of freedom
transmissibility system, which utilises a nonlinear damping element. The study shows that a nonlinear damping element
can reduce the output energy at the driving frequency and at the same time spread the output signal energy over a wider
range of harmonics. It is also shown that the reduction becomes larger as the nonlinear damping characteristic gets
stronger and in most cases, the power at the harmonics in the output spectrum is much less when the nonlinear damping
characteristic is an odd function. Hence, an odd nonlinear damping element can be designed and introduced between the
incoming signal and the system of interest to suppress resonant vibrations. An expression is derived to express
the transmitted force spectrum in terms of the nonlinear generalised frequency response functions, to clearly reveal how the
energy, at the excitation frequency, is modified by the nonlinearity.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Resonance is a well-known phenomenon in engineering, which arises when the excitation frequency at an
operating condition is near a natural frequency of the system. When a resonance occurs for a system, the
resulting vibration levels can be very high and this can cause considerable damage. Suppressing resonant
vibrations is therefore very important to ensure an appropriate running condition and a desired behaviour of
the system. The standard approach to suppress resonant vibrations is to either introduce damping or a
vibration absorber which can be passive, active or a combination of both [1-4].

This paper describes an entirely different approach which results in a novel way of avoiding resonant
vibrations. The concept is to transfer or distribute the energy entering the resonant region of the system of
interest into higher harmonic frequencies to attenuate the output to an appropriate level by introducing a
nonlinearity between the input and the system. An analytic relationship between the system output frequency
response and the nonlinearity is derived in this study to show how the energy entering the system of interest is
modified by the nonlinearity, which results in energy transfer.
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2. System description

In order to explain the concept of energy transfer in an analytical sense, the effects of introducing a
nonlinear element (in this case a nonlinear damper) at the interface between the input and the system of
interest will be studied.

Consider the single degree of freedom (SDOF) system shown in Fig. 1. This represents a mass supported on
a linear elastic spring k in parallel with a nonlinear damper f{¢). The mass is subjected to a harmonic
excitation force of amplitude F,; and frequency @ and the output of interest is the force Fy(¢) transmitted to the
system of interest via the linear spring and the nonlinear damper.

The nonlinear damping element is described by a polynomial function of velocity such that

() =a(*) +as(+) (1)

where a;, a; are the parameters of the damping characteristic and a3 represents the system nonlinearity.
The equilibrium equation for the system in Fig. 1 and corresponding force at the support can be expressed
as

mi(t) + a1 x(t) + a3 x> (¢) + kx(t) = F; cos(Q1) ()
Fy(1) = arx(t) + a3%° (1) + kx(1) 3)
For convenience of analysis, denote
ya(1) = x(1) “4)
ye(t) = Fy(1) (5)
and

u(t) = F 4 cos(Qr) (6)

The system can then be described by a single input two output system
m3(1) + a1y (1) + asy(0) + kyy(0) = u(o) Y
Yr(0) = @y (0) + asiy(0) + k() ®)

What is of interest in this study is how the spectrum 2| Y(jQ2)| of the transmitted force y¢) depends on the
nonlinear damping element which in turn creates harmonics that spread the incoming energy to other
frequencies, resulting in a reduction in the transmitted force level of 2| YAjQ)| at the excitation frequency Q.

u(t) = F;cos(Q1)

- T
F, ) x (1)
k il

Fig. 1. The SDOF mass—spring—damper system considered in the study.
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Notice that 2| YjQ)| not | Y(jQ)| is used because 2| Y {j€2)| represents the physical magnitude of the system
output Y(?) at the frequency Q.

A number of approximate analytic methods are available for the analysis of nonlinear oscillators. The more
commonly used are the harmonic balance method and perturbation methods. Compared with perturbation
methods, the harmonic balance method is not restricted to weakly nonlinear problems but can accommodate
qualitative changes in the response as more harmonics are included in the assumed solution [5,6]. However,
both methods concentrate on obtaining the whole approximate solution for nonlinear oscillators and cannot
account for the analysis of a certain harmonic of the system response to reveal how the energy at the driving
frequency is reduced by the nonlinearity. Fortunately, the Volterra series, which forms the basis for many
studies of nonlinear systems in the frequency domain, can provide a theoretical explanation for this reduction
and hence is used in the present study.

