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Abstract

Free vibration analysis of functionally graded curved panels is carried out using a higher-order formulation. A C0 finite

element formulation is used to carry out the analysis. The element consists of nine degrees of freedom per node with

higher-order terms in the Taylor’s-series expansion, which represents the higher-order transverse cross-sectional

deformation modes. The formulation includes Sanders’ approximation for doubly curved shells considering the effects

of rotary inertia and transverse shear. A realistic parabolic distribution of transverse shear strains through the shell

thickness is assumed and the use of shear correction factor is avoided. Material properties are assumed to be temperature

independent and graded in the thickness direction according to a simple power-law distribution in terms of the volume

fractions of the constituents. Heat conduction between ceramic and metal constituents is neglected. The accuracy of the

formulation is validated by comparing the results with those available in the literature. Effects of panel geometry

parameters and boundary conditions are studied.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGM) are heterogeneous composite materials usually made from a mixture
of metals and ceramics. The material properties of FGM are graded but continuous and are controlled by the
variation of the volume fraction of the constituent materials. A group of material scientists in Japan
introduced the concept of FGM in 1984 as ultrahigh temperature-resistant materials for aircraft, space
vehicles and other applications. FGM are now being strongly considered as a potential structural material for
future high-speed spacecraft. With the increased use of these materials, it is important to understand the
behavior of functionally graded (FG) plates and shells. Fukui and Yamanaka [1] studied the elastic problem of
thick walled FG tubes subjected to internal pressure. Buckling of FG hybrid composite plates was studied by
Birman [2]. Aboudi et al. [3] developed a Cartesian coordinate based higher-order theory for FGMs, which
circumvents the problematic use of the standard micromechanical approach, based on the concept of a
representative volume element, commonly employed in FG composites. Reddy [4] obtained Navier’s solutions
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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and finite element results based on the third-order shear deformation theory for FG plates. Sankar [5]
obtained an elasticity solution for FG beams considering exponential variation of elastic properties through
the thickness. Woo and Meguid [6] carried out nonlinear bending analysis of FG plates and shallow shells
subjected to transverse mechanical load and a temperature field. Chakraborty et al. [7] developed a new beam
element for analyzing FGMs. A hierarchic family of finite elements for analyzing Reissner–Mindlin FG plates
based on the ad hoc variational formulation was presented by Croce and Venini [8]. Bhangale and Ganesan [9]
carried out static analysis of simply supported FG and layered magneto-electro-elastic plates. Nonlinear
bending analysis of simply supported FG plates subjected to transverse loading in thermal environment was
carried out by Shen [10] and GhannadPour and Alinia [11] investigated large deflection behavior of FG plates
under pressure loads.

Many researchers studied dynamic behavior of FGM structures in the past few years. Praveen and Reddy
[12] investigated the nonlinear transient thermoelastic behavior of FG ceramic-metal plates and found that, in
general, the response of plates with material properties between those of ceramic and metal is not intermediate
to the responses of the ceramic and metal plates. Loy et al. [13] studied the free vibration of simply supported
FG cylindrical shells. Pradhan et al. [14] studied the effect of different boundary conditions on the natural
frequencies of FG cylindrical shells made up of stainless steel and zirconia. Influence of the volume fractions
and the effects of configurations of the constituent materials on the parametric instability regions of FG plates
were investigated by Ng et al. [15]. Dynamic stability of simply supported FG cylindrical shells under
harmonic axial loading was analyszd by Ng et al. [16] using a normal mode expansion and Bolotin’s method to
determine the boundaries of instability. Yang and Shen [17] investigated the free and forced vibration
characteristics of shear deformable initially stressed FG plates in thermal environment. By considering the
material properties of the constituents to be nonlinear functions of the temperature and graded in the
thickness direction by power law distribution, Yang and Shen [18] investigated the free vibration and
parametric resonance of shear deformable FG cylindrical panels. Patel et al. [19] carried out the free vibration
analysis of FG elliptical cylindrical shells using a higher-order theory. Nonlinear free vibration behavior of
FG plates was investigated by Woo et al. [20].

