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Abstract

An analytic Green’s function is derived for a lined circular duct, both hollow and annular, containing uniform mean

flow, from first principles by Fourier transformation. The derived result takes the form of a common mode series. We show

that the analytic Green’s function for a lined hollow circular duct, containing uniform mean flow, is essentially identical to

that used by Tester et al. in the Cargill splice scattering model. The explicit form of the Green’s function for the annular

duct is new.

A more comprehensive causality analysis suggests the possibility of certain upstream modes being really downstream

instabilities. As their growth rates are usually exceptionally large, including these modes as instabilities is both not practical

and in disagreement with most (not all) experiments. Therefore, we outline the possibility but do not include them in

the presented examples. We follow the ‘‘modelling assumption’’ that all modes decay in their respective direction of

propagation.

To illustrate the advantages of our analytic result compared to the matrix inversion technique of Alonso et al., we

compute the mode amplitudes from both methods for a typical aircraft engine intake condition. The comparisons show

good agreement without flow, irrespective of how many modes are included in the matrix inversion for the numerical mode

amplitudes. With flow, the mode amplitudes do not agree but as the number of modes included in the matrix inversion is

increased, enough to include any important surface waves, the numerically obtained modal amplitudes of Alonso et al.

appear to be converging to the present analytical result.

In practical applications our closed form analytic Green’s function will be computationally more efficient, especially at

high frequencies of practical interest to aero-engine applications, and the analytic form for the mode amplitudes could

permit future modelling advances not possible from the numerical equivalent. It also may have application to post-

processing of phased array measurements inside lined ducts.
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Nomenclature

a duct diameter
Cm, Dm linear combinations of Bessel functions

Jm and Y m

ex, er, ey unit vectors in x, r, y-direction
Em auxiliary functions of k
Fm;Hm;Fm;Hm auxiliary functions of r and a
Gðx; x0ÞGreen’s function (in pressure)
Gmðr;xÞ m-th circumferential Fourier component

of Gðx; x0Þ

HðxÞ Heaviside step function
h hub-tip ratio (dimensionless hub radius)
Jm, Y m Bessel functions of the first and second

kinds of order m

m circumferential modal order
M Mach number

n unit outer normal vector at r ¼ 1
p, v, r, c time-harmonic pressure, velocity,

density, sound speed
x, r, y, taxial, radial, azimuthal angle, time co-

ordinate
Z1, Zh impedance of outer, inner wall
a radial modal wave number; (square root

of minus) eigenvalue of Laplace operator
b ð1�M2Þ

1=2

d parameter in numerical procedure
k axial wave number
m radial modal order
s reduced axial wave number
o Helmholtz number (dimensionless angu-

lar frequency)
$ o=b
O o� kM
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1. Introduction

In some recent work, Tester et al. [1,2] described the development and validation of an analytical model for
the scattering of spinning modes by liner splices, originally derived by Cargill [3] and based on the Kirchhoff
approximation. In his original formulation, Cargill used the hard-walled radial eigenfunctions in the Green’s
function for a circular duct containing uniform flow. In the recent work [1] an analytic, closed form Green’s
function was used that was deduced from that given by Tester [4] for a lined 2D duct containing uniform flow.
This was assumed to be an approximation although it can be shown that it is a special case of the result
derived by Swinbanks [5] for a lined 2D duct containing sheared flow.

In his thesis [6], Schulten gave a version of the spatially Fourier-transformed Green’s function of a lined
annular duct, with the suggestion to invert this Fourier-transform expression numerically. No actual examples
were given, however. Closer to our formulation is the work of Zorumski in Ref. [7]. Not all formulas are
worked out explicitly and no details are given about the numerical evaluation and the role of surface waves.
More recently Alonso et al. [8] have proposed an ‘exact’ Green’s function based on the numerical inversion of
a matrix, which has been evaluated in the course of the present work.

In the current work we derive an analytic Green’s function for a lined circular duct, both hollow and
annular, containing uniform mean flow, from first principles in closed form, and show that the hollow version
is essentially identical to that used in Ref. [1].

Comparisons are presented with the ‘numerical’ Green’s function of Alonso et al. [8,9]. In these presented
examples we assumed that all modes decay in their respective direction of propagation, although more
comprehensive causality analyses [4,10,11], supports the conjecture that some supposedly upstream-running
modes are downstream-running convective instabilities (with the same harmonic time dependence as the
exciting source). Moreover, recently Brambley et al. [12] showed that the liner-mean-flow system may be
absolutely unstable, in which case any convective instability would be meaningless.

The conjectured unstable behaviour is, at least in the realm of the model, confirmed by numerical
calculations in time-domain by Chevaugeon et al. [13]. The physical existence on the other hand is not so clear,
but instabilities have been reported by Ronneberger et al. [14] and Aurégan et al. [15] in experiments with
impedances of small resistance with predicted (convective) instabilities of small growth rate [10]. For most
impedances met in practice, however (including the ones considered here) the predicted growth rates are
exceptionally large, in which case their physical relevance is questionable as these instabilities have never been
reported [16], and at the same time their inclusion is not practical. For this reason their role is not further
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explored in the present study, but we will show that, if desired, any such modes may be easily included as a
convective instability in the present format.

