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Abstract

The inverse vibration problem is a mathematical process to determine unknown mechanical parameters from measured

vibration data. In this study the data of displacement are chosen in order to identify a time-dependent function of damping

or stiffness. However, when both functions are to be identified we require both the data of displacement and velocity. This

is the first time that a closed-form estimation method for the inverse vibration problems of estimating time-dependent

parameters has been constructed. We are able to transform the inverse vibration problem into an identification problem

governed by a parabolic-type partial differential equation (PDE). Then, a one-step group-preserving scheme (GPS) for the

semi-discretization of PDE is established, which can be used to derive a closed-form solution for estimating parameters.

The new Lie-group estimation method has three further advantages: it does not require any prior information on the

functional forms of unknown functions; no initial guesses are required; and no iterations are required. Numerical examples

were examined to show that the present approach is highly accurate and efficient even for identifying discontinuous and

oscillatory parameters. Against the noise is good when only one function is estimated; however, the present approach is

slightly weak against the noise when both functions are identified.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many researches and efforts have been involved in the science of vibrations. The solution of direct forced
vibration problem is concerned with the determination of a system’s displacement, velocity and acceleration
evolving in time when the initial conditions, external forces, and system parameters are specified. Sometimes
we may encounter a problem where some parameters of the system are unknown, and then the resulting
problem is an inverse vibration problem. This is concerned with the estimations of these parameters such as
the damping coefficient [1–4], stiffness [5,6], as well as external force [7,8] with the aid of measured vibration
data, such as frequency, mode shape, displacement, or velocity at different times.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The parameters’ identification problem is known to be highly ill-posed in the sense that a small disturbance
of measured data may result in a huge error on the parameters’ estimation. In order to overcome this problem,
many studies have appeared in this field. Although the system we consider is linear, for the inverse vibration
problem we may require to treat a nonlinear problem.

Let us consider a second-order ordinary differential equation (ODE) describing the forced vibration of a
linear structure with time-dependent parameters:

€fþ cðtÞ _fþ kðtÞf ¼ F ðtÞ in 0otptf , (1)

f ¼ A0 at t ¼ 0, (2)

_f ¼ B0 at t ¼ 0. (3)

The direct problem is for the given conditions in Eqs. (2) and (3) and the given functions cðtÞ, kðtÞ and F ðtÞ in
Eq. (1) to find the response of fðtÞ at a time interval of t 2 ½0; tf �. However, our present inverse vibration
problem is to estimate cðtÞ and kðtÞ by using some measured data of fðtÞ and _fðtÞ at a time interval of
t 2 ½0; tf �.

The present approach first transforms the identification problem of ODE in Eq. (1) into an identification
problem of a parabolic-type PDE to be introduced in Section 2. This type of approach is appearing in the
literature for the first time. When one knows the development of the so-called Lie-group estimation method
developed by the author in recent years, one may appreciate that the present approach is very interesting,
which results in a closed-form estimating equation without needing any iteration and initial guess of the
coefficient functions. More importantly, the novel method does not require to assume a priori a functional
form of an unknown coefficient.

Recently, Liu [9–11] extended the group-preserving scheme (GPS) developed by Liu [12] for ODEs to solve
the boundary value problems (BVPs), and the numerical results reveal that the GPS is a rather promising
method to effectively solve the two-point BVPs. In the construction of the Lie-group method for the
calculation of BVPs, Liu [9] has introduced the idea of one-step GPS by utilizing the closure property of the
Lie group, and hence, the new shooting method has been named the Lie-group shooting method [13].

On the other hand, in order to effectively solve the backward in time problems of parabolic-type PDEs, a
past cone structure and a backward group-preserving scheme have been successfully developed by the author,
such that a one-step Lie-group numerical method has been used to solve the backward in time Burgers
equation by Liu [14], and the backward in time heat conduction equation by Liu et al. [15].