3. Volterra modelling of the system in the time and frequency domain

The output y(¢) of a single input single output (SISO) analytical system can be expressed as a Volterra
functional polynomial of the input u(¢) to give

N
W=y ©)

n=1

where N is the maximum order of the system nonlinearity and y(¢) is the nth-order output of the system,
which is given by

+00 +00 n
W= [ e [ s [[ue-wdu a1 (10)
—0oQ —0Q i=1

where h,(tq,...,7,) is a real valued function of 7y,...,7, called the nth-order impulse response function or
Volterra kernel of the system [7,8]. Volterra generalised the linear convolution concept to deal with nonlinear
systems by replacing the single impulse response with a series of multidimensional integration kernels. The
nth-order Volterra kernel describes nonlinear interactions among n copies of the input. The multidimensional
Fourier transform of the nth-order Volterra kernel yields the nth-order transfer function or generalised
frequency response function (GFRF)

—+00 “+o00 .
HolGon, .. joon) = / / (e, T @B EOm) 4 de, (an
—o0 —o0

Using the concept of GFRF, the general relationship between the input spectrum U(jw) and the output
spectrum Y(jw) can be obtained as [9]

ol 1

Y@ — - Hn. ,...,‘ n UG id(un 12
G Z«/ﬁ(zn)n_] /(Ul+"'+wn=w (1 1 )111 (onde (12

n=1

where fwl tro=o(*) dOon denotes the integration of () over the n-dimensional hyperplane w; + -+ + w, = w.
When the system is subject to a multi-tone input such as

K
u(t) =Y |Ailcos(wit + £A;) (13)

i=1
Lang and Billings [9] showed that Eq. (12) can be expressed as
N
. 1 . .
Yio)=3 5 D Hilon.....jox)Ay). .. Aloy,) (14)
n=1 Op) +++ O, =0
where

kre{-K,....,—1,1,...,K}, I=1,...,n
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|[Arlei“dif o € {or, k = +1,...,+K)
A(w) =
0 otherwise

W_j = — Wf
and
|A_i |14 = | Aye 144

In our case, we have a single input, the force excitation, and two outputs, the displacement of the mass m
and the force transmitted to the support. Eq. (14) now takes the form [10,11]

N

, 1 . : :

YJIUw)=Zy > Hyi ok, jor)A(or) .. Alor,) ji = 1,2 (15)
n=1 Ofey +++ O, =0

where

+00 +00 )
. . _ —J(o1T1+Fo,T
H,,jl(]wl,...,Jw,,)—/ / hyj (T1, ..., Th)e ien o) dey ... d1,
—0oQ —0oQ

is the nth-order GFRF of the system corresponding to the jith output and
kre{-1,+1}, I=1,...,n,

A(w) |Aglei“Aif w € {og, k = £1}
w) =
0 otherwise

where [A|=Fp 0= +Q, LA, =0.

4. The effects of system nonlinearity on the output frequency response

The focus of this section is to investigate the effects of the nonlinear damping characteristic of the systems
(2) and (3) on the output frequency response when the system is subject to a multi-tone or a harmonic input.
This study involves two steps. First the GFRF matrices of the system

[Hnd(jwla"'!ij)a HﬂFGwla"'aij)]a n= 1’2’33"'

are derived. Then a relationship between the system output frequency response Y {(jw) and the system GFRFs
is determined.

4.1. The probing method

Given a parametric model of a nonlinear system, there are a number of methods to obtain the GFRFs of the
system. Arguably the most direct is the harmonic probing method of Bedrosian and Rice [12] and Bussgang et
al. [13]. In the case of single input single output nonlinear systems, the basic idea of the probing method can be
introduced as below.

It was shown by Rugh [14] that for nonlinear systems which are described by the Volterra model (9), (10)
and excited by a combination of exponentials

R
wr)=>» o, 1<R<N (16)
i=1
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the output response can be written as

N R R
(1) = Z Z . Z H,(jwi, . .. ’jwi”)ej(w;,+..4+w,,,)t
n=l =1  in=1
N .
= Z Gn1|(n).,.)11R(n)(jwl P ,ij)ej[m](n)w|+---+mR(n)wR]t (17)
n=1 m(n)

where ), indicates a R-fold sum over all integer indices m(n),....mg(n) such that 0<m n)<n,
my(n)+ --- + mg(n) = n, and

n!