If the liner-mean-flow system is indeed absolutely unstable, including these modes is futile, and we have to
search for other, stable models. At present, this is beyond the scope of our paper.
2. The problem

Consider a cylindrical duct of radius a40 (possibly annular with inner radius ah), a mean flow of subsonic
Mach number M, sound speed c0 and density r0 and harmonic pressure and velocity perturbations ~p of
angular frequency ~o (see the sketch Fig. 1). We make dimensionless

~x ¼ xa; ~t ¼ ta=c0; ~o ¼ oc0=a; ~p ¼ r0c
2
0 ReðpeiotÞ. (1)

The Green function Gðx; x0Þ is represented by the pressure field pðxÞ that is excited by a point source at x0, and
satisfies the equation

r2G � ioþM
q
qx

� �2

G ¼ dðx� x0Þ. (2)

Note that we use the

eiot -convention. (3)

The Ingard–Myers impedance boundary condition [17,18] with flow, a linear relation between pressure and
velocity, becomes in terms of the pressure at r ¼ 1

ioþM
q
qx

� �2

G þ ioZ1
qG

qr
¼ 0 at r ¼ 1. (4)

For a hollow duct finiteness of G is assumed at r ¼ 0. For an annular duct we have at the inner wall r ¼ h

ioþM
q
qx

� �2

G � ioZh

qG

qr
¼ 0 at r ¼ h. (5)

Finally, we adopt radiation conditions that says that we only accept solutions that radiate away from the
source position x0.
Fig. 1. Sketch of geometry: circular or annular lined duct with flow.
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3. Solution

3.1. The hollow duct

We represent the delta-function by a generalised Fourier series in W and Fourier integral in x

dðx� x0Þ ¼
dðr� r0Þ

r0

1

2p

Z 1
�1

e�ikðx�x0Þ dk
1

2p

X1
m¼�1

e�imðW�W0Þ. (6)

where 0or0o1, and write accordingly

Gðx; r;W; x0; r0; W0Þ ¼
X1

m¼�1

e�imðW�W0ÞGmðr;xÞ ¼
X1

m¼�1

e�imðW�W0Þ
Z 1
�1

Ĝmðr;kÞe�ikðx�x0Þ dk. (7)

Substitution of Eqs. (6) and (7) in Eq. (2) yields for Ĝm

q2Ĝm

qr2
þ

1

r

qĜm

qr
þ a2 �

m2

r2

� �
Ĝm ¼

dðr� r0Þ

4p2r0
, (8)

with

a2 ¼ O2 � k2; O ¼ o� kM. (9)

This has solution

Ĝmðr;kÞ ¼ AðkÞJmðarÞ þ
1

8p
Hðr� r0ÞðJmðar0ÞY mðarÞ � Y mðar0ÞJmðarÞÞ, (10)

where Jm and Y m denote the m-th order ordinary Bessel functions [19] of the first and second kind, Hðr� r0Þ

denotes the Heaviside stepfunction. Use is made of the Wronskian

JmðxÞY
0
mðxÞ � Y mðxÞJ

0
mðxÞ ¼

2

px
. (11)

A prime denotes a derivative to the argument, x. AðkÞ is to be determined from the boundary conditions at
r ¼ 1, which is (assuming uniform convergence) per mode

iO2Ĝm þ oZ1Ĝ
0

m ¼ 0 at r ¼ 1. (12)

A prime denotes a derivative to r. This yields

A ¼
1

8p
Y mðar0Þ �

iO2Y mðaÞ þ oaZ1Y
0
mðaÞ

iO2JmðaÞ þ oaZ1J
0
mðaÞ

Jmðar0Þ

" #
, (13)

and thus

Ĝmðr; kÞ ¼ JmðaroÞ
iO2Fmðr4; aÞ þ oZ1Hmðr4; aÞ

8pEmðkÞ
, (14)

where

EmðkÞ ¼ iO2JmðaÞ þ oaZ1J 0mðaÞ, (15a)

F mðr; aÞ ¼ JmðaÞY mðarÞ � Y mðaÞJmðarÞ, (15b)

Hmðr; aÞ ¼ aJ 0mðaÞY mðarÞ � aY 0mðaÞJmðarÞ, (15c)

r4 ¼ maxðr; r0Þ, (15d)

ro ¼ minðr; r0Þ. (15e)
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By substituting the defining series we find that Fm and Hm are analytic functions of a2, while both Em and
JmðaroÞ can be written as am times an analytic function of a2. As a result, Ĝmðr; kÞ is a meromorphic function
of k. It has isolated poles k ¼ k�mm, given by Emðk�mmÞ ¼ 0.