Liew et al. [21] dealt with the linear and nonlinear vibration analysis of a three-layer coating FGM substrate
cylindrical panel with general boundary conditions and subjected to a temperature gradient across the thickness.
Chen [22] presented the nonlinear partial differential equations of nonlinear vibration for a FG plate in a general
state of non-uniform initial stress state. Huang and Shen [23] studied the nonlinear vibrations and dynamic
response, and Sundararajan et al. [24] investigated the nonlinear free flexural vibrations of FG rectangular and
skew plates in thermal environments, respectively. Huang and Shen [25] dealt with the nonlinear vibration and
dynamic response of a FGM plate with surface-bonded piezoelectric layers in thermal environment.
Postbuckling of axially loaded FG cylindrical panels with piezoelectric actuators in thermal environments
was studied by Shen and Liew [26]. Thermo-mechanical postbuckling of FGM cylindrical panels with
temperature-dependent properties was investigated by Yang et al. [27] and Shen and Leung [28]. Kim [29]
developed a theoretical method to investigate vibration characteristics of initially stressed FG plates in thermal
environment. Thermal postbuckling and vibration behavior of the FG plates were studied by Park and Kim [30].
Kadoli and Ganesan [31] presented linear thermal buckling and free vibration analyses of clamped–clamped FG
cylindrical shells based on temperature-dependent material properties. Shen and Noda [32] presented the
theoretical postbuckling analysis of shear deformable FGM cylindrical shells subjected to combined axial and
radial mechanical loads in thermal environments using a higher-order shear deformation shell theory.

Several investigators also developed higher-order theories in which the displacements of the middle surface
are expanded as cubic functions of the thickness coordinate and the transverse displacement is assumed to be
constant through the thickness. This displacement field leads to the parabolic distribution of the transverse
shear stresses and, therefore, the use of shear correction factors is avoided. To the best of the authors’
knowledge, however, limited literature is available related to the application of higher-order theory for
studying the free vibration behavior of FG curved panels and the authors attempt to fill this lacuna is first of
its kind and new. Therefore, in the present analysis, free vibration of FG curved panels is studied by
employing the higher-order shear deformation theory (HSDT) developed by Kant and Khare [33] by including
the twist curvature using the finite element method. Material properties are assumed to be temperature
independent and heat conduction between ceramic and metal constituents is neglected.
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2. Mathematical formulation

Let us consider a shell element made of a FG material with the coordinate (x, y, z) as shown in Fig. 1. The
coordinate system (x, y, z) is chosen such that the plane x–y at z ¼ 0 coincides with the mid-plane. In order to
approximate the three-dimensional (3-D) elasticity problem to a two-dimensional (2-D) one, the displacement
components u(x, y, z), v(x, y, z) and w(x, y, z) at any point in the shell space are expanded in Taylor’s series in
terms of the thickness coordinate. The elasticity solution indicates that the transverse shear stresses vary
parabolically through the element thickness. This requires the use of a displacement field in which the in-plane
displacements are expanded as cubic functions of the thickness coordinate. The displacement fields, which
satisfy the above criteria are assumed in the form as given by Kant and Khare [33]

uðx; y; zÞ ¼ u0ðx; yÞ þ zyy þ z2un

0ðx; yÞ þ z3ynyðx; yÞ

vðx; y; zÞ ¼ v0ðx; yÞ � zyx þ z2vn0ðx; yÞ � z3ynxðx; yÞ

wðx; y; zÞ ¼ w0 (1)

where u, v and w are the displacements of a general point (x, y, z) in an element along x, y and z directions,
respectively. The parameters u0, v0, w0, yx and yy are the displacements and rotations of the middle plane,
while un

0, vn0, y
n

x and yny are the higher-order displacement parameters defined at the mid-plane.
The linear strain–displacement relations according to Sanders’ approximation are
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Substituting Eq. (1) in Eq. (2)

�x ¼ �x0 þ zkx þ z2�nx0 þ z3kn

x
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Fig. 1. FG spherical shell element.
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where
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C1 is a tracer by which the analysis can be reduced to that of shear deformable Love’s first approximation and
C0 ¼ 0.5(1/Rx�1/Ry) is the result of Sanders’ theory which accounts for the condition of zero strain for rigid
body motion.