W)'—WH" JO1, .01, L JOR, L, JOR (18)

Gﬂ?](ﬂ)...mk(ﬂ)(jwl’ s ,_]Q)R) =

my(n) mpg(n)
Notice that in Eq. (18) when n = R, m(n) = 1, i = 1,...,R, therefore
G (R)..me®O1, - . ., jor) = RIHR(jon, . . ., jog) (19)
Considering Eq. (19), Eq. (17) can be written as

N
y([) = Z Z Gm](n)...mR(n)(iwls cee ’ij)ej[rm(n)w1+-~»+mR(n)wR]t
n=1,n# R m(n)

+ RIHg(joor, . .., jog)e @t Tort (20)
For nonlinear systems which have a parametric model with parameter vector 0,

(0 = folt, 0, y(1), (1)) 21

and which can also be described by the Volterra model (9) and (10), substituting Egs. (16) and (20) into Eq.
(21) for y(f) and u(¢), and extracting the coefficient of el®1++@»)* from the resulting expression produces an
equation from which the GFRF Hg(jw1,...,jwg) can be obtained.

If the system is of a single input and two outputs and can be described by the parametric model

1)) =112, 0,y,(0), yo(2), u1 (1)) (22)
y2(t) =‘f2(ts Qayl(t), y2(t)s M](t))
Eq. (20) can be written as
N .
yjl (t) = Z Z Gm](n)...mR(n)/'l (jwl, e ’ij)e][ml(n)w1+~~-+mR(n)(oR]t
n=1,n# R m(n)
+ RUH g, (jor, . .., jog)e T Ten - j =12 (23)
where
. . n! . . . .
Gy (n)...mg(myj, GO1, + -, JOR) = ————————<H ;| j©1,...,]j01,...,JOR,...,JOR (24)

mi(n)!...mg(n)!

my () mp(n)

Then substituting u;(7) = Zfi (e and y,(7) and y,(?) given by Eq. (23) into Eq. (22), and extracting the
coefficient of el ++@») from the resulting expressions produces two coupled equations for which the GFRF
matrix

[Hra(or,...,jor), Hgrr(oi,...,jogr)]

can be obtained.
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4.2. Derivation of the GFRFs for yp(t)
Substituting Eq. (8) into Eq. (7) yields

my (1) + yp(t) = u(?)

According to Eq. (23), the second-order derivative of y(f) can be expressed as

2
n n
J(0) =n! (j > w,) Holjor, . .. jon)e2m® + ...
i=1
yi(t) can be written as

Yyp(0) = nlH,r(jor, . .. ,jwn)ej’z,-nzl‘”i N

Substituting Eqgs. (26), (27) and (16) into Eq. (25) gives

2
n n . n

m-n! <j E w,-) H,,d(ja)l,...,ja)n)ellzr':lw" +nlH,r(jor,. .. ,jwn)eﬂzlew" + ..
p

When n = 1, equating the coefficients of e from Eq. (28) yields
m(jor)’ Hig(or) + Hipjor) = 1
Therefore,
Hp(jon) = 1 — m(jor)’ Higjon)
Substituting Eq. (A.1) into Eq. (30) gives

Hip(wy) = %

When n>2, equating the coefficients of ejtZ::lw" from Eq. (28) yields

2
n
m - n! (.] Zw’> Hnd(jwla ) 9jwl1) + n!HnF(jwla cee 9jwﬂ) =0
i=1

That is

2
Hyp(jou, ... jon) = —m (j Z%) Hya(or, - ..., jon)
i=1

Il
HNgR

923

(25)

(26)

27)

(28)

(29)

(30)

(1)

(32)

(33)

The GFRFs for y{f) (n=2) can be given by substituting the expressions of H,joy,...,jw,) derived in

Appendix A into Eq. (33).

4.3. The effects of system nonlinearity on the output frequency response

The expressions for the system GFRFs in terms of the nonlinear damping characteristic parameters can now
be used to derive an expression for the output spectrum yjw). Substituting the expressions for higher-order
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GFRFs derived in Section 4.2 into Eq. (15) yields

N
. 1 . .
Ye(o)= 5 Y HurGok.....jox)Ar). . Alor,)
n=1

Op, +- g, =0

1 1 -
sHir(o)A@) + 55 3 [Hamwkl,m,wh)HA(wa

Oy F Ok, + Oy =0 i=1

3 2 3
= %Hlp(ja))A(w) —{—% Z —m <] Z wk‘> 3lasc P (H)2)3) HA(‘%) +-.-
i=1 i=1

Wp, +wk2 -‘,—wkz =

=pi(o) + ps(jw)as + - - (34)
where
. 1 .
(o) = §H1F(1w)A(w) (35)
1 3 2 3
pio=5 > |-m <j M wk,) 31 MG [ 4@4) (36)
W)y +Wp, + O =0 i=1 i=1
Generally,
L(v-1)/2]
Ye(o)= > (pysidh) (37)
k=0

where [(N — 1)/2] denotes the floor function, also called the greatest integer function or integer value, which
gives the largest integer less than or equal to (N—1)/2).