The Lie-group methods were originally used for the BVPs as designed by Liu [9–11] for direct problems.
However, these methods are restricted only to two-dimensional ODEs. In a series of papers by the author and
his coworkers, the Lie-group method reveals its excellent behavior for the numerical solutions of different
problems, for example, Chang et al. [16] to calculate the sideways heat conduction problem, Chang et al. [17]
to treat the boundary layer equation in fluid mechanics, and Liu [18], Liu et al. [15] and Chang et al. [19,20] to
treat the backward heat conduction equation, and Liu et al. [21] to treat the Burgers equation.

It should be stressed that the one-step Lie-group property is usually not shared by other numerical methods,
because those methods do not belong to the Lie-group types. This important property as first pointed out by
Liu [14] was employed to solve the backward in time Burgers equation. After that, Liu [22] used this concept to
establish a one-step estimation method to estimate the temperature-dependent heat conductivity, and then
extended it to estimate the thermophysical properties of heat conductivity and heat capacity [23–25]. The Lie-
group estimation method possesses a great advantage compared to other numerical methods due to its group
structure, and it is a powerful technique to solve the inverse problems of parameters’ identification as shown
by Liu [13] for a heat conduction equation. However, this kind of approach has not yet been applied to the
inverse vibration problem.

This paper is organized as follows: we introduce a novel approach of the inverse vibration problem in
Section 2 by transforming it into an identification problem of a parabolic-type PDE, and then discretizing the
PDE into a system of ODEs at the discretized times. In Section 3 we give a brief sketch of the GPS for a self-
content reason. Due to the good property of Lie-group, we will propose an integration technique, such that
the one-step GPS can be used to identify the parameters appearing in the PDE. The resulting algebraic
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equations are derived in Section 4 when we apply the one-step GPS to identify cðtÞ or kðtÞ. We demonstrate
how the Lie-group theory can help us to solve these parameter estimation equations in a closed form. In
Section 5 we turn our attention to the estimation of both cðtÞ and kðtÞ, which again leads to closed-form
solutions of cðtÞ and kðtÞ simultaneously. In Section 6 several numerical examples are examined to test the Lie-
group estimation method (LGEM). In this section we also consider the measurement noise effect on the
numerical results obtained from the LGEM. Finally, we conclude with some important results of the new
computing method in Section 7.

2. A novel approach

2.1. Transformation into a PDE

In the solutions of a linear PDE, a commonly used technique is the separation of variables, from which the
PDE is transformed into some ODEs. In this study we reverse this process by considering

uðx; tÞ ¼ ð1þ xÞfðtÞ, (4)

such that Eqs. (1)–(3) are changed to a parabolic-type PDE:

quðx; tÞ

qx
¼

q2uðx; tÞ
qt2

þ cðtÞ
quðx; tÞ

qt
þ kðtÞuðx; tÞ þ fðtÞ � ð1þ xÞF ðtÞ, (5)

uð0; tÞ ¼ fðtÞ, (6)

uðx; 0Þ ¼ ð1þ xÞA0, (7)

uðx; tf Þ ¼ ð1þ xÞfðtf Þ, (8)

where fðtf Þ is a measured displacement at time tf . In addition to the above data fðtÞ is assumed to be
measurable to provide some measured displacement data in the whole time interval of 0ototf . In Eq. (5) cðtÞ

and kðtÞ are time-dependent functions to be identified, where the domain we consider is 0ptptf ; 0oxpxf .
The coordinate x is a fictitious one; however, from it, together with the independent variable t, we can work in
a two-dimensional domain and determine the variation of cðtÞ and kðtÞ.