The final solution is found by Fourier back-transformation: close the integration contour around the lower
half plane for x4x0 to enclose the right propagating modes, and the upper half plane for xox0 to enclose the
left propagating modes. We find

dEm

dk

����
k¼kmm

¼ oZ1JmðammÞ ðkmm þ OmmMÞ 1�
m2

a2mm
�

O4
mm

ðoammZ1Þ
2

 !
�

2iMOmm

oZ1

" #
, (16)

and introduce the quantity

Q�mm ¼ � ðkmm þ OmmMÞ 1�
m2

a2mm
�

O4
mm

ðoammZ1Þ
2

 !
�

2iMOmm

oZ1

" #
, (17)

where the þ, � signs apply to right, left-running modes. The integral is evaluated as a sum over the residues in
the poles at k ¼ kþmm for x4x0 and at k�mm for xox0, in short-hand notation given by

Gmðr; xÞ ¼ �
1

4
i
X1
m¼1

JmðammroÞ
iO2

mmFmðr4; ammÞ þ oZ1Hmðr4; ammÞ

oZ1QmmJmðammÞ
e�ikmmðx�x0Þ, (18)

where amm ¼ aðkmmÞ. From eigenvalue equation Emðk�mmÞ ¼ 0 and the Wronskian (11) we obtain

iO2
mmF mðr4; ammÞ þ oZ1Hmðr4; ammÞ ¼ � ðiO2

mmY mðammÞ þ oammZ1Y
0
mðammÞÞJmðammr4Þ

¼ �
2oZ1

pJmðammÞ
Jmðammr4Þ. (19)

So we can skip the distinction between r4 and ro to achieve the soft wall modal expansion

Gmðr;xÞ ¼ �
1

2pi

X1
m¼1

JmðammrÞJmðammr0Þ

QmmJmðammÞ
2

e�ikmmðx�x0Þ ¼
X1
m¼1

GmmðrÞe
�ikmmðx�x0Þ. (20)

where for x4x0 the sum pertains to the right-running waves, corresponding to the modal wave
numbers kþmm found in the lower complex half plane, and for xox0 the left-running waves, corresponding
to k�mm found in the upper complex half plane. Eq. (20) is essentially equivalent to Eq. (2) of Ref. [1]
(see Appendix A).

Only if a mode from the upper half plane is to be interpreted as a right-running instability (see
Refs. [4,10,20]), its contribution is to be excluded from the set of modes for xox0 and included in the modes
for x4x0. What we essentially do is deform the integration contour into the upper half plane, so the form of
the solution remains exactly the same.

It may be noted that the solution is continuous everywhere, except at the source. As may be expected from
the symmetry of the configuration, the clockwise and anti-clockwise rotating circumferential modes are equal,
i.e. Gmðr;xÞ ¼ G�mðr; xÞ.
3.2. The annular duct

By choosing suitable variables we can make the solution for the annular duct similar to the one for the
hollow duct. First we introduce two independent solutions of the scaled Bessel equation, i.e. the homogeneous
version of Eq. (8), by

Cmðr; aÞ ¼ aJmðarÞ þ bY mðarÞ, (21a)

Dmðr; aÞ ¼ cJmðarÞ þdY mðarÞ, (21b)
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where adabc and Cm is supposed to satisfy the inner wall boundary condition, so a and b satisfy

b

a
¼ �

iO2JmðahÞ � aoZhJ 0mðahÞ

iO2Y mðahÞ � aoZhY 0mðahÞ
. (22)

Although not necessary for the final result, we will assume for convenience that ad� bc ¼ 1 and

a ¼ iO2Y mðahÞ � aoZhY 0mðahÞ; b ¼ �ðiO2JmðahÞ � aoZhJ 0mðahÞÞ.

Cm and Dm have now the Wronskian

CmD
0
m �DmC

0
m ¼ ðad� bcÞ

2

pr
¼

2

pr
. (23)

The prime denotes a derivative to r. The solution of (8) that satisfies the inner wall boundary condition is

Ĝmðr;kÞ ¼ AðkÞCmðarÞ þ
1

8p
Hðr� r0ÞðCmðr0; aÞDmðr; aÞ �Dmðr0; aÞCmðr; aÞÞ. (24)

The boundary condition at r ¼ 1 requires that A equals

A ¼
1

8p
Dmðr0; aÞ �

iO2Dmð1; aÞ þ oZ1D
0
mð1; aÞ

iO2Cmð1; aÞ þ oZ1C
0
mð1; aÞ

Cmðr0; aÞ

" #
, (25)

and thus

Ĝmðr;kÞ ¼ Cmðro; aÞ
iO2Fmðr4; aÞ þ oZ1Hmðr4; aÞ

8pEmðkÞ
, (26)

where

EmðkÞ ¼ iO2Cmð1; aÞ þ oZ1C
0
mð1; aÞ, (27a)

Fmðr; aÞ ¼ Cmð1; aÞDmðr; aÞ �Dmð1; aÞCmðr; aÞ, (27b)

Hmðr; aÞ ¼ C0mð1; aÞDmðr; aÞ �D0mð1; aÞCmðr; aÞ. (27c)

Note that Eq. (26) is the equivalent of Eq. (2.71), with Eqs. (2.43), (2.70) and (2.72), of Schulten [6]. Schulten
suggested a numerical approach to evaluate the inverse Fourier transform, but did not give further details or
examples.