Note that p,(jw), i = 1,3,..., produced by the system GFRFs, depends on the applied multi-tone input and
the parameters which describe the linear characteristic of the system but are independent of as.

Denote

Pjes1 = Do (38)
Then substituting Eq. (38) into Eq. (37) gives
L(v=1)/2]
Yr(jo) = Z Pt (39)
k=0

Eq. (39) is a very important result which describes the relationship between the system frequency response
and the characteristic parameters of the system nonlinearity. The result extends the fundamental analytical
relationship between the linear characteristic parameters and the output frequency response to the nonlinear
case for system (2) and (3) when the system is subject to a multi-tone input, and can be easily extended to other
general situations.

For a given multi-tone input and the linear characteristic parameters m, ay, k, p{jw), i = 1,2,... in Eq. (39)
are known functions of frequency w. Eq. (39) indicates that at each frequency component the system output
spectrum is a polynomial function of the nonlinear damping characteristic parameter as.

When the system is subject to the harmonic input (6), and the output frequency of interest in the analysis is
the same as the input frequency €,

N
. 1 . .
Ve =D 5 Y HurGow.....jor)Aor).. Alor,)
n=1

= O, 4wy, =Q

1 . 1 L s
SHFGQA@ +55 D> | Har(ow.jos.jow) [ [ A0 |+ (40)

Wy FOfy T Wiy =Q i=1
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where

3
> | Harlow,jow,jor) | | Ar)

Oy Oy +0s; =0 i=1
= H3p(—Q,Q, QA(—Q)A(Q)A(Q) + H3r(2, —Q, Q) A(Q)A(—2)A(Q)
+ H3p(Q,Q, —Q)A(Q)A(Q)A(—Q2)
= |A(Q)|2A(Q)[H3F(—Q, Q,Q)+ H3p(2,—Q,Q) + H3r(2,Q, —Q)] (41)
Since GFRF H,(jwy,...,jo,) is symmetric,
Hip(—Q,Q,Q) = Hyp(Q,—Q,Q) = H3p(Q,Q2,—Q) (42)
Substituting Eq. (42) into Eq. (41) yields

3
> Hip(jor,» jor,. jor,) [ | A(wki)] = 3H3p(—Q,Q, Q)| A(Q)I? A(Q) 43)

O +Wpey + Oy =Q i=1

Generally,
. . n 2(n/2
> Hurlons 0w )A@k) . Alr) = C(n, 5] ) Hyp 4@ 4(2) (44)
[o78 +- oy, =Q

where H, ,(€2,...,2,-Q,...,—Q) is a higher-order GFRF with n — |n/2] arguments of Q and |n/2]

arguments of —Q and C(n, |n/2]) is the number of combinations of |n/2] objects from a set with n objects and
given as

n!

n !
C("’ BJ) = /2]l — n/2])! 45)
Substituting Eq. (44) into Eq. (40) gives
. 1 n 2n/2
Yei) = Y. 5C(n|3]) 4@ a@H, (46)
n=13,N
Eq. (46) can also be written as
Yr(iQ) = P, (47)
n=13-N
where
1 n 2\n/2]
Py =5 C(n. 5] ) [4@["" A@)H,, 02 (48)

Eq. (47) shows that the output energy at the driving frequency Q contributed by the linear term %A(Q)H 1018
modified by the higher-order system nonlinear effects to yield the output frequency response Y(jQ2).