2.2. Semi-discretization

Applying a semi-discrete procedure to the above PDE yields a coupled system of ODEs. For Eq. (5) we
adopt the following numerical discretizations:

quðx; tÞ

qt

����
t¼i Dt

¼
uiþ1ðxÞ � uiðxÞ

Dt
, (9)

q2uðx; tÞ
qt2

����
t¼i Dt

¼
uiþ1ðxÞ � 2uiðxÞ þ ui�1ðxÞ

ðDtÞ2
, (10)

where Dt ¼ tf =ðnþ 1Þ is a uniform time increment, and uiðxÞ ¼ uðx; iDtÞ for a simple notation, such that Eq.
(5) can be approximated by

u0iðxÞ ¼
1

ðDtÞ2
½uiþ1ðxÞ � 2uiðxÞ þ ui�1ðxÞ� þ ci

uiþ1ðxÞ � uiðxÞ

Dt
þ kiuiðxÞ þ hiðxÞ, (11)

where i ¼ 1; . . . ; n, ci ¼ cðtiÞ, ki ¼ kðtiÞ, and hiðxÞ ¼ fi � ð1þ xÞF i with fi ¼ fðtiÞ and F i ¼ F ðtiÞ. The
superscripted prime on ui is for the differential of ui with respect to x.

When i ¼ 1 the term u0ðxÞ is obtained from the boundary condition (7) with u0ðxÞ ¼ A0ð1þ xÞ. Similarly,
when i ¼ n the term unþ1ðxÞ is obtained from the boundary condition (8) with unþ1ðxÞ ¼

ð1þ xÞfnþ1 ¼ ð1þ xÞfðtf Þ. Therefore, Eq. (11) has totally n coupled linear ODEs for the n variables
uiðxÞ; i ¼ 1; . . . ; n.
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In this section we have transformed the inverse vibration problem of the second-order ODE in
Eq. (1) into an inverse problem for the PDE in Eq. (5), and finally we come to an estimation of 2n

coefficients ci and ki in the n-dimensional ODE system (11). In Section 5 we will derive another
hyperbolic-type first-order PDE, such that we have enough discretized equations to solve the 2n coefficients ci

and ki.

3. GPS for differential equations system

3.1. Group-preserving scheme

Upon letting u ¼ ðu1; . . . ; unÞ
T and f denote a vector, with the ith component being the right-hand side of

Eq. (11), we can write it as a vector form:

u0 ¼ fðu; xÞ; u 2 Rn; x 2 R. (12)

The group-preserving scheme (GPS) can preserve the internal symmetry group of the considered ODE
system. Although we do not know previously the symmetry group of a differential equations system,
Liu [12] embedded it into an augmented differential system, which is concerned with not only the
evolution of state variables themselves but also the evolution of the magnitude of the state variables vector.
Let us note that

kuk ¼
ffiffiffiffiffiffiffiffi
uTu
p

¼
ffiffiffiffiffiffiffiffiffi
u � u
p

, (13)

where the superscript T signifies the transpose, and the dot between two n-dimensional vectors denotes their
inner product. Taking the derivatives of both sides of Eq. (13) with respect to x, we have

dkuk

dx
¼
ðu0ÞTuffiffiffiffiffiffiffiffi
uTu
p . (14)

Then, by using Eqs. (12) and (13) we can derive

dkuk

dx
¼

fTu

kuk
. (15)

It is interesting that Eqs. (12) and (15) can be combined together into a simple matrix equation:

d

dx

u

kuk

" #
¼

0n�n

fðu;xÞ

kuk

fTðu; xÞ

kuk
0

2
6664

3
7775

u

kuk

" #
. (16)

It is obvious that the first row in Eq. (16) is the same as the original equation (12), but the inclusion of the
second row in Eq. (16) gives us a Minkowskian structure of the augmented state variables of X:¼ðuT; kukÞT,
which satisfies the cone condition:

XTgX ¼ 0, (17)

where

g ¼
In 0n�1

01�n �1

" #
(18)

is a Minkowski metric and In is the identity matrix of order n. In terms of ðu; kukÞ, Eq. (17) becomes

XTgX ¼ u � u� kuk2 ¼ kuk2 � kuk2 ¼ 0. (19)

This follows from the definition given in Eq. (13), and thus Eq. (17) is a natural result.
Consequently, we have an nþ 1-dimensional augmented system:

X0 ¼ AX (20)
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with a constraint (17), where

A:¼

0n�n

fðu;xÞ

kuk

fTðu; xÞ

kuk
0

2
6664

3
7775 (21)

satisfying

ATgþ gA ¼ 0 (22)

is a Lie algebra soðn; 1Þ of the proper orthochronous Lorentz group SOoðn; 1Þ. This prompts us to
devise the group-preserving scheme (GPS), whose discretized mapping G must exactly preserve the following
properties:

GTgG ¼ g, (23)

det G ¼ 1, (24)

G0
040, (25)

where G0
0 is the 00th component of G.