3. FG material properties

The panels considered in the present analysis are assumed to be of uniform thickness h. Further, it is
assumed that the panel is made from a mixture of ceramic and metals and the material composition is
continuously varied such that the top surface (z ¼ h/2) of the panel is ceramic rich, whereas the bottom surface
(z ¼ �h/2) is metal rich. Thus, the effective material property P (such as Young’s modulus, Poisson’s ratio,
mass density, etc.) can be expressed as

P ¼
Xk

j¼1

PjVj (5)

where Pj and Vj are the material property and volume fraction of the constituent material j, satisfying the
volume fraction of all the constituent materials k asXk

j¼1

V j ¼ 1 (6)

For a panel with the reference surface at its middle surface, the volume fraction can be written as

Vj ¼
2zþ h

2h

� �n

(7)

in which, n characterizes the material variation through the panel thickness and 0pnpN.
Material properties for a FG solid with two constituent materials are given by

PðzÞ ¼ ðPc � PmÞ
2zþ h

2h

� �n

þ Pm (8)

where Pc and Pm refer to the corresponding properties of the ceramic and metal constituents, respectively.
By using these material properties, the stresses can be determined as
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where

Q11 ¼ Q22 ¼
EðzÞ

1� nðzÞ2
; Q12 ¼

nðzÞEðzÞ

1� nðzÞ2
; Q44 ¼ Q55 ¼ Q66 ¼ GðzÞ ¼

EðzÞ

2ð1þ nðzÞÞ
(10)

Eq. (9) can also be written as

r ¼ Qe (11)

where Q is the effective stiffness coefficient matrix given by the relation

Q ¼ ðQc �QmÞ
2zþ h

2h

� �n

þQm (12)

Qc andQm are the effective stiffness coefficient matrices for ceramic and metal constituents, respectively. Also,
for the value of the power n ¼ 0, the FG panel becomes ceramic rich and metal rich for the value n ¼N.

Integrating the stresses through the thickness, the resultant forces and moments acting on the panel are
obtained.
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where Dm, Db, Dc and Ds are written in the following terms:

Dm ¼
H1 H3

H3 H5

" #

The elements of Dc and Db matrices can be obtained by replacing (H1, H3 and H5) by (H2, H4 and H6) and
(H3, H5 and H7), respectively, and

ðH1;H2;H3;H4;H5;H6;H7Þ ¼

Z h=2

�h=2
Qijð1; z; z

2; z3; z4; z5; z6Þdz; i; j ¼ 1; 2; 6
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Ds ¼

H1 H3 H2 H4

H5 H4 H6

sym H3 H5

H7

2
666664
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in which

ðH1;H2;H3;H4;H5;H6;H7Þ ¼

Z h=2

�h=2
Qijð1; z; z

2; z3; z4; z5; z6Þdz; i; j ¼ 1; 4; 5

where Q is given in Eq. (12).

4. Finite element formulation

In the present study, an eight-noded Co element with nine degrees of freedom is considered. The
displacement vector at any point on the mid-surface is given by

D ¼
X8
i¼1

NiDi (14)

in which D ¼ (u0, v0, w0, yx, yy, un
0, vn0, y

n

x, y
n

y)
T at any point (x, y) in the mid-surface, and Di is the displacement

vector corresponding to node i and Ni is the interpolating function associated with the node i, given by

Ni ¼ ð1þ xxiÞð1þ ZZiÞðxxi þ ZZi � 1Þ=4; i ¼ 1 to 4

Ni ¼ ð1� x2Þð1þ xxiÞ=2; i ¼ 5; 7

Ni ¼ ð1þ xxiÞð1� Z2Þ=2; i ¼ 6; 8

(15)

where xi and Zi are the coordinates x and Z of the mid-surface.
The strain–displacement relationship is expressed in the matrix form as

e ¼ Bd (16)

where B is a differential operator matrix of interpolation functions which can be obtained from Eq. (4) and
d ¼ fD1 � � �D8g

T is the element displacement vector.
The governing differential equations of motion according to Hamilton’s principle is given as [34]

d
Z t2

t1

Y
�T

� �
dt ¼ 0 (17)

where t is the time, T the total kinetic energy of the system and P the potential energy of the system including
both strain energy and potential conservative external forces. For the ideal case in which the system has no
damping and no external forcing function, the mathematical statement of Hamilton’s principle can be written
as Z t2

t1

ðdU � dTÞdt ¼ 0 (18)

where dU and dT are the first variation of the strain energy and the kinetic energy, respectively.
The first variation of dU and dT can be written in matrix form as

dU ¼ ddtKd and dT ¼ �ddtMd (19)

in which K and M are the global stiffness and mass matrices, which are obtained by assembling the
corresponding element matrices. For any element e, the element stiffness and mass matrices Ke and Me are
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evaluated by