Simulation studies will be conducted in Section 5 for systems (2) and (3) to evaluate the output frequency
response to the harmonic input (6) for different damping characteristics. The results will then be compared
with the output spectrum Y (j2) determined using Eq. (47) in Section 6. The objective is to investigate how a
nonlinearity reduces the energy in the output spectrum at the driving frequency and modifies the energy
distribution and to present a new approach to suppress resonant vibration by designing the system non-
linearity. For simplicity, the study has focused on systems (2) and (3) subject to a relatively simple harmonic
input to demonstrate the concepts involved, but the basic ideas are the same when the system is subject to a
multi-tone input.
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5. Simulation studies

Consider the system (2) and (3) subject to the harmonic input (6). Take the system linear characteristic and
input parameters as follows:

m=240kg, k=16000Nm~', g =29.6sNm~!, F,=100N, Q=8.lrads™'

where Q = 8.1rads™! corresponds to the natural undamped frequency. The damping characteristic is defined

by fle) = ai(*) +as(+)’.
5.1. Systems stability

Define the state of the system as follows:

e 49
Yo (49)
The state space equation of system (7) without the disturbance input u(z) = F;cos(f2f) can be expressed as
X] = X2
Xy = —%(Clp@-ﬁ-dﬁéﬁ—kxl) (50)
Choose a Lyapunov function as
V(x, 1) = Ykxi + dmx3 (51)

Taking the derivative of } along trajectories of the system gives

. X
V = [kx, mxz][ . ]

X2
X2
=k m
exy - ma] [—(1/’”)(01962 + a3x3 + kx)
= — (alxg + a3x§) (52)

The function ¥ can be made negative definite if , and hence the system is asymptotically stable.

a) >
az;>0
-0’ the system with a disturbance input is asymptotically stable to a ball, which also

ensures there is no bifurcation in the system due to the effect of damping [15].

a; >0
Additionally, if p
3

5.2. Simulation studies

450 according to Section 5.1, the value of the nonlinear damping
3

parameter a3 can be any positive real number. The system was simulated to generate the output frequency
response Yx(jQ) for the following three cases:

. . . ap > 0
Since the system is always stable if

1

) fl)= ay(*)+as(+)* where a3 = 0sNm~
(ii) f(*) = ay(*)+as(*)’ where a3 =1 x 10> sNm™!
(i) f{*) = a;(*)+as(+)’ where a3 =1x 10°sNm™'

Figs. 2, 3 and 4 show the numerical simulation results of the output spectrum obtained by performing a
FFT operation on the system time domain output Y ) for cases (i), (ii) and (iii), respectively.



Fig. 2. The spectra of output y(r) when f{*) = a;(*)+as(*)’, a; = 29.6sNm ' and a3 = 0sNm~
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Fig. 3. The spectra of output y(f) when f{+) = a;(*)+a3(*)>, a; = 29.6sNm™" and a3 = 1 x 10°s Nm™": (a) magnitude spectrum and (b)
log-magnitude spectrum.
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Fig. 4. The spectra of output yx(f) when f{*) = a;(*)+as(*)’, a; =29.6sNm~ ' and ¢; = 1 x 10°s Nm™": (a) magnitude spectrum and (b)
log-magnitude spectrum.

The numerical simulation results indicate that the magnitude of the system output spectrum 2| YjQ)| at
Q =8.1rads™! reduces from 4585 to 959 N as the nonlinear damping characteristic parameter a5 increases
from 0sNm~' where the system is linear to 1 x 10°sNm™'. Then when a3 increases to 1 x 10°sNm™',
2| YAjQ)| reduces again to 136 N. Figs. 24 also clearly show that some of the energy at the excitation
frequency Q = 8.1rads ™! is transferred to higher frequencies. Therefore, nonlinear damping can reduce the
output energy at the driving frequency and at the same time spread the output signal energy over a wider range

of harmonics. This reduction at the resonance becomes larger as the nonlinearity gets stronger.

5.3. Other damping characteristic cases

In order to investigate the way in which nonlinearity modifies the energy distribution, three other damping
characteristic cases are studied in this section:

(iv) o) = ai(*)+as(*)’ +as(*)’ where a3 = 1 x 10>s Nm ' and as = 1 x 10°s Nm™!
() f(*) = ai(*) + as|(*)| + as(*)® where i =20sNm~' and a3 = 1 x 10°sNm™!
(i) fl*) = ai(*) +ax(10'—1) where @, = 1 x 10®s Nm™!

The numerical simulation results of the output spectrum for cases (iv), (v) and (vi) are shown by Figs. 5, 6
and 7, respectively.

5.4. Simulation conclusions

5.4.1. Proposition 1
The magnitude reduction percentage and the relative nonlinearity will be defined below and used to assess
the simulation results.
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Fig. 7. The spectra of output y(f) when f{*) = a;(*) +ax(107=1), a; =29.6sNm~" and 4> = 1 x 10>s Nm™": (a) magnitude spectrum
and (b) log-magnitude spectrum.