Although the dimension of the new system is raised once more, it has been shown that the new system
permits a GPS given as follows [12]:

X‘þ1 ¼ Gð‘ÞX‘, (26)

where X‘ denotes the numerical value of X at x‘ and Gð‘Þ 2 SOoðn; 1Þ is the group value of G at x‘. If Gð‘Þ
satisfies the properties in Eqs. (23)–(25), then X‘ satisfies the cone condition in Eq. (17).

The Lie group can be generated from A 2 soðn; 1Þ by an exponential mapping,

Gð‘Þ ¼ exp½DxAð‘Þ� ¼

In þ
ða‘ � 1Þ

kf‘k
2
f‘f

T
‘

b‘f‘

kf‘k

b‘f
T
‘

kf‘k
a‘

2
6664

3
7775, (27)

where

a‘:¼ cosh
Dxkf‘k

ku‘k

� �
, (28)

b‘:¼ sinh
Dxkf‘k

ku‘k

� �
. (29)

Substituting Eq. (27) for Gð‘Þ into Eq. (26), we obtain

u‘þ1 ¼ u‘ þ Z‘f‘, (30)

ku‘þ1k ¼ a‘ku‘k þ
b‘

kf‘k
f‘ � u‘, (31)

where

Z‘:¼
b‘ku‘kkf‘k þ ða‘ � 1Þf‘ � u‘

kf‘k
2

(32)
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is an adaptive factor. From f‘ � u‘X� kf‘kku‘k we can prove that

Z‘X 1� exp �
Dxkf‘k

ku‘k

� �� �
ku‘k

kf‘k
40; 8Dx40. (33)

This scheme has group properties that are preserved for all Dx40, and is called the group-preserving scheme.
3.2. One-step GPS

Applying scheme (30) to Eq. (11) we can compute u
f
i by GPS. Throughout this paper the superscript f

denotes the value at x ¼ xf , while the superscript 0 denotes the value at x ¼ 0. Assume that the total length xf

is divided by K steps, that is, the step size we use in the GPS is Dx ¼ xf =K .
Starting from X0 ¼ Xð0Þ we want to calculate the value Xðxf Þ at x ¼ xf . From Eq. (26)

we can obtain

Xf ¼ GK ðDxÞ . . .G1ðDxÞX0, (34)

where Xf approximates the real Xðxf Þ within a certain accuracy depending on Dx. However, let us recall that
each Gi; i ¼ 1; . . . ;K , is an element of the Lie group SOoðn; 1Þ, and by the closure property of the Lie group,
GK ðDxÞ . . .G1ðDxÞ is also a Lie group denoted by Gðxf Þ. Hence, we have

Xf ¼ Gðxf ÞX
0. (35)

This is a one-step transformation from X0 to Xf .
Usually, it is very hard to find the exact solution of Gðxf Þ; however, a numerical one may be obtained

approximately without any difficulty. The most simple method to calculate Gðxf Þ is given by

Gðxf Þ ¼

In þ
ða� 1Þ

kf0k2
f0ðf0ÞT

bf0

kf0k

bðf0ÞT

kf0k
a

2
66664

3
77775, (36)

where

a:¼ cosh
xf kf

0k

ku0k

� �
, (37)

b:¼ sinh
xf kf

0k

ku0k

� �
(38)

and f0 ¼ fðu0; 0Þ.
Here, we use the value of uð0Þ to calculate Gðxf Þ. Then from Eqs. (30) and (31) we can obtain a one-step

GPS:

uf ¼ u0 þ Zuf
0, (39)

kuf k ¼ aku0k þ
bf0 � u0

kf0k
, (40)

where

Zu ¼
ða� 1Þf0 � u0 þ bku0kkf0k

kf0k2
. (41)
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4. Identifying cðtÞ or kðtÞ by the LGEM

In this section we will start to estimate the time-dependent coefficient function cðtÞ by supposing that kðtÞ is
a given function, or to estimate kðtÞ by supposing that cðtÞ is a given function. By using the one-step GPS we
also suppose that the value of uð0; tÞ ¼ fðtÞ is given, which must be nonzero.