In a similar way as with the hollow duct we can show that Ĝm is a meromorphic function in k. Its Fourier
integral that defines Gm can be evaluated in the form of a summation over the residues in kmm, the zeros of
EmðkÞ. From the defining relation EmðkmmÞ ¼ 0 and the Wronskian we have at k ¼ kmm

iO2Fmðr4; ammÞ þ oZ1Hmðr4; ammÞ ¼ � ðiO2Dmð1; ammÞ þ oZ1D
0
mð1; ammÞÞCmðr4; ammÞ

¼ �
2oZ1

pCmð1; ammÞ
Cmðr4; ammÞ,

and so we have the following result, which may be compared with equation (38), of Zorumski [7],

Gmðr; xÞ ¼

Z 1
�1

Ĝmðr;kÞe�ikðx�x0Þ dk

¼ �
1

2pi
signðx� x0Þ

X1
m¼1

oZ1

E0ðkmmÞ

Cmðr; ammÞCmðr0; ammÞ

Cmð1; ammÞ
e�ikmmðx�x0Þ.
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By carefully substituting definitions and Wronskians we obtain

dEm

dk

� �
k¼kmm

¼ oZ1 ðkmm þ OmmMÞ 1�
m2

a2mm
�

O4
mm

ðammoZ1Þ
2

 !
�

2iOmmM

oZ1

" #
Cmð1; ammÞ

�
2oZ1

pCmð1; ammÞ
b
da

dk
� a

db

dk

� �
k¼kmm

.

Furthermore, we have

b
da

dk
� a

db

dk

� �
k¼kmm

¼
2o2Z2

h

p
ðkmm þ OmmMÞ 1�

m2

a2mmh2
�

O4
mm

ðammoZhÞ
2

 !
þ

2iOmmM

hoZh

" #
, (28)

and Cmðh; aÞ ¼ �2oZh=ph. If we introduce

Qð1Þ �mm ¼ � ðkmm þ OmmMÞ 1�
m2

a2mm
�

O4
mm

ðammoZ1Þ
2

 !
�

2iOmmM

oZ1

" #
, (29a)

QðhÞ �mm ¼ � ðkmm þ OmmMÞ 1�
m2

a2mmh2
�

O4
mm

ðammoZhÞ
2

 !
þ

2iOmmM

hoZh

" #
(29b)

(again, the � signs apply to right, left-running modes) we have finally in short-hand notation

Gmðr;xÞ ¼ �
1

2pi

X1
m¼1

Cmðr; ammÞCmðr0; ammÞ

Qð1ÞmmCmð1; ammÞ
2
� h2QðhÞmmCmðh; ammÞ

2
e�ikmmðx�x0Þ

¼
X1
m¼1

GmmðrÞe
�ikmmðx�x0Þ. (30)

3.3. Lorentz-type or Prandtl– Glauert transformation

We obtain for hard walls some simplification by the following Lorentz-type or Prandtl–Glauert
transformation. In this case the left and right-running values of amm are symmetric, i.e. aþmm ¼ a�mm, while
the corresponding values of kmm are point symmetric in �oM=ð1�M2Þ. When we transform

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
; x ¼ bX ; o ¼ b$; k�mm ¼

�smm �$M

b
,

O�mm ¼
�Msmm þ$

b
; kmm þ OmmM ¼ �bsmm,

where we can just write amm and smm without left/right distinction, we obtain

Qmm ¼ bsmm 1�
m2

a2mm

 !
.

So altogether we have for the hollow duct

Gmðr;xÞ ¼ �
eiM$ðX�X 0Þ

2pib

X1
m¼1

JmðammrÞJmðammr0Þ

smm 1�
m2

a2mm

 !
J2

mðammÞ

e�ismmjX�X 0j. (31)
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Similarly for the annular duct we get

Gmðr;xÞ ¼ �
eiM$ðX�X 0Þ

2pib

X1
m¼1

Cmðr; ammÞCmðr0; ammÞe
�ismmjX�X 0j

smm 1�
m2

a2mm

 !
C2

mð1; ammÞ � h2 1�
m2

a2mmh2

 !
C2

mðh; ammÞ

" #. (32)

Note that apart from the term exp½iM$ðX � X 0Þ�, Gm only depends on M2 and jx� x0j. Therefore, jGmðx; rÞj
is symmetric in x� x0 for any subsonic Mach number.
4. Unstable modes as artifacts of the modelling?

