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Abstract

The nonlinear partial differential equation governing the nonlinear transverse vibration of pile was derived under the
assumption of that both the materials of pile and soil obey nonlinear elastic and linear viscoelastic constitutive relations.
The approximate expressions of the nth-order main frequency and the response of the nonlinear vibration of pile with ends
hinged have been obtained by the complex mode method and multiple time scales method. Results point out that the main
frequency of the nonlinear system is related to not only the natural frequency of linear vibration system, but also the
amplitude, damping and nonlinearity of materials. There are high-order harmonic waves with twice the main frequency,
and the main frequency of three times as well as the sum and/or difference of 2 or 3 main frequencies besides the harmonic
wave with the main frequency in the response of the nonlinear system. Numerical examples were given and the effect of
parameters was considered in detail.

Published by Elsevier Ltd.

1. Introduction

The pile foundation has been widely used in engineering, such as high-rise building, bridge, offshore
platform and nuclear power station and so on, but it is very difficult to perform the analysis of nonlinear
mechanical behavior of piles due to complicacy of the interaction between pile and soil, the load transfer as
well as deformation and motion. Although there are many papers on linear vibrations and dynamic responses
of piles, there are few papers on nonlinear dynamic behaviors and nonlinear vibrations [1], especially, when
both the materials of pile and soil are nonlinear elastic and/or visco-elastic ones. Novak [1] gave an overall
overview for dynamic analysis of piles and introduced the linear and nonlinear dynamic theory, calculation
method, and qualitative conclusion. Li [2] presented a simple and unified approach for the free vibration of a
generally supported beam. Surie and Cederbaum [3] and Chen and Cheng [4] studied the stability and chaotic
motion of nonlinear visco-elastic columns. Chau and Yang [5] studied the interaction of soil-pile system in
nonlinear horizontal vibration from a new model of continuum mechanics. Hu et al. [6] analyzed nonlinear
dynamic characteristics of piles under horizontal vibration from a similar model. Many researchers pointed
out that the method of multiple time scales is an efficient method for analyzing nonlinear dynamic responses of
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structures [7-15], for example, Emam and Nayfeh [8] researched the nonlinear responses of buckled beams
subjected to subharmonic-resonance excitations. Chen and Yang [9-11] analyzed the steady-state response of
axially moving viscoelastic beam with pulsating speed and the stability in parametric resonance of axially
accelerating beams constituted by Boltzmann’s superposition principle. However, there are few reports for
nonlinear vibration of nonlinear elastic and viscoelastic piles.

In the present paper, it would be assumed that both the materials of a pile and the soil around the pile obey
nonlinear elastic and linear viscoelastic constitutive relations. The nonlinear partial differential equation
governing the nonlinear transverse vibration of pile is first derived. Under the assumption that both the
nonlinear characters of materials of the pile and the soil are weak, the approximate expressions of the nth-
order main frequency and the response of the nonlinear vibration system have been obtained by the complex
mode method and the method of multiple time scales. The effect of parameters is considered and numerical
examples are given.

2. Formulation of the problem

Consider the nonlinear transverse free vibration of a pile with two ends hinged. Assume that the length, the
outer diameter, the inner diameter, the cross-sectional area, and density of the pile are denoted by I, D, d, 4
and p, respectively. And suppose that the origin of the X-axis coincides with the geometry center at the top of
the pile, the forward direction of the X-axis is downward, and the forward direction of the Y-axis is rightward.

Let o(X, T) and &(X, T) denote the stress and strain of the pile at the time 7. For the pile composed of a
nonlinear elastic and linear viscoelastic material, o(X, T) and (X, T) obey the constitutive equation as follows:

Oe
0 = Eo(e+ sgn(—o)fe® +7¢%) + 1 (1)

where Ey, f8, y are the elastic coefficients of the material, 5 the viscosity coefficient, sgn( ) the symbolic function.
In the case of small deformation, the relation between the strain e(X, 7) and the displacement V(X, T) is given
as

v
=—-Y— 2
& e 2
where Y is the distance of the considered point to the neutral axis. Hence, the bending moment is
D' —dt v D —d} (Vv Dt —df (v D —dt BV
M =—Egn L= BT () —Ey L(2T) - L 3)
64 00X 60 (). 512 \oXx 64 0X°0T

If the soil is also one of nonlinear elastic and linear viscoelastic materials, based on the generalized Winkler
model, the resistance of the soil to the pile may be expressed as

oV oV
p<X, V’ﬁ) =a(k1V+k2V2+k3V3)+cﬁ @)

where c¢ is the damping coefficient of the soil, k; the linear stiffness coefficient, k, and k5 the nonlinear stiffness
coefficients and « the adjustable parameter.

It is not difficult to obtain the nonlinear differential equation governing the transverse motion of the pile as
follows:

PV Dt —d* oty DS —d5 (BPV\° DS — &5 PV &V
A——+E L — __ _2F L(—) —2E L
pASE T En— oxn 2B <6X3) P60 ax?ox*
+6E“nD6_d?az—V 637[/ 2+3E n7D6_d? 62—V Za47V+ 71D4_dé1¥ il
TS ox2 \ox® 52 \ox2) ax* T 64 oxtor
vV 1% oV
Pyl — (1 — o)X /|— — Pp—— — + aD(k V2 + k3 V3 D = 5
+ Pol[l — (1 — o) ”axz 0~ 5y T4 (k1 V + bk Vo +ksV7) + ¢ a7 0 (5)

where Py is the static load on the top of the pile and « the constant, commonly 0 <o <1.
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For a pile embedded in rock and foundation platform, one may consider that both the top and bottom of
the pile are hinged, so the boundary conditions are given as

Vixei =0; Mly_; =0 (62)
Vix=o=0; Mly_o =0 (6b)
Letting Uy(X), Vo(X) be the initial displacement and velocity of the pile, the initial conditions are
oV(X,T)

V(Xs T)|T:0 = UO(X)’ = VO(X) (60)

oT 1o

For convenience, assume that the conditions 0 U0/6X2|X:0,, = 0 are valid when 7 = 0.