Ke ¼

Z
A

BTDBdA and Me ¼

Z
A

NTmN dA (20)

where N is the shape function matrix and m the inertia matrix, as given in Appendix A. In all the numerical
computations, the selective integration rule is employed. A 3� 3 Gaussian rule is used to compute in-plane,
coupling between in-plane and bending deformations; while a 2� 2 integration rule is used to evaluate the
terms associated with transverse shear deformation. The free vibration analysis involves determination of
natural frequencies from the condition

ðK� o2MÞ ¼ 0 (21)

This is a generalized eigenvalue problem and is solved using subspace iteration method to get the natural
frequency o.

5. Boundary conditions

The following two boundary conditions are used in the present analysis:
(i)
Tab

Con

Mes

4�

6�

8�

10�

12�
Simply supported boundary: v0 ¼ w0 ¼ yy ¼ v0* ¼ yy* ¼ 0 at x ¼ 0, a and u0 ¼ w0 ¼ yx ¼ u0* ¼ yx* ¼ 0
at y ¼ 0, b.
(ii)
 Clamped boundary: u0 ¼ v0 ¼ w0 ¼ yx ¼ yy ¼ u0* ¼ v0* ¼ yx* ¼ yy* ¼ 0 at x ¼ 0, a and y ¼ 0, b.
6. Convergence and comparison problems

Unless specified, the material properties for the convergence and comparison problems are considered as,
for aluminum: Em ¼ 70GPa, nm ¼ 0.3 and rm ¼ 2707 kg/m3 and for zirconia: Ec ¼ 200GPa, nc ¼ 0.3 and
rc ¼ 2702 kg/m3 and the obtained natural frequencies are non-dimensionalized as on ¼ oh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm=Em

p
.

6.1. Convergence study

Convergence study is carried out in order to determine the uniform mesh size at which the natural
frequencies converge. Table 1 shows the convergence results of a simply supported aluminum–zirconia
square FG plate. From Table 1, it is found that the non-dimensional frequencies o* converge for the
uniform mesh size of 8� 8. Therefore, the subsequent investigations are carried out using the uniform
mesh size of 8� 8.
le 1

vergence of non-dimensional frequency parameter of simply supported aluminum–zirconia FG plate a/b ¼ 1, on ¼ oh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm=Em

p
h size n ¼ 1 a/h ¼ 5 n ¼ 0

a/h ¼ 5 a/h ¼ 10 a/h ¼ 20 n ¼ 2 n ¼ 3 n ¼ 5 a=h ¼
ffiffiffiffiffi
10
p

a/h ¼ 10

4 0.2253 0.0612 0.0157 0.2233 0.2239 0.2249 0.4582 0.0577

6 0.2256 0.0613 0.0157 0.2236 0.2242 0.2252 0.4657 0.0577

8 0.2257 0.0613 0.0157 0.2237 0.2243 0.2253 0.4658 0.0578

10 0.2257 0.0613 0.0157 0.2237 0.2243 0.2253 0.4658 0.0578

12 0.2257 0.0613 0.0157 0.2237 0.2244 0.2253 0.4658 0.0578
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Table 2

Comparison of non-dimensional frequency parameter on ¼ oh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm=Em

p
for a simply supported aluminum–zirconia plate

Results n ¼ 1 a/h ¼ 5 n ¼ 0

a/h ¼ 5 a/h ¼ 10 a/h ¼ 20 n ¼ 2 n ¼ 3 n ¼ 5 a=h ¼
ffiffiffiffiffi
10
p

a/h ¼ 10

Present HSDT 0.2257 0.0613 0.0157 0.2237 0.2243 0.2253 0.4658 0.0578

FSDT 0.2323 0.0633 0.0162 0.2325 0.2334 0.2334 0.4619 0.0577

3-D [35] 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 0.4658 0.0578

(0.5535a) (0.0592a)

HSDT [36] 0.2285 0.0618 0.0158 0.2264 0.227 0.2281 0.4658 0.0578

Ref. [37] 0.2188 0.0592 0.0147 0.2153 0.2202 0.2215 – –

Ref. [38] 0.2188 0.0584 0.0149 0.2153 0.2172 0.2194 – –

aResults of CPT.