By applying the one-step GPS to Eq. (11) from x ¼ 0 to x ¼ xf we obtain a nonlinear equation
for ci:

u
f
i ¼ u0

i þ
Zu

ðDtÞ2
ðu0

iþ1 � 2u0
i þ u0

i�1Þ þ Zuci

u0
iþ1 � u0

i

Dt
þ Zukiu

0
i þ Zuhið0Þ. (42)

At first glance, Zu in the above equation seems to be a nonlinear function of ci as shown by Eq. (41). However,
we will prove below that Zu is fully determined by the data of u0

i and u
f
i .

It is not difficult to rewrite Eq. (42) as

ci ¼
Dt

u0
iþ1 � u0

i

u
f
i � u0

i

Zu

�
1

ðDtÞ2
ðu0

iþ1 � 2u0
i þ u0

i�1Þ � kiu
0
i � hið0Þ

" #
. (43)

Here we require that u0
iþ1au0

i .
In order to solve ci, let us return to Eq. (39) obtaining

f0 ¼
1

Zu

ðuf � u0Þ, (44)

which is substituted into Eq. (40) leading to

kuf k

ku0k
¼ aþ

bðuf � u0Þ � u0

kuf � u0kku0k
, (45)

where a and b defined in Eqs. (37) and (38) are simultaneously changed to

a ¼ cosh
xf ku

f � u0k

Zuku
0k

� �
, (46)

b ¼ sinh
xf ku

f � u0k

Zuku
0k

� �
. (47)

Let

cos y:¼
½uf � u0� � u0

kuf � u0kku0k
, (48)

S:¼
xf ku

f � u0k

ku0k
(49)

and from Eqs. (45) to (47) it follows that

kuf k

ku0k
¼ cosh

S

Zu

� �
þ cos y sinh

S

Zu

� �
. (50)

Upon defining

Z:¼ exp
S

Zu

� �
(51)

from Eq. (50) we obtain a quadratic equation for Z:

ð1þ cos yÞZ2 �
2kuf k

ku0k
Z þ 1� cos y ¼ 0. (52)
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The solution is found to be

Z ¼

kuf k

ku0k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kuf k

ku0k

� �2

� ð1� cos2 yÞ

s

1þ cos y
if � cos y40 (53)

and from Eq. (51) we obtain a closed-form solution of Zu:

Zu ¼
xf ku

f � u0k

ku0k lnZ
. (54)

Up to here we must point out that for a given xf , Zu is fully determined by u0 and uf , which are supposed to be
known. Therefore, the original nonlinear equation (43) becomes a linear equation for ci.

Now, if we substitute the above Zu into Eq. (43) we can immediately find c1; . . . ; cn. This solution is in a
closed form for ci. Similarly, if c1; . . . ; cn are given, from Eq. (42) one can easily find k1; . . . ; kn by

ki ¼
1

u0
i

u
f
i � u0

i

Zu

�
1

ðDtÞ2
ðu0

iþ1 � 2u0
i þ u0

i�1Þ � ci

u0
iþ1 � u0

i

Dt
� hið0Þ

" #
. (55)

Obviously, u0
i cannot be zero.

In the above we have mentioned that Zu is a nonlinear function of ci or ki; however, from Eqs. (48), (53) and
(54) it is known that Zu is fully determined by u0 and uf . This point is very important for our closed-form
solution of the parameter identification. The key points are based in the method by using the one-step GPS for
the estimation of a parameter, and the full use of the nþ 1 equations (39) and (40). To distinguish the present
method by a combined use of the one-step GPS and the closed-form solution with the aid of Eq. (40), we may
call the new method a Lie-group estimation method (LGEM).