Let k = \/ nEy(D* — d‘l‘) /(64pA1*) and introduce the following dimensionless variables and parameters:

w=V/l, t=kT, x=X/I, B, = Eof(D° — d})/(30pAIk?)

p1 = 3nEp(D° — df)/(512pAI°K?), n, = nn(D* — d})/(64pAl*k)
Po = Po/(pAPPK?), ki = aDky /(pAk?), ky = aDk,l/(pAk®)
ks3 = aDksI’ /(pAK?), ¢; = cD/(pAk)

Thus, the equation of motion (5) and boundary conditions (6a) and (6b), initial conditions (6¢) in terms of
dimensionless displacement can be given as

62w+64w 8 *w : 8 o*w 64w+2 *w [*w 2+ *w 264w+ w
o "ot~ M\ ax a2 ot T \aw) T ee) o T e

2

0w ow ow
+poll — (1 — oz)x]@ — po(l — oc)a + kw4 koow? + kzw® + ¢ o= 0 (7a)
*w Ow B, [(Dw : N Ga ’
=1 = = —— =] == = 7b
Wher =0, laxz tMhava T 2 <ax2) 3 <ax2) 1 0 (75)
0*w *w B, [Dw : Ga ’
o ow _P (@ (g - 7
Wheo =0, laxz tMava T 2 <ax2) 3 <6x2) . 0 (70)
ow(x, t
W]y =), Dy (74)
L P
And also assume that the initial displacements at the two ends of the pile satisfy
62u0 62u0
— = — =0 7
x|, = 0x?|._ (7¢)

3. Multiple time scales method and solution of the problem

Obviously, it is difficult to get the complete solution of the problem, so we try to apply the multiple time
scales method to obtain the approximate solution of the problem. Let o = 1 in Eq. (5). If both the nonlinear
characters of materials of the pile and the soil are weak, we may set k»>> = ekoo, k33 = ekos, 1 = €Bo1, Y1 = €Yo1,
here, ¢ is a small parameter. Thus, Eq. (7a) may be written as follows:

o*w  otw o%w 0w ow s 3 Fw\’
a—l2+a—x4+poa—x2+kllw+mm+cla—l=8 —kopow”™ — kopzw +ﬂ01<@>

o*w dotw Pw (Bw\’ 2w\ o*w
“fOI@@‘%W(@) Yo (@) o (52)
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And conditions (7b) and (7¢) can be given as

’ 3 3 28N% . 2
W|x:1 =0, M_’_ 0w fﬁi <6 W) B €01 (aw>

o2 " Maar 2 \o2 3

o " Ma2ar 2 \o2 3

[~2 3 2.N% . 2
Wl =0, w... Ow % <a W) _ & (aw>

Assume that the approximate solution of Eq. (8a) has the form

w(x, t,8) = wo(x, To, T1) + ewi(x, To, T1) + - - -

(8b)

(8¢)

)

where Ty = t, T = ¢t are the time variables with different scales. The vibration expressed by Eq. (9) includes
the time history with different time scale. Different time scale describes different rhythm of vibration process.
For the time scale with lower order, the vibration of the system is slower, and for the time scale with higher
order, the vibration of the system is quicker. Specially, T, = ¢ corresponds to the quick time scale of the linear
vibration system with the natural frequency w,,, and T; = &t is a slow time scale arising nonlinear characters
of materials of the pile and soil. And also the different time scale is independent of each other. Hence, w(x, ¢, ¢)
is now regarded as a function of spatial variable x and two independent time variables Ty, 7. Obviously, the

following relations are true:

G S
o2~ or2 T ot 0T,

(10a)

(10b)

Substituting Eq. (9) into Eq. (8a) and observing Eq. (10) as well as comparing the coefficient with &-same

power, the zeroth- and the first-order linear partial differential equations can be obtained as follows:

Pwy  o*w w w ow
0 0 0 0 0 0
Y k — —=0
Ciam T Thge Tt hgasr, T e,
iy *w +64wl n *w A ’wy be owy *wo ’wo . owy
12 T P TR T as T, T ety T T TeT,01,  axtor,  C'er,
2 2 2
3w %wy 0w *wy [ w *w o*w
2 3 0 0 0 . 0 0 0 0
— Kozwy = Kozwo + Py ( ox? ) + P ox2 axt 2701 ox2 ( ox? ) ~ Yo ( 0x? ) ox4

The boundary conditions corresponding to the variables wg, w; become

a2W0 6314/0
Wolx=o = 0, {ax2 tm 6x26T0] -0 =0
aZWO 6314/0
2
Wilyzo =0 *w + O wi - dwo _bu Sy _ o
1lx=0 , ax2 7]1 axz aT() —o ’11 axz aTl 2 axz

a2 T Maar, ax2or, 2 \ox

Wil = 0, (62w1 *wy )‘ —_|n *wo Bo (6211/0) Yo
x=1

x=0

x=1

(11a)

(11b)

(12a)

(12b)

(13a)

(13b)
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The corresponding initial conditions are given by

ow ow ow
— =00(x), Wilpy=rm0 =0, ~—- =—— (14)