The question of including possible instabilities is not resolved yet. Let us try to summarise our position:
(i)
 Sound occurs mostly in the form of very small perturbations, and it seems well justified to model it by
some form of linearised Euler equations.
(ii)
 Viscous boundary layers of high-Reynolds flows along walls are, in the aero-engine applications we have
in mind, much thinner than a characteristic wave length.
(iii)
 Points (i) and (ii) together led Ingard [17] and later Myers [18] to derive their impedance wall condition for
sound at an impedance wall in a mean flow with slip at the wall (i.e. the boundary layer is collapsed into a
vortex sheet [21]). The aero-acoustics community followed them and now the Ingard–Myers boundary
condition is the state-of-the-art for this kind of mean flows.
(iv)
 However, more refined analyses (see Appendix B) as well as numerical time-domain results [13] indicate
that the wall vortex sheet along the lined wall may be convectively, or even absolutely [12] unstable. If we
blindly followed the model, this would imply that we had to include these instabilities. Maybe this is right
for impedances of small resistance with instabilities of small growth rates. For the majority of cases,
however, the predicted unstable mode has a large growth rate [10], and we believe that in these cases the
instabilities are just artifacts of the model. In physical reality no such instabilities are found [16]. The
reason is not clear yet: maybe any instability of the wall vortex sheet is immediately blocked by the wall;
maybe the actual wall boundary layer is too thick, cf. Refs. [22,23]; or perhaps our liner-mean-flow model
is too simple [12]. In other words: point (ii) is incompatible with point (i).
(v)
 So we have here three options: (1) include the instability, knowing that the found field is the solution of a
questionable model; (2) increase the complexity of the model and thus destroying any possibility of
analytical solutions; and (3) ignore, as a ‘‘modelling assumption’’, any instability.
For the examples to be given below, where the growth rates of the candidate instability are very large, we
chose option (3).
5. Numerical examples

Numerical evaluation of the pressure field is not too difficult if we are able to find all the modal
wavenumbers kmm necessary for the required accuracy. We adopted the method, outlined in Ref. [10], which is
based on continuation from the (assumed easily found) hard-wall values to the sought soft-wall values. The
crux of the method is that we start from a suitable hard-wall direction jZj ! 1 in the complex impedance
plane in order to capture all wavenumbers occurring at the finite impedance, say, Z0. This is not entirely
straightforward. When we trace the wavenumbers backwards, from the soft-wall to the hard-wall values, there
are certain intervals of argðZÞ where some wavenumbers disappear to infinity. These would be impossible to
find if we started there with our forward search. It transpires that a search along vertical lines in the complex Z

plane, from Z ¼ ReðZ0Þ � i1 when M ¼ 0 and from Z ¼ ReðZ0Þ þ i signðMÞ1 otherwise, guarantees finding
of all the wave numbers.
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To be completely specific, we define Z0 ¼ R0 þ iX 0 and parameterise

1

Y ðlÞ
¼ ZðlÞ ¼ R0 þ id cotðlÞ; 0plpl0 ¼ arccotðdX 0Þ, (33)

where d ¼ signðMÞ if Ma0 and d ¼ �1 if M ¼ 0. Solutions k for the hollow duct are now implicitly given for
any l by the identity

f ðk;Y Þ ¼ YEmðkÞ ¼ iO2YJmðaÞ þ oaJ 0mðaÞ � 0. (34)

We know the hard-wall solutions corresponding to l ¼ 0. After differentiation of f to l we obtain an ordinary
differential equation in k that can be integrated numerically as an initial value problem. We thus pick a mode
by choosing an initial value and solve numerically by standard methods

df

dl
¼

qf

qk
dk
dl
þ

qf

qY

dY

dl
¼ 0 (35)
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Fig. 2. 400 Modes at r ¼ r0 ¼ 0:7 with M ¼ 0:5, o ¼ 10, h ¼ 0:3, m ¼ 3, Z1 ¼ 1� i, Zh ¼ 1þ i: (a) complex kmm-plane; and
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to obtain an approximation for kðl0Þ. If we deal with a surface wave, we divide f by Jm. The accuracy of the
final result may be optimised by one or two Newton iterations. For an annular duct we do something similar
with f ¼ Y 1Y hEm.

The number of terms we need for Gmðr;xÞ is dependent on the convergence rate, which depends greatly on
the value of x� x0. Whenever x� x0a0 the convergence is exponentially fast, and hence absolute, through
the factor expð�ikmmðx� x0ÞÞ. Only when x ¼ x0 the series converges conditionally when rar0, and when
r ¼ r0 it diverges (deceivingly) slowly like a harmonic series ð�

P
m�1� lnðmmaxÞÞ.

As the series at the left and right side of the source plane are not symmetric whenever Ma0, we will have a
discontinuity at x ¼ x0 for any finite number of terms. This jump is a marked evidence of any insufficient
accuracy and will disappear when enough terms are included. However, it should be noted that also when M
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M ¼ 0 (a) and o ¼ 28 with M ¼ �0:45 (b). Note with flow the very well cut-off surface wave, which nevertheless plays a role near the wall
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tends to zero the jump will disappear, but only because the solution becomes symmetric. It has no relation to
the accuracy of the series.