5. Identifying both cðtÞ and kðtÞ by the LGEM

When both cðtÞ and kðtÞ require to be identified, this inverse vibration problem is more difficult. However, if
extra data of _f¼:c are available, we can estimate both cðtÞ and kðtÞ as follows.

From Eq. (1) we have

_cþ cðtÞcþ kðtÞf ¼ F ðtÞ. (56)

Furthermore, if we let vðx; tÞ ¼ ð1þ xÞcðtÞ then we have

qvðx; tÞ

qx
¼

qvðx; tÞ

qt
þ cðtÞvðx; tÞ þ kðtÞuðx; tÞ þ cðtÞ � ð1þ xÞF ðtÞ, (57)

vð0; tÞ ¼ cðtÞ, (58)

vðx; 0Þ ¼ ð1þ xÞB0, (59)

vðx; tf Þ ¼ ð1þ xÞcðtf Þ, (60)

where cðtf Þ is a measured velocity at time tf . In addition to the above data cðtÞ is assumed to be measurable to
provide some measured velocity data in the whole time interval of 0ototf .

As before we can consider a finite difference of Eq. (57) by

v0iðxÞ ¼
viþ1ðxÞ � vi�1ðxÞ

2Dt
þ civiðxÞ þ kiuiðxÞ þ giðxÞ, (61)

where giðxÞ ¼ ci � ð1þ xÞFi, and similarly ci ¼ cðtiÞ.
Suppose that we use the one-step GPS to integrate Eq. (61) from x ¼ 0 to x ¼ xf , then we have other data

v
f
i . Therefore, we have

Ai
2ci þ Bi

2ki ¼ Ci
2, (62)
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where

Ai
2 ¼ v0i , (63)

Bi
2 ¼ u0

i , (64)

Ci
2 ¼

v
f
i � v0i
Zv

�
1

2Dt
ðv0iþ1 � v0i�1Þ � gið0Þ, (65)

in which Zv is defined as in Eq. (54) but replacing u by v.
On the other hand, Eq. (42) can be written as

Ai
1ci þ Bi

1ki ¼ Ci
1, (66)

where

Ai
1 ¼

u0
iþ1 � u0

i

Dt
, (67)

Bi
1 ¼ u0

i , (68)

Ci
1 ¼

u
f
i � u0

i

Zu

�
1

ðDtÞ2
ðu0

iþ1 � 2u0
i þ u0

i�1Þ � hið0Þ. (69)

From Eqs. (66) and (62) we can solve

ci ¼
Ci

1B
i
2 � Ci

2B
i
1

Ai
1B

i
2 � Ai

2B
i
1

¼
Ci

1 � Ci
2

Ai
1 � Ai

2

, (70)

ki ¼
Ai

1C
i
2 � Ai

2C
i
1

Ai
1B

i
2 � Ai

2B
i
1

¼
Ci

2A
i
1 � Ci

1Ai
2

Bi
1ðA

i
1 � Ai

2Þ
. (71)

Therefore, we can employ both the displacement and the velocity data to estimate ci and ki simultaneously.

6. Numerical examples

6.1. Example 1

Let us consider

cðtÞ ¼ 3þ 2 cosð2ptÞ, (72)

kðtÞ ¼ 20þ 2 sinð2ptÞ, (73)

F ðtÞ ¼ F0 þ F 1t. (74)

Here we take F0 ¼ 5 and F1 ¼ 10.
In order to obtain the data of fðtÞ and cðtÞ we can apply the fourth-order Runge–Kutta method (RK4) in