R

a

bCeramic

Metallic

z

x

y 

h
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6.2. Comparison studies

In order to establish the correctness of the present formulation, the following examples are considered and
the obtained results are compared with those existing in the literature.

Fig. 2. FG cylindrical shell panel.
1.
 Natural frequencies of simply supported square aluminum–zirconia FG plate are obtained using the
present HSDT and the first-order shear deformation theory (FSDT) considering a shear correction factor
of 5/6. The obtained results are compared with those of 3-D exact solutions of Vel and Batra [35], 2-D
higher-order theory solutions of Matsunaga [36] and meshless method solutions of Ferreira et al. [37] and
Qian et al. [38] in Table 2. From Table 2, it is observed that, for plates with n ¼ 0, i.e. for pure ceramic
plates, the present HSDT results of o* are in excellent agreement with those of Vel and Batra [35] and
Matsunaga [36]. Classical plate theory (CPT) solutions of o* obtained by Vel and Batra [35] are also given
in Table 2 for pure ceramic plate (n ¼ 0) with a=h ¼

ffiffiffiffiffi
10
p

and 10. It is seen from Table 2 that the difference
between the corresponding CPT and the HSDT/3-D results, for pure ceramic plates, increases from 2.4% to
18.8% when the a/h ratio is decreased from 10 to

ffiffiffiffiffi
10
p

. It is also observed that for a=h ¼
ffiffiffiffiffi
10
p

, the CPT
overpredicts the natural frequencies. Since the effect of transverse shear deformation is neglected in CPT,
the above behavior is obvious for thick plates (for a/ho10). Similar behavior was observed by Ng et al. [39]
in their prediction of origin of dynamic stability of isotropic cylindrical shell panels. It was observed in Ref.
[39] that the inclusion of transverse shear stresses and rotary inertia effects in the first and higher-order
theories generate more conservative results. For FG plates with higher values of n (for n40), the present
HSDT results are on the higher side than the corresponding 3-D results of Ref. [35] and meshless solutions
of Refs. [37,38]. However, the authors’ results are in between the 3-D results of Vel and Batra [35] and 2-D
higher-order results of Matsunaga [36]. The differences between the results of Refs. [35,37,38] and HSDT
results of authors and Matsunaga [36] are due to the different scheme of homogenization of material
properties adopted. Investigators in Refs. [35,37,38] adopted Mori–Tanaka scheme of homogenization,
whereas, Voigt rule of mixtures was used by the authors and Matsunaga [36].
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Table 3

Comparison of non-dimensional frequency parameter on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
for a clamped FG cylindrical shell panel

Mode Material composition Si3N4 n ¼ 0.2 n ¼ 2.0 n ¼ 10.0 SUS304

1 Present HSDT 72.9613 60.0269 39.1457 33.3666 32.0274

Ref. [18] 74.518 57.479 40.750 35.852 32.761

2 Present HSDT 138.5552 113.8806 74.2915 63.2869 60.5546

Ref. [18] 144.663 111.717 78.817 69.075 63.314

3 Present HSDT 138.5552 114.0266 74.3868 63.3668 60.6302

Ref. [18] 145.740 112.531 79.407 69.609 63.806

4 Present HSDT 195.5366 160.6235 104.7687 89.1970 85.1788

Ref. [18] 206.992 159.855 112.457 98.386 90.370

Table 4

Comparison of performance of HSDT and FSDT for aluminum–alumina plate for different a/h values on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
, Dn

m ¼

Emh3=ð12ð1� n2mÞÞ

a/h n ¼ 0.0 n ¼ 0.5 n ¼ 1.0

HSDT FSDT HSDT FSDT HSDT FSDT

5 58.2858 56.5548 48.7185 47.2468 43.4243 42.0305

10 71.7395 70.8035 58.5305 57.7597 52.0173 51.0884

15 75.0439 75.7838 61.5835 62.2838 54.7015 55.4209

20 77.0246 77.5654 63.1381 63.8393 56.0880 56.7991

50 84.8800 85.4346 69.8604 70.3199 62.2152 62.8458

100 102.9227 103.4855 86.5452 87.1049 77.0774 77.7762
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2.
 A FG cylindrical panel (Fig. 2) having clamped boundaries is considered with geometric properties
a/h ¼ 10, a/R ¼ 0.1, a ¼ b and with different values of n from 0 to N. The constituents of the FGM panel
considered in this example are silicon nitride (Si3N4) and stainless steel (SUS304), whose material properties
are given below:

Si3N4 (ceramic): Ec ¼ 322.2715GPa, nc ¼ 0.24, rc ¼ 2370 kg/m3 and
SUS304 (metal): Em ¼ 207.7877GPa, nm ¼ 0.31776, rm ¼ 8166 kg/m3.
Non-dimensional frequency parameter is on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
in which Dn

m ¼ Emh3=12ð1� n2mÞ.
Free vibration analysis of a clamped FG cylindrical shell panel is carried out using the present formulation.

The values of first four non-dimensional frequencies are presented in Table 3 for different values of volume
fraction index n along with those of Yang and Shen [18]. From Table 3, it is observed that there is a
discrepancy between the authors’ HSDT results and those of Yang and Shen [18]. The different higher-order
theory (Reddy’s higher-order shear deformation shell theory) and method of analysis (semi-analytical
approach using one-dimensional (1-D) differential quadrature approximation and Galerkin technique)
adopted by the earlier investigators in Ref. [18] may be the possible reasons for the deviation in the values of
natural frequencies. It may be noted that o* is the maximum for pure ceramic and gradually reduces for the
composite with the increase of n and becomes the minimum for pure metallic FG clamped cylindrical panel.

The validation of authors’ results establishes the use of present formulation for calculating the o* of
different FG plates and shells of different compositions.

6.3. Performance of the present HSDT

Before taking up additional problems to investigate the effect of different parameters on the natural
frequency of different shell forms made up of FG panels, the performance of the present HSDT is compared
with that of the FSDT. Constituents of the FGM used in the subsequent analysis are aluminum (metal) and
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alumina (ceramic) whose material properties are, for Aluminum, Em ¼ 70GPa, nm ¼ 0.3, rm ¼ 2707 kg/m3and
for Alumina, Ec ¼ 380GPa, nc ¼ 0.3, rc ¼ 3000 kg/m3. Non-dimensional frequency parameter on ¼

oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
in which Dn

m ¼ Emh3=ð12ð1� n2mÞÞ. The non-dimensional frequency parameters of cylindrical
FG panels made up of aluminum and alumina with different a/h ratios using the present HSDT and the FSDT
are tabulated in Table 4. From Table 4, it is found that for thick panels (panels having a/hp10), the FSDT,
based on Mindlin’s approximations, underpredicts the natural frequencies than the corresponding HSDT
ones. On the other hand for thin panels, FSDT overpredicts the values of non-dimensional frequency
parameters compared with the same using HSDT. From the above observation, it is inferred that the present
HSDT formulation, though computationally expensive, shows good performance for both thin as well as thick
panels and hence recommended for free vibration analysis of both thin and thick FG plates and shell panels.

7. Additional problems

The authors’ HSDT formulation has been used for the three additional problems to include cylindrical
(R ¼ Rx, Ry ¼ Rxy ¼N, Fig. 2), spherical (Rx ¼ Ry ¼ R,Rxy ¼N, Fig. 1) and hypar (Rx ¼ Ry ¼N, Fig. 3)
shell panels. The FG panels considered in these investigations are made up of aluminum and alumina and the
properties of the same and the non-dimensional frequency parameter are taken from the previous
investigation. For all the three problems, both clamped and simply supported boundary conditions are
used and the volume fraction index n is varied from 0 to N.

The following are the parametric variations of the three problems taken up in the present study:
1.
Ta

No

R/a

0

0.

0.

1.

2.

10.

N

The parameters R/a and a/h are varied from 0.5 to Nand 10 to 100, respectively, for the cylindrical and
spherical shell panels.
2.
 The parameter c/a is varied from 0 to 0.2 for the hypar shell panel.