To illustrate the points noted above, we present the m ¼ 3—circumferential component Gm in Fig. 2 for a
source at x0 ¼ 0, r0 ¼ 0:7 and o ¼ 10 in an annular duct with h ¼ 0:3, Z1 ¼ 1� i and Zh ¼ 1þ i and a mean
flow of M ¼ 0:5. Gm is plotted at r ¼ 0:7 for �1pxp1. In addition the complex axial wave numbers kmm are
presented. We observe two surface waves in the first quadrant (technically, these are both candidate for
instability, but, as indicated above, this fact has no bearing on the present solution). In order to make sure that
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the series has converged in any plotted value of xax0, that is for 400pjx� x0jb1, say, we used 400 radial
modes, but the difference with less than that is only visible very near the source.

In addition to this example for annular ducts we have compared our analytic Green’s function for hollow
ducts with the ‘numerical’ Green’s function described by Alonso et al. [8]. We consider two cases, one with no
mean flow, M ¼ 0, and one with a typical ‘intake’ Mach number of M ¼ �0:45. A typical non-dimensional
frequency is o ¼ 28 for the flow case and we choose o ¼ 31:354 for the zero flow case so that the cut-off ratio
of the highest hardwall cut-on mode is about the same for both cases. The impedance is Z1 ¼ 2:5� i0 in both
cases. The number of cut-off modes included in the evaluation of the analytical and numerical Green’s
function evaluation corresponds to a cut-off ratio of 0.28 (i.e. the number of modes is set equal to the number
of modes above that cut-off ratio that would exist if the duct was hard-walled) and only the positive modes in
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the cut-on range 28 ð�4Þ 0 are shown. The source position is always at the wall, r0 ¼ 1, and the observer
position is also on the wall, r ¼ 1, and at the same azimuthal location as the source but at a variable axial
distance from the source both to the left and right of the source plane.

We should explain that this unusual combination of source/observer positions is not particularly relevant to
the computation of liner performance—where x� x0 would be typically the liner length for example—but it is
relevant to the modelling of liner splice effects and other sources of scattering. Then the liner splice is the
‘‘source’’ of the scattered field and one requires that field in modal form in the direct vicinity of that source.

The typical location of the axial wave numbers in the complex k-plane for both cases is presented in Figs. 3.
The presence of a very well cut-off surface wave in the case with flow anticipates the convergence problems to
be reported below when the source is positioned at the wall, right inside the region where the surface wave is
important.

For the first (zero flow) case, we show in Fig. 4 the absolute value (or modulus) and corresponding phase of
each radial mode amplitude as a function of radial mode number. Each mode is plotted only once, as in this
zero-flow case the left and right running modes are the same, while the numerical [8] and analytical results
agree to better than 10�14. The same is true for the total field, as illustrated in Fig. 5. Here we have summed the
radial modes for each azimuthal mode in the Green’s function and plotted the axial variation of each
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azimuthal mode (modulus and phase) for a short distance to the left and right of the source plane, as well as
the total Green’s function. Although these fields are continuous at the source, this does not mean that we have
a converged value at the source plane (maybe near the source). On the contrary, it can be seen (Fig. 6, left) that
none of the azimuthal mode amplitudes converge to a finite limit, indeed because the field diverges at the
source position r ¼ r0. We cannot demonstrate this as easily with the numerical Green’s function, as we have
to invert, for each azimuthal mode number, a 2N 	 2N matrix where N is the number of radial modes. As we
increase N much above 70, depending on the azimuthal mode number, the matrix appears to become ill
conditioned and we can no longer solve for the numerical mode amplitudes. However, below that limit the rate
of convergence appears to be similar to that of the analytical Green’s function.

For the flow case, the picture changes in some ways. In particular, we lose the left/right symmetry for the
mode amplitudes, as is seen in Fig. 7. In Fig. 8 we show the ratio of the analytical and numerical mode
amplitudes and it can be seen that the two results agree to better than 20% in modulus for the cut-on modes
although these differences appear to grow without limit for the very well cut-off modes. As a result the axial
variation of the analytical and numerical Green’s function agree fairly well away from the source plane, but at
and near the source plane there are significant differences, foreshadowing the not yet included surface wave
(see below). In particular, Fig. 9 shows that, with this number of modes, the analytical and numerical Green’s
function have a large but different discontinuity at the source plane.
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However, with reference to the zero-flow case, if we increase the number of cut-off modes to a cut-off
ratio of 0:07, the convergence behaviour is similar in some ways, but strikingly different for the modes
to the right of the source plane as shown in Fig. 10. Here there are dramatic jumps in the azimuthal
mode amplitudes in the region of radial mode orders 80–95, which has been identified as the effect of a very
well cut-off ‘surface wave’ which makes a large contribution at and near the duct wall (see Fig. 3). Once this
has been included, the convergence is similar to the zero flow case. When this high number of radial
modes is included in the analytical Green’s function, the discontinuity at the source plane disappears as shown
in Fig. 11.