Eqs. (1)–(3), where A0 ¼ 0:1 and B0 ¼ 1 are fixed. In this calculation we have fixed Dt ¼ 1=300, i.e., n ¼ 299.
While the profile of fðtÞ is plotted in Fig. 1(a), the profile of cðtÞ is plotted in Fig. 1(b). Then we apply the one-
step GPS to Eq. (11) to obtain the data u

f
i with xf ¼ 0:001. These data are plotted in Fig. 1(c) by the dashed

line, which are named the calculated data and are compared with the data ð1þ xf Þfi as shown by the solid
line, which are calculated from Eq. (4) and are called the measured data. Because these two data are very close,
the solid line and dashed line are almost coincident. At the same time, we apply the one-step GPS in Eq. (61)
to obtain the data v

f
i . These data are plotted in Fig. 1(d) by the dashed line, and are compared with the

measured data ð1þ xf Þci as shown by the solid line.
Applying Eq. (43) using the measured data of u

f
i ¼ ð1þ xf Þfi, the estimation of ci shown by the dashed line

matches rather well with the exact one as shown in Fig. 2(a) by the solid line, from which the maximum error is
about 3:56� 10�2 as shown in Fig. 2(b) by the dashed line. When we use the one-step GPS calculated data as
an input in Eq. (43), the result is much better, with the maximum error in the order of 10�12. In order to give
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an impression that the present method is not sensitive to the number of subdivision points, we also show the
numerical results in Fig. 2 by employing n ¼ 99. It can be seen that the estimated results of cðtÞ are very
accurate no matter which n is used. The result with n ¼ 99 is slightly better than that with n ¼ 299.
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Similarly, from Eq. (55) we can easily estimate ki when ci is given. The estimation of ki shown by the dashed
line matches very well with the exact one as shown in Fig. 3(a) by the solid line, where the maximum error is
very small using the calculated data. When the data are taken to be u

f
i ¼ ð1þ xf Þfi the maximum error is

about 1:62� 10�1 as shown in Fig. 3(b) by the dashed line. It can be seen that the estimated results of kðtÞ are
very accurate whether n ¼ 299 or 99 is used.

As mentioned in Section 1 the inverse vibration problem is sensitive to the measurement error.
In the case when the measured data are contaminated by random noise, we are concerned with the
stability of our estimation method, which is investigated by adding a random noise to the measured data. We
use the function RANDOM_NUMBER given in Fortran to generate the noisy data RðiÞ, where RðiÞ are
random numbers in ½�1; 1�. The noise is obtained by multiplying RðiÞ by a factor s, and we let u0

i þ 2:576sRðiÞ

replace u0
i in our estimation equations. The factor 2.576 is for considering a 99% confidence bound

of the measurement error [5]. In Fig. 2(b) we compare the estimated result of cðtÞ under a noise of s ¼ 0:01
with that of s ¼ 0 by using the same number of n ¼ 99. Similarly, for the estimation of kðtÞ we compare
two estimations under s ¼ 0 and 0.01 in Fig. 3(b). It can be concluded that the present method is robust
against the noise.



ARTICLE IN PRESS

Time

17

18

19

20

21

22
k(

t)

0.0
Time

1E-15
1E-14
1E-13
1E-12
1E-11
1E-10

1E-9
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0

E
rr

or
 o

f k
(t)

Using measured data

Using calculated data
with n=299

Using calculated data with n=99

Exact
Estimated with n=299
Estimated with n=99

under noise s=0.01

0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. For Example 1: (a) comparing estimated and exact kðtÞ, and (b) plotting the estimation errors by using the calculated and measured

data.

C.-S. Liu / Journal of Sound and Vibration 318 (2008) 148–165 159
Let us consider Eqs. (72)–(74) again. However, we use the method in Section 5 to estimate both cðtÞ and kðtÞ.
In order to obtain the data of fðtÞ and cðtÞ we apply the RK4 on Eqs. (1)–(3), where A0 ¼ 0:1 and B0 ¼ 1 were
fixed. In this calculation we have fixed Dt ¼ 1=200.

Applying Eqs. (70) and (71), the estimations of ci and ki as shown by the dashed lines match very well with
the exact ones as shown in Figs. 4(a) and (b) by the solid lines, where the maximum errors are very small as
shown in Figs. 4(c) and (d).