Wol7,=1,=0 = Uo(X
To=T1=0 ( )s 6T() ot 120 aT] S,

0T To=T,=0

The zeroth- and the first-order approximation solutions can be derived by using the auxiliary condition
eliminating the secular terms, boundary conditions and initial conditions. Especially, the displacement can be
expressed in terms of complex variable as follows:

N
Wox, To, T1) = S {by (AL (T 4§ ()4, (T ) To=00To) (15)

n=1

where N>1 is integer, (-) denotes the conjugate of (-), 9, = ¢; + 1,(nm)*/2 is the damping coefficient of the
derivative linear vibration system, f,, = nn (n = 1,2,3,...).
Substituting Eq. (15) into Eq. (11b) yields the following equation:

61v1+6w1+ *w) Ly kw4 ’wy ny owy
or2 T ot P TR T gy, T e, T

N
= S (=200 + 26,00 — 1P — 1)
n=1

"

04 SN 7 7(4)
X a7+ (C3Hosdid, = 401816, 9 = 20018V By~ v01 (1)’ B,
— 2901 Budl pP) A2 A, ToYei O T T (ka2 4 By (BN + Py PPy A2 eFienTo=20To
+ (—kosy, — 270105 (¢7)’ ym(¢”>2¢<4>)A3 0alo=30T0 4 (—korp, by + Bor by By

+ Bor by d) A Ay e 70} + Z Z [(—2koaibs + Bor by b + Bor i,y

k=1 n=k+1
Vi ’ , Y0 " _(4)
+ 2B 9 D) Ar Ay € CaFenTo=CtoTo (kb b, 4 Boy 08B + Bor bLbs

N N-1 N
+ 2,80145/”(]5”)141{14 el(wdk @an) To—(S+0n )To + Z Z Z ( 2k03¢m¢k¢ _ 4,)}01¢ ///¢///
m=1 k=1 n=k+1

n

_ 2Vo1¢(4)¢/,¢Z)An1AkAn el(@an+0a+0a) To—(0m+0k+0,)To + (_2k03¢m¢k¢n 4/01¢” ”/d)
=1

_ 2Vo1¢(4)¢ ,J)Z)AmAklan el @an+0a—oa) To—(0m+0k+3m)To + (_2k03d_)m¢kd) 4/01¢ ¢’”¢/”
_ 2'))01(;32‘:)(1)% Z)IZImAkAn ei(wz/kerdn*wdm)T()*(5m+5k+5n)To + (_2k03q§m¢k¢ 4,))01¢ ¢///¢”’

N N
4) i 7 1 al(0g—0g—o —( (4 "
_ 2y01¢( ) "3 A A Ay € —Om=0m To=Gutoi+onTo] 4 Z Z[(—kmd)q(ﬁﬁ AT

=1 n=I1
q (n#q)

— V01¢514)(¢Z)2)Aq14£ lCwatwa)To—(20,+0)To (—2ko3 ¢, b, b, — 4/01¢”¢W¢
— 2V01¢£14)¢Zq§n)AqAn;1n 1@ To=(20,40)To . (_k03(l_5qq5 2/01¢ (¢///
— 018y (@) A Ay P TmCarsoTo] 4 e (16)

n

where ¢, and ¢, denote the derivatives of ¢,(x) about the variable x, cc is the conjugate of all terms on the
right-hand side of the equation. From the homogeneous equation (11a) and the non-homogeneous equation
(16), one can see that their left terms have the same expressions, but Eq. (11a) has the nonzero solution ¢,,(x),
i.e. the nth-order modal function of free vibration of the linear system, so, the necessary and sufficient
condition of existence of solution for Eq. (16) is that the solvability condition must be satisfied, that is to say,
the secular term on the right-hand side in Eq. (16) and the solutions of its adjoint Eq. (11a) are orthogonal.
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Therefore, the solvability condition is given as

: S 04, 7 iV
([(=2i¢uan + 26,00 =, = 1) 57+ (=3kosd by = 40197, &,

N2 T 2 74 " an 1 A i) —
— 2001V By = 101D’ Br — 2001 PV AR A, €2 TN T T0 gy )y = 0 (17)

where <{f, g > is the inner product of complex functions in the interval [0,1] defined as

1
f\q) = /0 fgdx (18)

In the above Eq. (17), f'is taken as the secular term on the right-hand side of Eq. (16) and g = ¢,(x). From
Egs. (17) and (18), the following relation could be drawn:

[N [N 1 _ [N A, o
(—21(% / ¢, ¢, dx + 20, / $,¢,dx —n, / dWp, dx — ¢ / d)n(f)ndx) 0 + (—3ko3 / $2h. dx
0 0 0 0 oT, 0

1 1 1 1
BUSB m2 7T N2 T® 1 i T
iy, /0 LB GG, dx—2y0, /0 (@ VFL D, dx — o, /0 @120, dx — 29, /0 ¢>n¢n¢5:‘>¢>,,dx)

x A2A4, e To =

The equation can be simplified as follows:

aA” - —25
a7, k3 A2 A, e T =0 (19)
where
1,272 Lo 7/ o 7 Leym2 7" 7 L2 7(4) 7 Lz, (4) T
b = 3 Brdads = 0 o 948, 0B dx = 2oy @Gy dx = Iy @8 By dx = 20 fy 80408, 4

2iwdn fol d)nd_)n dx — 2571 f()l ¢n$n dx + m f()l ¢514)q§n dx + C1 fol d)nd_)n dx
(20)

From the boundary conditions (12a), (12b) and (7e), it is easy to solve the solution of the zeroth-order
system (11a), (12a) and (12b) and get the natural frequency