The numerical results of the three problems are presented in tables and figures as mentioned below:
1.
 Tables 5 and 6 present results of o* of the cylindrical shell panel having simply supported and clamped
boundary conditions, respectively, with the variations of R/a and n.
z

x c

ya
b

c
z = 4 xy + cx / a + cy / b

ab

Fig. 3. Hypar shell.

ble 5

n-dimensional frequency parameter on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
for simply supported cylindrical FG shell panels with different R/a ratios

-n 0.5 1.0 5 10 50 Plate

68.8645 51.5216 42.2543 41.9080 41.7963 41.7917

2 64.4001 47.5968 40.1621 39.8472 39.7465 39.7426

5 59.4396 43.3019 37.2870 36.9995 36.9088 36.9057

0 53.9296 38.7715 33.2268 32.9585 32.8750 32.8726

0 47.8259 34.3338 27.4449 27.1789 27.0961 27.0937

0 37.2593 28.2757 19.3892 19.1562 19.0809 19.0778

31.9866 24.1988 19.0917 18.9352 18.8848 18.8827



ARTICLE IN PRESS

Table 6

Non-dimensional frequency parameter on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
for clamped cylindrical FG shell panels with different R/a ratios

R/a-n 0.5 1 5 10 50 Plate

0 129.9808 94.4973 71.8861 71.0394 70.766 70.7546

0.2 119.6109 87.3930 68.1152 67.3320 67.0801 67.0698

0.5 108.1546 79.5689 63.1896 62.4687 62.2380 62.2291

1.0 96.0666 71.2453 56.5546 55.8911 55.6799 55.6722

2.0 84.4431 62.9748 36.2487 35.6633 35.4745 35.4669

10.0 69.8224 51.3803 33.6611 33.1474 32.9812 32.9743

N 61.0568 44.2962 32.4802 32.0976 31.9741 31.9689

Table 7

Non-dimensional frequency parameter on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
for simply supported spherical FG shell panels with different R/a ratios

R/a-n 0.5 1 5 10 50 Plate

0 124.1581 78.2306 44.0073 42.3579 41.8145 41.7917

0.2 115.7499 72.6343 41.7782 40.2608 39.7629 39.7426

0.5 106.5014 66.5025 38.7731 37.3785 36.9234 36.9057

1.0 96.2587 59.8521 34.6004 33.3080 32.8881 32.8726

2.0 84.8206 52.7875 28.7459 27.5110 27.1085 27.0937

10.0 65.2296 41.6702 20.4691 19.4357 19.0922 19.0778

N 57.2005 36.2904 19.8838 19.1385 18.8930 18.8827

Table 8

Non-dimensional frequency parameter on ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmh=Dn

m

p
for clamped spherical FG shell panels with different R/a ratios

R/a-n 0.5 1 5 10 50 Plate

0 173.9595 120.9210 73.5550 71.4659 70.7832 70.7546

0.2 161.3704 112.2017 69.6597 67.7257 67.0956 67.0698

0.5 147.4598 102.5983 64.6114 62.8299 62.2519 62.2291

1.0 132.3396 92.2147 57.8619 56.2222 55.6923 55.6722

2.0 116.4386 81.3963 37.3914 35.9568 35.4861 35.4669

10.0 92.1387 64.8773 34.6658 33.4057 32.9916 32.9743

N 80.7722 56.2999 33.2343 32.2904 31.9819 31.9689
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2.
 Tables 7 and 8 present results of o* of the spherical shell panel having simply supported and clamped
boundary conditions, respectively, with the variations of R/a and n.
3.
 Figs. 4 and 5 show the variations of o* for different values of a/h and n of FG cylindrical shell panels with
simply supported and clamped boundary conditions, respectively.
4.
 Figs. 6 and 7 show the variations of o* for different values of a/h and n of FG spherical shell panels with
simply supported and clamped boundary conditions, respectively.
5.
 Figs. 8 and 9 present results of o* of the hypar shell panel having simply supported and clamped boundary
conditions, respectively, with the variations of c/a and n.