Table 1
Simulation results of cases (i)—(vi)

Case number f(%) (a; = 29.6sNm™")

2| YFHGR)| (N)  [MRP] (%)

i
ii
il
iv
v
vi

f)=ai(*)
f() =ay(*)+as(*)’, x € [-0.5,0.5] a3=1x10°sNm™!
o) =ay(s)+as(+)’, x € [-0.05,0.05] a3 =1x10°sNm™!

4585
959
136

) =ai()tas(s)+as(*), x€[-02,02] a3=1x10°sNm™!, as=1x10°sNm~" 346
() =ar()+aol(*)|+ax(+)?, x€[-0.5,05] a3=1x10>sNm~', a,=20sNm™' 959

f(o) = ay(*)+a(10¢9=1), x € [—0.045,0.045] a>=1x10°sNm~!

130

0
79
97
92
79
97

The magnitude reduction percentage (MRP) is defined as

(MRP] = 2 YFO2! = 21V FEGQ)

2| YEGQ)|

x 100%

(53)

where 2| Y4(jQ))| is the magnitude of YAjQ) at the dominant frequency when f{¢) is a linear function and
2| Yﬁ-’L(jQi)| is the magnitude of Y(j2) at the dominant frequency when f{*) is a nonlinear function.

The relative nonlinearity (RN) is defined as

[RN] = =222
1

df()/d(*)
a

(54)

From the simulation results and the definitions above, a summary of the results relating to the six cases are
given in Table 1.
Proposition 1 easily follows by inspection of Figs. 2-7 and Table 1.
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Proposition 1. When the input magnitude F,; and the input frequency Q are fixed, [MRP] will increase if [RN]
increases.
5.4.2. Proposition 2

Proposition 2. In most cases, there will be much less power at the harmonics in the output spectrum when f(*) is
an odd function than when it is not.

Proposition 2 easily follows by comparing the log-magnitude spectrum in Figs. 2-5 to Fig. 6.
The proof is given as follows.

Proof.

N
Let S = ay ()" (55)
k=1

The equilibrium equation for the system in Fig. 1 and corresponding force at the support can be
expressed as

N
mi () + Y an 135 @) + kyy(t) = (@) (56)
k=1
N
yr) =" an 130 + ky, (1) (57)
k=1

Since a», = 0 where k = 1,2,3,... in Eq. (56) [16],
How(on, - .., joy) =0 (58)
Following the procedure of Section 4.2 yields

n 2
Hyp(jon, ... jo,) = —m (j > a») Hy(joon, .., joon) (59)
i=1

Substituting Eq. (58) into Eq. (59) gives
szp(jwl,...,jwn):(), k = 1,2,3,... (60)
Substituting Eq. (60) into Eq. (34) yields

N
. 1 . . .
Yr(jo) = ZF > H i yr(J0k, 5 J0ky - -5 JOky, - VA0 VA1) - .. A0y, _,) (61)
i=1

Wpey +wk2 ~--+wk2[71 =

When the system is subject to the harmonic input (6),

O, =102, i=1,2,3,... (62)
Therefore,
W= + Oy .. + Oy, = ERQ,£3Q,£50Q, ... (63)
That is
Yr(G2kQ)=0, k=0,£1,42,43,... (64)

which means that the energy at the even harmonics is transferred to the odd ordered harmonics and the
number of harmonics in the output spectrum when f{*) is an odd function is only half that when it is not odd.
This completes the proof.
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5.4.3. Summary

According to Propositions 1 and 2, a nonlinear damping element described by the odd ordered polynomial
function f(*) = vazlazl_l(-)y ~! can be introduced between the incoming signal and the structure of interest
to suppress resonant vibrations.

6. Analysis

Consider the system (2) and (3) subject to the harmonic input (6) and using the following system linear
characteristic and input parameters:

m=240kg, k=16000Nm~', 4 =29.6sNm~', F;=10N, Q=38.lrads™!

where Q = 8.1rads™! is corresponding to the natural undamped frequency.