The missing surface wave also explains the deviating ratio between analytical and numerical mode
amplitudes in Fig. 8. The numerical Green’s function with its enforced continuity at the source plane, when
evaluated with an insufficient number of cut-off modes, attempts to achieve that continuity by slightly
adjusting the amplitude of the cut-on modes and making larger adjustments to the well cut-off modes. When
large enough modes are taken, such that any missing surface waves are included, this error will no doubt
reduce, but the necessary number of modes may be high (as the present example shows).
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Finally in order to show the behaviour of the analytical and numerical Green’s function continuity at the
source plane away from the source position, Fig. 12 for the zero flow case, shows the variation in the radial

direction at the source plane, at the same azimuthal angle as the source, of the modulus of the azimuthal mode
number amplitudes and also the total field, in dB. Shown for comparison is the free-field Green’s function
1=ð4pRÞ, where R is the distance from the source at r0 ¼ 1, multiplied by a plane wave correction to account
for the reflection or image source in the lined duct wall equal to 2Z1=ðZ1 þ 1Þ. It can be seen that the
agreement between the analytical and corrected free-field Green’s function for this zero flow case is very good
and that continuity (i.e. the total field made up of right running modes ðþÞ equals the total field made up of
left running modes ð�Þ) at the source plane is achieved away from the source position—these are
indistinguishable for this zero flow case. Here we have decreased the cut-off ratio to 0.07 for the analytic
Green’s function evaluation but had to limit the numerical Green’s function evaluation to 40 cut-off radial
modes to avoid serious corruption of the solution due to ill-conditioned matrices for the higher azimuthal
modes.

The corresponding radial dependence for the mean flow case is shown in Fig. 13. Here we have also used a
cut-off ratio of 0.07 for the analytic Green’s function evaluation and again 40 cut-off radial modes for the
numerical version. This figure shows that we achieved comparable accuracy to the no-flow case in respect of
continuity at the source plane and the agreement with the free-field Green’s function verifies that we have
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a valid analytical description of the Green’s function in the presence of a uniform mean flow. The effects of
mean flow on the free-field Green’s function have been neglected here as these are small for radiation normal
to the mean flow.
6. Conclusions

Since the lined-wall flow-duct modes are not orthogonal, or bi-orthogonal to any convenient set of basis
functions, it is not possible to obtain a modal series expansion of the Green’s function in the classical way,
e.g. as outlined in Ref. [24]. It is possible to set up a linear system for a finite number of amplitudes either by
utilising the generalised bi-orthogonality relation of Kraft and Wells [25], or directly as in Alonso and
Burdisso [8,9], but the results are approximations, depending on the number of terms. We have followed
another approach, by representing the solution as a Fourier integral and converting it into a modal series by
summation over the residues. The resulting amplitudes are exact and explicit.
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The issue of a possible instability is still an open question. Causality considerations suggest, at least in the
linear model, the presence of convective or even absolute instabilities. This has found support by numerical
results in time domain [13]. Also experimentally there is evidence [14,15], at least for impedances of small
resistance. In most cases, however, the exponentially large fields that would result have little resemblance with
physical reality. Therefore, we have not included any such instability in the presented numerical results and
adopted stability of the solution as modelling assumption.

Comparison of our analytical mode amplitudes (for the hollow duct version of our solution) with the
numerical solution of Alonso et al. showed a good agreement without mean flow, irrespective of how
many modes are included in the matrix inversion for the numerical mode amplitudes. A large number of
modes are required for convergence near the source. With flow, the mode amplitudes do not agree but
as the number of modes included in the matrix inversion is increased, enough to include all important surface
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waves, the numerically obtained modal amplitudes of Alonso et al. appear to be converging to the present
analytical result.

Indeed, this numerical exercise showed the importance of including all relevant modes, especially when they
behave as surface waves. When source and observer position are at the wall, they are in the regime of the
surface wave, so irrespective of the modal decay rate, overlooking the surface wave produces an unconverged
solution and a detectable discontinuity of the field at the source. A reliable method to find all modes, based on
their behaviour with impedance Z along lines parallel to the imaginary axis is described in some detail.

In practical applications our closed form analytic Green’s function will be computationally more efficient,
especially at high frequencies of practical interest to aero-engine applications, and the analytic form for the
mode amplitudes could permit future modelling advances not possible from the numerical equivalent. For
example it has already been applied to post-processing of phased array measurements inside lined ducts by
Sijtsma [26].
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Appendix A. Corrected form of Tester et al. [1]

Unfortunately, Eq. (2) of Tester et al. [1] contains some minor typographical errors. The corrected form is
given by

Gðx; r; yjx0; r0; y0Þ ¼ �
1

2pi

X
m;n

Jmðk
�
rmnrÞJmðk

�
rmnr0Þ

w�mnL
�
mn

exp½�ik�xmnjx� x0j� exp½�imðy� y0Þ�,

where k�xmn ¼ ð�Mxk þ w�mnÞ=ð1�M2
xÞ, w

�
mn ¼ ðk

2
� ð1�M2

xÞk
�2
rmnÞ

1=2 with ImðwmnÞp0, and

L�mn ¼ J 0mðk
�
rmnÞ

2
þ Jmðk

�
rmnÞ

2 1�
m2

k�2rmn

�
2iMxð1� k�xmnMx=kÞ

Zw�mn

" #
.