6.2. Example 2

Let us consider discontinuous and oscillatory parameters:

cðtÞ ¼

2 t 2 ½0; 0:1�;

10 t 2 ð0:1; 0:3Þ;

8 t 2 ð0:3; 0:6�;

5þ sinð10ptÞ t 2 ð0:6; 1�;

8>>>><
>>>>:

(75)
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kðtÞ ¼

20 t 2 ½0; 0:3�;

30 t 2 ð0:3; 0:6�;

20þ sinð10ptÞ t 2 ð0:6; 1�:

8><
>: (76)

For this case while the profile of fðtÞ is plotted in Fig. 5(a), the profile of cðtÞ is plotted in Fig. 5(b). Then we

apply the one-step GPS to Eq. (11) to obtain the data u
f
i with xf ¼ 0:001. These data are plotted in Fig. 5(c) by
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the dashed line, and are compared with the measured data ð1þ xf Þfi as shown by the solid line. Because these

two data are very close, the solid line and the dashed line are almost coincident. At the same time, we apply the

one-step GPS on Eq. (61) to obtain the data v
f
i . These data are plotted in Fig. 5(d) by the dashed line, and are

compared with the measured data ð1þ xf Þci as shown by the solid line.
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Applying Eqs. (70) and (71), the estimations of ci and ki as shown by the dashed lines match very
well with the exact ones as shown in Figs. 6(a) and (b) by the solid lines, where the maximum errors
are very small as shown in Figs. 6(c) and (d). We also consider a noise with s ¼ 0:00005 on the input data,
whose results are shown in Figs. 6(a) and (b) by the dashed–dotted lines. The against the noise is weak for this
computation.
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6.3. Example 3

Huang [5] has used the conjugate gradient method to identify kðtÞ under the following conditions:

c ¼ 2;F ðtÞ ¼ 100þ t, (77)
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kðtÞ ¼

200þ 50 sin
2pt

25

� �
; t 2 ½0; 25�;

200þ 80 sin
2pt

25

� �
; t 2 ð25; 50�;

8>>><
>>>:

(78)

where tf ¼ 50 was fixed.
The numerical results with noises s ¼ 0 and 0.05 were compared with the exact solutions in Fig. 7, where we

use Dt ¼ 50=300. The data of displacement at xf are compared for measured and calculated ones in Fig. 7(a).
From Fig. 7(c) it can be seen that the noise level with s ¼ 0:05 disturbs the numerical solution deviating from
the exact solution very little with an estimating error in the order of 10�12. It appears that the measurement
noise has no obvious effect on our estimation even if the level of noise is large up to five times.

In comparing our estimation results with that obtained by Huang [5] as shown in Figs. 2 and 4, one may
highly appreciate that the present method is much more accurate and stable than the conjugate gradient
method. To the best of our knowledge, no report appears in the open literature that in the estimations of c and
k one can obtain closed-form estimating solutions. It is clear that the accuracy and efficiency of our LGEM
are much better than other methods.
7. Conclusions

In order to estimate the time-dependent damping and stiffness functions under the measured data of
displacement and velocity, we have employed the LGEM to derive algebraic equations and solved them in a
closed form. The key points were that we have transformed the inverse vibration problem into an
identification problem for a parabolic-type PDE and a hyperbolic-type first-order PDE and then established a
one-step GPS for the semi-discretizations of these two PDEs.

Numerical examples were worked out, which show that the new LGEM is applicable for both the
estimations of damping and stiffness functions. Through this study, it can be concluded that the new
estimation method is accurate, effective, and stable. Its numerical implementation is very simple and the
computational speed is very fast.

In contrast to other parameter estimation methods, the advantages of the present method are that it does
not need any prior information of the functional forms of damping and stiffness coefficients, no initial guesses
are required, no iterations are required, and closed-form solutions are available. This is the first time that a
closed-form estimation method has been constructed for the inverse vibration problems.
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