In order to investigate how nonlinearity reduces the energy in the output spectrum at the driving frequency,
the output spectra Yj2) are determined using Eq. (47) and the expressions of the GFRFs for y{¢) derived in
Section 4.2, and the results obtained are then compared to the results obtained by simulation for three
different damping characteristics as follows:

(vii) f{*) = a1(*)+as(*)*® where a3 = 0sNm™'
(viii) f{*) = a;(*)+as(*)’ where a5 = 100s Nm™"
(ix) f{*) = a;(*)+as(*)’ where a3 = 200s Nm™"

Figs. 8, 9 and 10 show the results for cases (vii), (viii) and (ix), respectively. In Figs. 810, the solid lines
show the output spectrum Yx(jQ) at the driving frequency determined using the analytical description (47)
when the system nonlinearities up to ninth order are taken into account. The dashed lines show the numerical
simulation results of the output spectrum obtained by performing a FFT operation on the system time domain
output yx(?).

Inspection of Figs. 810 clearly shows that the output energy at the driving frequency Q contributed by the
linear term P1 is modified by the higher-order system nonlinear effects P, (n>2) to yield the output frequency
response Y{jQ). Comparing Figs. 9 and 10 indicates that the cancellation between the linear term and the
higher-order system nonlinear effects becomes larger when the nonlinearity becomes stronger.

The general case when the nonlinear damping characteristic is described by a polynomial function can be
analysed using the same set of procedures. In mathematics, the Weierstrass Approximation Theorem [17]

Im [N]
8

-100 | P ]

120 | ;

Simulation
-140 ¢ Results 1

-160 . . . . . . . .
0 20 40 60 80 100 120 140 160 180

Re [N]

Fig. 8. The output frequency response Yx(jQ) at the driving frequency Q when f(*) = a;(*) +as(*)’, a; = 29.6sNm~'and a3 = 0sNm ™.

Solid lines: analytically determined results using nonlinear terms up to ninth order; dashed lines: simulation results.
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Fig. 10. The output frequency response Yx(j) at the driving frequency @ when fls) =a;(*)+as(*)’, a; =29.6sNm~' and

a; =200sNm~". Solid lines: analytically determined results using nonlinear terms up to ninth order; dashed lines: simulation results.
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Fig. 9. The output frequency response Ygj@) at the driving frequency @ when f{*)=ay(*)+as(*)’, a; =29.6sNm~" and

a; = 100sNm™". Solid lines: analytically determined results using nonlinear terms up to ninth order; dashed lines: simulation results.

guarantees that any continuous function on a closed and bounded interval can be uniformly approximated on
that interval by a polynomial to any degree of accuracy. Therefore, other nonlinear damping characteristics
which are not directly described by a polynomial can be approximated by a polynomial function and then
analysed by this method.
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7. Conclusions

The relationship between the output frequency response and the nonlinear damping characteristic
parameters of an SDOF spring damper system has been studied. The studies demonstrate that an odd
nonlinear damping element can be introduced between the incoming signal and the structure of interest to
spread the energy into higher harmonic frequencies with a corresponding reduction in the level of the output at
the driving frequency. The transmitted force spectrum was also expressed in terms of the nonlinear generalised
frequency response functions to show how the energy, at the excitation frequency, is modified by the
nonlinearity. The nonlinear element can also be a nonlinear spring or a combination of a spring and a damper.
What has not been examined in the present study is which nonlinear element is the optimal choice to suppress
resonant vibrations. This problem will be studied in a later publication.
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Appendix A. Derivation of the GFRFs for y )

The expression for H,,;(joi,...,jw,) was derived by Zhang et al. [18] and will simply be quoted here.
When n =1,

1
Hiyy(o) = — (A.1)
B(jwr)
When 7 is an even number, H, w1,...,w,) = 0.
When n>3 and is an odd number,
H,q = 3lascl-"M® (A.2)
where
1 1
l..n
¢, "= —— - X — A3
" T T BGor o) "l (A

n n 2 n
ﬁ<jzwi> =m<jzwi> o (jzw,) ok (Ad)
i=1 i=1 i=1

M = Z Z NVI!GCUI + -t jor)H (o1, .0 )R GOr 11+ JOr ) H (O 415 Oy )

(:3,n)
X 73!Gwr1+r2+1 + - +jwn)Hr3 (wr|+r2+1, cees CUn) (AS)
Formally,
|55
MI=3 SIp] (A.6)
p=1

where Sfl, the Stirling Set of the second kind, denotes the set whose elements cover all the partitions of a set
{1,2,...,n} into three blocks.
In the case n = 3,

Hiq(o1,m3,03) = ¢ 3lasM 111 = 3lasey™ (1)(2)(3) (A7)
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where