This is equivalent to the present form if we identify o ¼ k, amm ¼ krmn, kmm ¼ �kxmn, ðkmm þ OmmMÞ ¼ �wmn

and QmmJmðammÞ
2
¼ wmnLmn, with the understanding that the upper sign is taken for the x4x0 (i.e. the right

running modes) and the lower sign for xox0 (i.e. the left running modes). This notation has the advantage
that the reciprocity rule is more obvious, that is, if we exchange the observer position for the source position,
the modes are the same as those we would use by simply reversing the sign of the Mach number in the above
equations.
Appendix B. Causality

From analogy with the Helmholtz instability along an interface between two media of different velocities,
Tester [4] put forward the possibility that some modes may have the character of a convective instability. This
means that the mode seems to propagate in the upstream direction while it decays exponentially, but in reality
its direction of propagation is downstream and it increases exponentially.

In the following we will indicate a possible way to recognise these convectively unstable modes. It should be
noted that we assume here only the possibility of convective instabilities with a field of the same time-harmonic
behaviour as the exciting source, i.e. �eiot where o is real. If the system is really absolutely unstable [12], this
assumption does not hold out.

To determine the direction of propagation of the duct modes we have available the causality criterion of
Briggs–Bers [27–29], where analyticity in the whole lower complex o-plane is enforced by tracing the poles for
fixed ReðoÞ, and ImðoÞ running from 0 to �1. Unfortunately, this criterion is not applicable to vortex sheet-
type instabilities as it requires the system to have a maximum temporal growth rate for all real wave numbers.
With vortex sheet instabilities the growth rate is not bounded since the axial wave number is asymptotically
linearly proportional to the frequency.

Therefore, we will fall back on the Crighton–Leppington [11,30,31] test, to trace the poles for fixed joj, and
argðoÞ running from 0 to �1

2
p, and check to see if they cross the real axis and change their halfplanes. This test

was originally devised for a pure vortex sheet Helmholtz instability without other length scales involved than
the acoustic wave length. In this case it is sufficient to rotate o to the imaginary axis. If the situation is more
complex, involving other length scales, o may have to be increased first [12].
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Fig. 14 shows the behaviour of axial wave numbers kmm for complex o, with impedance model
ZðoÞ ¼ Rþ iao� ib=o. This Z is chosen such that it is physical (ZðoÞ ¼ Z
ð�oÞ), causal (Z is analytic and
non-zero in ImðoÞo0), and passive (ReðZÞ40). See e.g. Refs. [32,33].

One mode crosses the real k-axis, suggesting that the integration contour of the inverse Fourier transform
should to be taken as given in Fig. 15. In other words, this mode is to be counted among the right-running
modes of the lower half-plane. The results after assembling the residue contributions from below the contour
for x4x0 and from above the contour for xox0 are exactly the same in form as given by Eqs. (20) and (30).
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Fig. 14. Causality contours by tracing complex o ¼ joje�ij in complex plane. The crosses indicate the location of the modes when

ImðoÞ ¼ 0 (Z ¼ 1þ 1:385i, o ¼ 10, M ¼ 0:7, m ¼ 5, a ¼ 0:15, b ¼ 1:15).

−40 −20 0 20 40 60
−40

−30

−20

−10

0

10

20

30

40

50

60

Fig. 15. The deformed integration contour capturing the instability (Z ¼ 1þ 1:385i, o ¼ 10, M ¼ 0:7, m ¼ 5, a ¼ 0:15, b ¼ 1:15).
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So we have (with M40) for the hollow duct

Gmðr;xÞ ¼

P10
m¼1

G�mmðrÞe
�ik�mmðx�x0Þ if xox0;

P1
m¼1

GþmmðrÞe
�ikþmmðx�x0Þ þ G�mm1

ðrÞe�ik
�
mm1
ðx�x0Þ if x4x0;

8>>>><
>>>>:

(B.1)

and for the annular duct

Gmðr;xÞ ¼

P1
m¼1

00

G�mmðrÞe
�ik�mmðx�x0Þ if xox0;

P1
m¼1

GþmmðrÞe
�ikþmmðx�x0Þ

þG�mm1
ðrÞe�ik

�
mm1
ðx�x0Þ þ G�mm2

ðrÞe�ik
�
mm2
ðx�x0Þ if x4x0;

8>>>>>>><
>>>>>>>:

(B.2)

where we adopted the following notation: the modes with their axial wave numbers in the lower, upper
complex half plane are indicated by a þ, � superscript, the unstable modes are denoted by m ¼ m1 (for the
hollow duct) or m ¼ m1 and m2 for the annular duct, and

P0 orP00 denote that in the summation the m1-th or
the m1-th and m2-th terms are skipped. Note that whether we satisfy causality or simply interpret the unstable
mode as an upstream decaying mode, Gmðr;xÞ is continuous at x ¼ x0 although its value differs of course.
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