0 =\l + m)* — oy -1 =2 (1 =1,2,3,..) 1)
where {, is the nth-order relative damping factor given as
(=2 L+ o) (n=1,23..) (22)
8 2\/k11 + (nm)* — (nm)’py
The corresponding modal is
¢,(x) = Cyy sin nnx (23)
where Cy, = —i(W, /2)ei00” and W,,, 0, are the vibration amplitude and phase of the derivative linear

system, respectively, and they are determined by the initial conditions.
Substituting Egs. (23) into Eq. (20) yields the following relation:
—3W5,(n g, + 3kos) 3WG,(nndyg, + 3kos)

— a =1 24
T6cr + i, + 2(—3, + i) 320, %)

3n

Let the solution of Eq. (19) be 4, = A,(T)) = a,e"”, and o, = o,(T}), 7, = 7.(T)) are undetermined
functions of the time scale 7. Substituting it into Eq. (19) leads to the following equation:
oo, . Oy,

or, T ar, T

ko €20 = 0 (25)



C.-L. Hu et al. |/ Journal of Sound and Vibration 317 (2008) 937-954 943

Separating the real part and imaginary part yields

Oty
oT:

(26)

aT kgn i —20,Ty (27)

From Eq. (26), it is easy to see that a, = oy, (constant). Inserting it into Eq. (27) and integrating the
obtained equation yields y, = k;na%nT e 20To 4 v (yon is a constant). Therefore, we have

i —20nT|
Ay, = o el — Son elk‘bz“onTl e 2170 4y, (28)

Substituting Egs. (28) and (23) into Eq. (15) leads to the following expression:

N
. 12 20 To Yy in S
wo(x, To, T1) = Y sgugp ()@ T0 K T et e

n=1

N
= Z oon Won sin[nzmx]sin(wg, To + kgnoc%nTl e 20 To 4 9, + y()n)e*"“ To (29)
n=1

When the nonlinear characters of materials of the pile and the soil are all weak, the nonlinear terms may be
ignored, and the above solution ought to coincide with one of the derivative linear system, therefore, o, = 1,
on = 0. Thus, we have

Ay = oy el = kT (30)
N
. . 3w 3k 5
W6, o, T) = 3 Woy sinGrmx)sinfoog Ty + 2L 0+ 3k0) 1 vy g jevre 31

=l 32(04,,

Substituting Eq. (31) into the boundary conditions (13a), (13b) and observing Eq. (7¢), the boundary
conditions may be simplified as

*w Pw

Wilio =0, [ax; +1 53 a‘TO] =0 (322)
*w O*w

w1 |x:l = 0’ |:ax21 + n axz alT‘():| =0 (32b)

Substituting Eq. (23) into Eq. (16) leads to

62w1+64w1+ 62 ~|—k - 65w1 Lo owy
o2 "ot e T T as T, T e, T

N
; E [C? (—kop sin? nnx
n=1

2 i To—28,To : 2 8 2
+ Bo1n®n® cos 2nmx) A2 eHn + €3, sin nmx(—kos sin” nx + 290 n°7® cos? nmx

— ymngng sin® nnx)A3 elienTo=30To o 1 C1 (koo sin® nmx + [)’01n6n6 cos 2nmx)A,A, e 21]

N—-1
+> Z {Cik Cial(—2koy — Pork*rn?n® — oy k>n*n®) sin kmx sin nmx
k=1 n=k+1

+ 2Bk’ 1’ cos kmx cos nux] Ay A, e @ateaTo=OtoTo L €, [(—=2kgs — Boyk*nPa’

— B01k2n4n6) sin knx sin nmx + 2B01k3n3n6 cos kmx cos nmx]AxAy, e(@a—amTo=(0k+0nToy

N N-1 N
+ E Z Z {2C1,, C 11 Cyy, sin max[(—koz — y01m4k2n27r8) sin kmx sin nwx
m=1 k=1 n=k+1

+ 29?3’ n® cos knx cos nux]A, Ag A, @it CatonTo=CntotdnTo 4 o0y €1 €y, sin max
x [(—kos — yoym*k*n*n®) sin knx sin nx + 2y,,m*k*n’n® cos knx cos nnx]A,, A A,

x el@antea—oun)To=CntotoNTo 4 2 €1 Cy, sin max[(—kos — yo;m*k*n*n®)sin knx sin nnx
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4+ 2ry01m2k3n3n8 coS knx cos nnx]/_l’nAkAn ei(wd/c“'mdn_wd/l1)T0_(6nx+5k+5n)T0

+2C1uC1i C1y sin mux[(—koz — yom*k*n*a®) sin knx sin nux
+ 2912k T® cos knx cos nmx]A,, Ay A, e a0 To=Ontor+0)Toy

N N
+ Z Z{Cqu%n sin grx[(—koz — ﬁ,»()1q4n47rg)sin2 nmx + 2y01q2n67r8 cos’ nmx]

=0z
x AgA eiC0untoa)To=Con+)To 4 > 14C1nCry sin grx[(—kos — yor1¢ n*n®)sin? nmx
+ 29014°n°1% cos® nnx]A, A, A, e@uTo=@0t00To ¢ 2 sin grx[(—kos — o1¢*n*n®)sin? nx
+ 2,y01q2n6n8 Cosz nﬂ:x]/]qA’% ei(den—u)‘,q)To—(Zé,,+(Sq)To} +cc

It can be seen that there are no secular terms in Eq. (33), so its solution is given as

N
wi(x, Ty, T1) = Z[d)n(x)A: el@aTo=0uTo | aln(x)AE, e2ionTo=20,To 4 bln(x)A,i e31@anTo—=30,To

n=1
) ~ N-1 N 4
+ aon(0) A Ay e T+ 7N [d () Ag Ay OO To= kT
k=1 n=k+1

N N-1 N
+ d2kn(x)Ak/_1n ei(wdk*wfz;z)To*(5k+6n)To] + E § E [fl . (xX)AmAr Ay, el@ant0a+0a) To—(Om++0,)To
mkKkn
m=1 k=1 n=k+1