123 1 1
C3 = - N N B X _'
pGowr +jwr +jws) 3!

and
(DH(2)3) = (o) Ha(w1)(w2)H 14(w2)jws)H a(w3)
In the case n = 5,
Hsq(o1, 02,03, 04, 05) = 3lasci?* M3,

where
o3 _ 1 % 1
’ B jjw) !
M3 = (5)B(321) + (5)(3)(421) + (5)(2)(341) + (5)(1)(324) + (4)(3)(521)
+ @2)(351) + (H(1)(325) + (3)(2)(541) + (3)(1)(524) + (2)(1)(354)
where
(S)D(321) = (jws)H 14(ws)(jwa) H14(w4)3! (s + jwr + jo1)Hza(ws, w2, 1)
and so on.

In the case n =7,
Hog(o1, 0, 03, 04, 05, 06, 07) = 3lazcy (M 15 + Ms31)
where
1 1
1.7
= ———— X =,
BO-Lijon) Tt
M 5 has 21 terms and is given as

Mis = (7)(6)(54321) + (7)(5)(64321) + (7)(4)(56321) + (7)(3)(54621) + (7)(2)(54361)

+ (7)(1)(54326) + (6)(5)(74321) + (6)(4)(57321) + (6)(3)(54721) + (6)(2)(54371)
+ (6)(1)(54327) + (5)(4)(76321) + (5)(3)(74621) + (5)(2)(74361) + (5)(1)(74326)

+ (4)(3)(57621) + (4)(2)(57361) + (4)(1)(57326) + (3)(2)(54761) + (3)(1)(54726) + (2)(1)(54376)

M 331 has 70 terms and is given as

M3z = (764)(531)(2) + (764)(521)(3) + (764)(321)(5) + (763)(452)(1) + (763)(451)(2)
+ (763)(421)(5) + (763)(521)(4) + (762)(435)(1) + (762)(431)(5) + (762)(451)(3)
+(762)(351)(4) + (761)(432)(5) + (761)(435)(2) 4 (761)(425)(3) + (761)(325)(4)
+ (754)(632)(1) + (754)(631)(2) + (754)(621)(3) + (754)(321)(6) + (753)(462)(1)
+ (753)(461)(2) + (753)(421)(6) + (753)(621)(4) + (752)(436)(1) + (752)(431)(6)
+ (752)(461)(3) + (752)(361)(4) + (751)(432)(6) + (751)(436)(2) + (751)(426)(3)
+ (751)(326)(4) + (743)(652)(1) + (743)(651)(2) 4 (743)(621)(5) + (743)(521)(6)
+ (742)(635)(1) + (742)(631)(5) + (742)(651)(3) + (742)(351)(6) + (741)(632)(5)
—+ (741)(635)(2) + (741)(625)(3) + (741)(325)(6) + (732)(465)(1) + (732)(461)(5)
—+ (732)(451)(6) + (732)(651)(4) + (731)(462)(5) + (731)(465)(2) + (731)(425)(6)
+ (731)(625)(4) + (721)(436)(5) + (721)(435)(6) + (721)(465)(3) + (721)(365)(4)
+ (654)(321)(7) + (653)(421)(7) + (652)(431)(7) + (651)(432)(7) + (643)(521)(7)
+ (642)(351)(7) + (641)(325)(7) + (632)(451)(7) + (631)(425)(7) + (621)(435)(7)

935

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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where
(7)(6)(54321) = (jwr7)H 1 (w7)(jowe)H 1(w6)S!(jws + jwg + jow3 + jos + jor)Hs(ws, w4, 03, @2, @1) (A.18)

(764)(531)(2) = 3!(jawr + jws + jws) H3(w7, w6, 04)3!(jws + jos + jo)Hs(ws, w3, o) (jo)Hi(w2)  (A.19)
and so on.
In the case n =9,
Hou(w1, 02, 03, 04, 05, 06, 07, 05, 09) = lazey (M 117 + M35 + M33) (A.20)
where
1 1
1.9
Q=5 . Xy
B i) 9!
M7, M35, and M333 have 36, 504 and 280 terms, respectively. These expressions are omitted here due to
space limitations, but the results will be used in Section 6 to obtain a more accurate analysis of the system

output frequency response.
More GFRFs for y(t) can be derived easily according to Eqgs. (A.2)—(A.6).

(A.21)
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