+f2 " (X)AmAk/_In i(@dn+0a—~®a) To—(0p+0x+01)To + f4 . (x)/_lmAkAn l(@at0dn =) To—(0p+0k+02)To
mkn 3mkn

N N
+f4mkn(x)lamAk1‘-1n ei((ﬂdk*w(in*wdm)T()7(5:n+5k+511)T()] + Z Z[glqn(x)AqA,% elC0at0a) To—(20,+0,)To

=1 n=lI
(n#q)

4 QQqn(x)AqAnl‘_ln eiu>z1¢,T0—(25n+(5q)T0 + g3qn(x)/_1qA5 ei(Z(Udn—wm,)To—(2(5n+(5q)To] +cc

where A is a complex number. Substituting Eq. (34) into Eq. (33) yields the following equations:

kit + Qi — 28,)* + ¢1Qiwa, — 20)a1, + pod 1n + [1 + 1y Qi g, — 28,))a’?

6

= C} (—ko> sin® nmx + o n®n® cos 2nmx)

kit + Giwg, — 30,)> + c1(3iwg, — 30,)1b1n + pob” 10 + [1 + 1, Giwa, — 39,1687

= Cfn sin nux[—kossin® nmx + 2y (1 — sin’ nmx) — yonSmd sin” n7x]

(k11 + 45i — 20n¢1)aon + pod”on + (1 — 25,17]1)512;2

= C1,Cru(—koy sin® nmx + By n°n° cos 2nmx)
The solutions of the above equations can be obtained as

Ay = o € I + 0, €1 + 03, €2 + 0y, €2 + Ay, sin’ nx + By, cos 2nmx
bin = o5y € B + 06, €5 + o7, 674 + 05, €94F + Ey, sin nrx + Fy, sin® nux

Aon = %010 € T + agon €75% + 0lg3n €9 + alpay €9% + Agop SIN° nEx + Boo, COS 2nmx

(33)

(34)

(352)

(35b)

(35¢)

(36a)

(36b)

(36¢)



C.-L. Hu et al. |/ Journal of Sound and Vibration 317 (2008) 937-954

where the coefficients are given as

Aln =

Eln =

q, =

qs =

my = kiy + Qiway — 28,)" + ¢1(2iwan — 20,),
my = ki1 + Gioa — 36,)° + c1(3iwa, — 35,),
ms = (ki + 452 — 25,¢1),

- \ 2m4

—ko2C,

C%n(2k02n2n2p0 — 8k02n4n4mz + ,[))()11’16%61’}11)

b Bln =

my my(my + l6n*n*my — 4nn?p,)

2C3, [Bkosn*n?py — 30kosn*nmy + yon8némy — 9y n

1212

T n’I4]

Intnpy + m3 — 10n2n2mypy — 90n®nmupy + 82n*n*msmy + 81ndmdmy

C3 (Byonn® + kos)
ms — Inw?py + 81nntmy
—C1,Crukon

Cl,,C_'ln(2k02n2n2p0 — 8koon*ntmg + ﬂ01n6n6ms)

5 00n =
ns

Do + +/ —4mimy +p%

- 2}’}’12 > q2

T

Po + 1/ —4mamy + p}

> qq

Po + 1/ —4msme + p}

2m6

> e

ms(ms + l6n*n*mg — 4nnlp)

—Po+

v/ —4mymy +p(2)

2m2

—Po +

T

—4mymy + pj

2m4

—Po +

v/ —4msmg +p%

me = (1 —20,n,)

2}’}’16

> = 1+ 1, Qoo — 28,)
my =1+ 7]](3iwdn - 35;1)

From the boundary conditions (32a), (32b) and the initial conditions (14), we have

alnlx:O = 0’

alnlle = 0’

62aln
=0, binleg =0
2 > nlx=0 s
0x? |,
62aln
o2 ZO, bln|x=l 205
X7 |x=0

by,
ox?

by,
Ox?

x=1

x=0

= O> a0n|x:0 = O,

= Oa a0n|x:1 = O,

Substituting Eq. (36) into Eq. (37) leads to oy, %, %3, %4p,... aS

e (=2n’m* Ay, + 40’7 By, + Biugq3)

Olp =

>

(1 +en)(qi — ¢3)

e‘lz(_znznzAln + 4]’!27'52B1n + Blnq%)

03y =

>

(1+e)(—q2 + 43)

s, =0, ag, =0, 007, =0, ag, =0
eq5(—2n2ﬂ2Aoon + 4n27T2BOOn + BOOn‘I%)

Olop =

4y =

2
6 don
ox2
6200,,
ox2

B —2n*n? Ay, + 4n*m® By, + Bing3

x=1

x=0

(14 en)(q? — 43)
B —2n*n? Ay, + 4n*m? By, + Bing?

—21’[27'52/100,, + 47’12775230011 + BOOnQé

(1+e2)(—q2 + 43)

0loin =

(1 + e%)(g2 — q7)

> OC02I1 =

e9s(—2n’m*> Aoon + 47> Boon + Boonq?)

(1 + e%)(g3 —
=21 Aon + 411> Boon + Boonq?

q?)

0lo3n =

(1 + e%)(—q3 + qf

i

0lo4n

(1+e%)(—q2 + ¢2)

945

(37)
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Similarly, substituting Eq. (30) into Eq. (34) and setting 4* = A7, e 40710405, yields

N
E (@an To+kS, A2 T e 20nT0)4i0% —0, T di(wg, To+kt Ty e=21T0)=25, T,
Wl(x, T, Tl) = [qsn(x)Agn el(@anTotky, Ag, Tr € )+i05,—0,To + aln(x)e (g To+ks, T e ) 0

+ apn(x)e 20T - by, (x)e3(@an Toths, Ty e 2n10)=30,Toy

N—-1 N ) ‘
i(@ak To+may To+ks, Ty e 2k To kL Ty e 2170)—(8,49,)To
+ dipn(x)e 3
k=1 n=k+1

+d2kil (X)ei(a}dk To—ouTo +kl3k Ty e ko _kéu T, e 7o )_(5I(+5r1)T0 :|

N N-1 N

+ E E E 1 1ion ()& @i ToF@acTotou T, 0k, Ty e 20mTo 4k, Ty e~ 2kT0 4k} Ty ¢=2170)—(8,,4+04+6,) T
mkKkn

m=1 k=1 n=k+1
+ f2mkn (x)ei(wdm TotoaTo=0uTo +k;’" Tye2mlo +k;k Ty e %70 7k_13n Ty e 2nT0)—(3,,+3k+34) To

F 3o ()€ Tt o Tothy Ty €Tk, Ty 20070 ks, T 720 T0) (0010 To
mKn
+/ amien (x)ei(wd,c To—0 4 To—0anTo+ky Ty e 2kTo kL Ty e=20mTo i} Ty e=2n70)—(8,,+3,+0,)To

N N
+§ E [G1, ()i COnTorOuTor2Ks, T &3 T04 T & 0T0)—(20,+6)) T
q’l

=] n=1
q (n#q)

+ g2qn(x)en(wm/To+k§qT1 e 2470)—(25,+0,)To + g3qn(x)ei(2‘”"”T°_‘”t’ﬂT0+2k§nT1 e—20nT —kqu, e204T0)

— (20, + 04)To] + cc

3W3, Aga(n by, + 3k03)

—25,,T —5,T
32w " + Oou + Op,Je ™"

N
Z{Aén W on sin(nnx) sin[wg, To +

n=1

i 3WG,(n + 3k s -
—24/(@@®)* + (@}, sin[2(wa, To + on 3”262(;1 03) ¢~20T0y _ g, o200 T0

: 3WE,(nb e + 3k
-2 (bln)2 + (b{n)2 sin[3(wa To + On(”32a/)(;1 oz) —25m)) _ 92}1]6—35”0
n

N-1 N
+2afy, e £ >N " {dYy,, sin[(@aTo + 0mTo + ki T e 70 + &, Ty ™2 T0)
k=1 n=k+1
— Opjple™OHT0 g3, [(wdkTo — 0o Ty + ki, Ty e 270 — b Ty e=20nT0)
N N-1

— OgpJe OO 0y Z Z U mien Si0[(@anTo + 0ac To + 0 To + Ky, Ty e 270
m=1 k=1 n=k+1

! ~20,T I ~26,T —(Om+0k+6,)T . .
+ k3kT1 c 4o + k3nT1 e n 0) _ lekn]e (Om+0x+0n)To +f2mkn Sln[(wmeO + wdkTO — wdnTO

+ kY, Tre 2T 4 kL Ty e 2570 — j4 Ty @72 T0) — Gy Je™ OOt onTo
+f3mkn sinf(wa To + @anTo — WamTo + k3kT1 e 20kTo 4 kgnTl e 20uTo _ 1
_ 03mkn]e_(?)m+(3k+5n)TO +f4mkn sin[(a)dk TO — Wan TO — Wgm T0

+ kgk Tl 6—2(5/( Ty _ kgm Tl e—2me0 _ kgnTl e—2b,,To) _ 04mknle—(()m+(5k+r),,)T0}

Im ]—'1 e_zfsm TO)

N N
+ 33 (gt sinlQoaTo + w4 To + 25, T1 e 770 4 kL Ty 72070y — 9y, e~ aTo

—1 n=1
4 (n#q)

+ G54 sin[(wgg To + kgq Ty e 2070y — 0,,,]e= @007
+ G3gn SN[ To — w4y To + 2UE Ty e 2nTo kl Ty e 2To) — gy, Je~Corto0To)

(38)
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where sin 01, = af /1/(aR)* + (d},)?, sin 0y, = bR /\/(BF)? + (B],)* and also A, 0;, are the real
numbers determined by the initial conditions. Substltutlng Egs. (38) and (31) into the initial conditions (14)
leads to

Ag, Won sin(nnx) sin(0o, + 0;,) + Zaln + 2b W T 2a0n =0 (39a)

Al W o sin(nux)[wg, cos(Oo, + 05,) — 8, sin(0p, + 0%)] — 4} g, — 46,48, — 6b} w4y — 65,67,

3 8.8, 3k
(01 + 03)CO

32wy, SOt =0 (396)

— 4af 5, + sin(nnx)

When N =1, n =1, the omitted part in Eq. (39) is zero. And 4,, 6, in Eq. (39) can be numerically
obtained. Substituting Egs. (31) and (38) into Eq. (9) yields

W, (nbmbyg, + 3k02) 2T | ) 1e=0:To
n

N
w(x,t,¢) = Z{ Won sin(nnx) sinfwg, T +

=l 32((),1,,
3WS, A2 (bt 3k 5
+ ed}s, W, sin(nnx) sinfwg, To + — (;lzz)d/(” T 03) e 2070 4 0y, + OF, Je =70
n

2 n k
= 20 R+ (@, sinf2(aTo + L0 £ 3K) sty g, 2
32wd,,
. 3w, (ndn 3k, ;
200 (B8 + 0, i3 To + 2L 0TI T I 7 a0y g, poosaim
dn

N-1 N
+ 2eafy, e Ty + 3 0N {dy, sinl(@a To + i To + ky Ty e 270 4 kL Ty e 270)
k=1 n=k+1
— Oignle ~OctonTo 4. d5y, sinf(wg To — wan To + kl3le e 20To _ k;,,Tl e~ 2nToy 92](n]e—(5k+6nm}

N N-1 N
. : 1 —20,, T 1 —20, T 1 —20,T
YD U ok Si0(@an To + @ To + 0an To + K, Ty e 270 Iy Ty 72470 ke, Ty e 720 T0)
m=1 k=1 n=k+1

—(Om+0x+n)T sk : 1 —20,, T 1 —20, T,
— Otminle (Om+ox+0n)To +f2mkn sin[(wagnTo + ®0aTo — @auTo + k3mT1 € o4 k3k Te ~okto
I —25,T, — O tOx 0T, . I Z26,T,
— k3nT1 € 0) — szlm]e On+ox+0n)To +f3mkn sin[(wg To + 0 To — @anTo + k3kT1 e “okto
1 —26, T 1 —20, T —(Om+0k+,)T, * :
+ky,Tre 0 — k3, T1 e 20 T0) — O3] OntoctonTo g po sinf(wa To — @anTo — @amTo

+ kngl e20xTo kngl e 20mTo _ kgn T, ef2t>nTo) _ 04nlkn]e*(bm+olc+bn)TO}

N N

+ ) 191, sin[Qwan To + wag To + 2k5, Ty e 27 + &, Ty e™2070) — 0y, ]e™ o000
=1 o

+ g;qn Sil’l[((/)quO + klzq Tl e—Z(SqTO) - 92(]71]67(26’7+bq)T0 + géﬁqn Sin[(2wdn TO - wdq TO

+ 2k§nT1 6725”T0 _ kéqu 6725,,T0) _ 93qn]e7(25n+5,,)T0} (40)

Substituting Ty = ¢, T} = et into the above expression yields the displacement response as follows:

N
w(x, 1,€) = Z{W()n sin(nrx) sin(w)F ¢ 4 Op,)e ™" — 261/ (aR )? + (a},)? sinQo)Ft — 0;,)e 2!
n=1

— 260/ (BR ) + (B} ) sinBalF 1 — 0,)e 0" + 2eal e~

+ SAOH W, sin(nnx) sinfw,, L(A0” +(1 - Agi)wdn/wdn )t + Oon + 6;,]e” oty

T Z Z (i, sin(@f" + wp, )t — Oule™ O+ 4 dyy,, sin[(wy” — 0ft
=1 n=k+1
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N N-1 N
— (S +0a)t NL —(GmAOx+0,)t
— Oatade™ Y 463NN ke SInl(@h + ORE + R = O1gaJe” O
m=1 k=1 n=k+1

; NL —(Om+0x+6n ;
+fzmkn Sln[(wdm + wdk — Wgy )[ — Ok ]e Gt e+0u)t +f§mkn Sln[(wdk + (’Udn - wdm )t

_ 5 _
— O30 ]e (Om+0x+0,)t +f4mkn sm[(wdk _ wdn _ wdm )Z 64mkn]e (5,n+5k+0n)t}

+¢ Z Z lg7 P s1n[(2cu dq Ly — O14nle” (20u+0,)t

g=1 n=
q n#q

+ Gy SN[ 1 — Oggle™ P 4 gt sin[Qaolt — @l — 034,]e 000" 41)

The nth-order main frequency w}" of the nonlinear system is given as

30, W S
ot = o+ 2LV 2 (42)

p0=180

0 f HE 1 : 1
0 500 1000 1500 2000

K11

Fig. 1. Curves of frequency vs. stiffness of soil for different values of load py (n = 1).

®gn

0 L 1 . L 1
0 500 1000 1500 2000
K14

Fig. 2. Curves of frequency vs. stiffness of soil for different values of load py (n = 2).
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In Eq. (42), Qs is a quantity describing the nonlinear characteristics of pile and soil defined as

Q5 = e(n®nbyg, + 3kos) = nnby, + 3kss (43)

From Eq. (42), one can see that the nth-order main frequency w}" is related to not only the natural
frequency w,, of derivative linear vibration system, but also the amplitude Wj,, damping coefficient J,, and
nonlinear characteristic quantity Qs, and also it decreases with increase of time.

It can be seen that, from Eq. (41) there are hlgh order harmonic waves with frequencies 2wdn and 3a)dn as
well as the w + wdn > Wgpe — wdn > wdm + (U + wdn > wdm + wdk - wynL’ 0);} - wI;IIIL - wdm > 2&) + wdq >

den — wZL, qu (n#£q) besides the harmomc wave with the main frequency w,, in the response of the

nonlinear system. The phase angle of the nonlinear system is also different to 0, of the derivative linear

0.01

Q3=0
0.008 |
-4.02x107

s 0.006
-8.52x107

0.004

0.002 -2.05x108 2.05x108

0 5 10 15 20 25

NL
Mg

Fig. 3. Curves of amplitude vs. frequency for different values of Q3 (n = 1).

0.02

0.015

WOI’]

0.01

0.005

Fig. 4. Curves of amplitude vs. frequency for different values of Q3 (n = 2).
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system. The system’s response decreases with increase of time due to the effect of viscosity, but the attenuation
velocity of every term is different. The vibration zero-point is changed and the symmetry axis occurs the offset
due to the effect of nonlinearity of materials of the pile and the soil. From the fifth term on the right-hand side
of Eq. (41), one can also see that the effect of nonlinearity of materials on the frequency is very complex.

4. Numerical examples and results analysis

In this section, we shall give numerical results of solution (41) and (42). From the experimental results in Ref. [16],
the parameters are given as / = 15m, D = 0.35m, d = 0, p = 2.4 x 10°kg/m’, Ey = 2.1 x 10'°Pa, 4 = 0.0962m”,
a=02,Py=65x10°N, a = 1; Wy, = 0.002, 0, = n/2,n = 1(or n = 2), e = 0.01, x = 0.5, = 1.02 x 10° N's/m*
(n = 0 for the pile without viscosity), y = 1.19 x 10%, f = 2.62 x 10%, k; = 4.2 x 10°N/m?, k» = —1.3 x 10 N/m?,
ky=13x10°N/m’> (y =0, f =0, k» = 0, k5 = 0 for the linear system), ¢ = 0.8 x 10’ N's/m> (¢ = 0 for the soil

13 |

125 1

Won x 1073

Fig. 5. Curves of frequency ratio vs. amplitude for different time (n = 1).

1.05

1.04 |

1.03

NL
Oqn | Ogn

1.01 t+

0 1 2 3 4
Won x 1073

Fig. 6. Curves of frequency ratio vs. amplitude for different time (n = 2).



C.-L. Hu et al. | Journal of Sound and Vibration 317 (2008) 937-954 951

without viscosity). From the given values, it is easy to get Q3 = 4.02 x 107 (when n = 1) and Q5 = 4.61 x 10’ (when
n = 2). The numerical results are shown in the following figures.

Figs. 1 and 2 show the curves of the natural frequency vs. the linear stiffness of the soil for the linear system
with the viscosity and different values of load p, when n = 1 and 2, respectively. One can see that the natural
frequency of the linear system with the viscosity increases rapidly with increase of the linear stiffness of the soil
and decreases with increase of py.

For different values of Qs, Figs. 3 and 4 show the curves of the amplitude vs. the natural frequency for the
nonlinear system without the viscosity when n = 1 and 2, respectively. One can see that the effect of Q5 is very
obvious.

For different time, Figs. 5 and 6 show the curves of the frequency ratio o}’ /g, vs. the amplitude of the
nonlinear system with viscosity when n = 1 and 2, respectively. One can see that the frequency ratio increases
rapidly with the initial amplitude. For different amplitude, Figs. 7 and 8 show the curves of frequency ratio vs.
time when n = 1 and 2, respectively. It is obvious that the frequency ratio decreases rapidly with the increase

1.08 T T T T

1.07

1.06

1.056

1.04

NL,
O 7 Ogn

1.03

1.02

1.01

1.012

1.01

1.008 1

1.006 1

NL/
®qgn / Ogn

1.004 1

1.002

Fig. 8. Curves of frequency ratio vs. time for different amplitude (n = 2).
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of time. For different time, Figs. 9 and 10 show the curves of the frequency ratio vs. the characteristic quantity
Q5 of the nonlinear system with viscosity when n = 1 and 2, respectively. It can be seen that the frequency ratio
increases with the increase of Qj linearly.

Figs. 11 and 12 show the time—displacement curves for the linear and nonlinear systems with and without
viscosity when n = N = 1. It is obvious that the vibration of the linear system without viscosity is periodic, its
frequency is also invariable, but the vibration of the nonlinear system without viscosity is approximately
periodic, the amplitude changes weakly, and also the vibration zero-point changes sometimes. The amplitude
of the linear system with viscosity decreases rapidly in terms of a fixed frequency, but the frequency and the
amplitude as well as the vibration zero-point of the nonlinear system with viscosity all change, specially, the
amplitude decreases rapidly.

112 | t=0 -

0.5

0 2 4 6 8
Q3 x 107

Fig. 9. Curves of frequency ratio vs. Qs for different time (n = 1).

1.025 . . . :
1.02 | .
=0
1.015 | .
g
% 05
S 101t .
1.2
1.005 .
1 1 1 1 1
0 2 4 6 8
Q3 x 107

Fig. 10. Curves of frequency ratio vs. Q; for different time (n = 2).
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x 1073
4 T T T T T T T

nonlinear
— |inear

—+

Fig. 11. Curves of time—displacement of linear and nonlinear system without viscosity (n = N = 1).

x 1078
3 T T T T T

nonlinear

25

linear .

Fig. 12. Curves of time—displacement of linear and nonlinear system with viscosity (n = N = 1).

5. Conclusions

In this paper, in the case of assuming that both the materials of the pile and the soil are nonlinear elastic and
linear viscoelastic ones, the partial differential equation governing the nonlinear vibration of piles is first
derived. The nonlinear transverse free vibration of piles with two ends are hinged is analyzed by using the
method of multiple time scales, and the nth-order main frequency and the approximate expression of the
displacement response are obtained. Research results point out that the main frequency of the nonlinear
system is related to not only the natural frequency of derivative linear vibration system, but also the
amplitude, damping coefficient and nonlinearity of materials. There are high order harmonic waves with

frequencies 2w}’ and 3w}’ as well as the )k + olF, ol — oll, ofk + o)l + olk, ol + ol — olk,
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NL _ ,NL _ ,NL 5 NL  ,NL 5 NL _ NL ,NL ~ ~ ; -
Oge” = Ogy” = Ogy» 205, + 0y°, 20,4, — w,,", 0y~ (n#q) besides the harmonic wave with the main frequency

g, n the response of the nonlinear system. The vibration zero-point of the system changes and the symmetry
axis offsets. The phase angle of the nonlinear system is also different to 6, of the derivative linear system. Due
to the effect of viscosity, the response of the system attenuates with the increase of time, and the attenuating
velocity is different to that of derivative linear system, too.
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