A detailed study of the results of Tables 5–8 and Figs. 4–9 reveal the following.
1.
 The values of o* for clamped boundary conditions are much higher (about 1.5–2 times) than those having
simply supported boundaries.
2.
 The values of o* are consistently increasing with the (i) decrease of R/a for any constant value of n and
(ii) decrease of n for any constant value of R/a as seen from Tables 5–8.
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Fig. 4. Effect of a/h ratio on the non-dimensional frequency parameter o* of a simply supported cylindrical FG shell panel.
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Fig. 5. Effect of a/h ratio on the non-dimensional frequency parameter o* of a clamped cylindrical FG shell panel.
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The two observations can be justified by the two interactive effects of stiffness K and mass M in determining
the frequency parameters. The first observation shows the superiority of shells with lower values of R/a

where the increase of o* is mostly due to the increase of stiffness of shells than that of plates. The second
observation establishes the superiority of pure ceramic to other composites. It may be noted that ceramic is
heavier than the metal of this problem. The heavier mass of ceramic should have reduced the frequency o*.
Therefore, the increased value of o*, in spite of the heavier mass of ceramic, shows the dominance of
stiffness effect K rather than the mass M. Thus, both the observations reveal the dominance of the stiffness
in increasing the values of o* for this problem.
It is worth mentioning that the results of Table 3 (comparative problem 2), exhibiting increase of o* with
lower value of n, i.e. for ceramic, which is lighter than the metal, show that both mass M and stiffness K are
contributing factors in increasing the value of o*.
3.
 The results of Figs. 4–7 show the increasing trend of o* with the (i) increase of a/h ratios or the decrease of
the thickness h for fixed values of a and n (ii) decrease of n for fixed values of a/h. Here also, the increasing
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Fig. 6. Effect of a/h ratio on the non-dimensional frequency parameter o* of a simply supported spherical FG shell panel.
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Fig. 7. Effect of a/h ratio on the non-dimensional frequency parameter o* of a clamped spherical FG shell panel.
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trend of o* for increasing/decreasing values of a/h or n can be explained by the respective dominance of
effect of mass and stiffness as explained in Eq. (2) above. However, it is important to note that the decrease
of n shows the effect of stiffness both for the constant values of R/a (Tables 5–8) and a/h (Figs. 4–7).
4.
 Results of Figs. 8 and 9 also confirm the effect of stiffness in increasing the o* when n is reduced from metal
to ceramic. The increasing trend of o* with the increase of c/a is, however, very stiff initially up to c/

a ¼ 0.05 and then relatively lower for further increase of c/a as seen from Fig. 8 for the simply supported
hypar shell. For the clamped hypar shells, the increasing trend of o* is almost uniform with the increase of
c/a, establishes the superiority of clamped hypar shells once again. Here again, the relative increase of o*
with the change of n or c/a as discussed above may be explained with the respective influence of the effect of
the mass or the stiffness for the particular case.

Table 9 presents the maximum and minimum values of o* corresponding to n ¼ 0 and N of three different
shell panels viz. (i) singly curved cylindrical, (ii) doubly curved synclastic spherical and (iii) doubly curved
anticlastic hypar panels having the same or equivalent geometric parameters of R/a ¼ 5 and 10 and equivalent
c/a ¼ 0.2 and 0.1 for both simply supported and clamped boundary conditions.
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Fig. 8. Non-dimensional frequency parameter o* of a simply supported hypar shell for different c/a ratios.
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Fig. 9. Non-dimensional frequency parameter o* of a clamped hypar shell for different c/a ratios.

Table 9

Range of values of o* corresponding to n ¼ 0 and N of different shell forms

Shell form Simply supported Clamped

R/a ¼ 5, c/a ¼ 0.2 R/a ¼ 10, c/a ¼ 0.1 R/a ¼ 5, c/a ¼ 0.2 R/a ¼ 10, c/a ¼ 0.1

Cylindrical 19.09–42.25 18.94–41.91 32.48–71.89 32.1–71.04

Spherical 19.88–44.01 19.14–42.36 33.23–73.56 32.29–71.47

Hypar 74.33–164.52 61.75–136.68 216.65–479.5 133.54–295.55
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The comparison of the values of o* from Table 9 gives the order of superiority of the three shell forms
considering o* as the sole criterion. A study of the value o* clearly shows the best performance of the
anticlastic hypar shells. Though the values of o* for spherical and cylindrical are more or less in the same
ranges, the doubly curved spherical shell proves itself to be marginally better than the singly curved cylindrical
panels. The above order of superiority of the shell panels are for both types of the boundary conditions,
i.e. simply supported and clamped and for each of the material compositions for the same or equivalent values
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of the curvature parameters. It may, therefore, be inferred that the three shell panels may be arranged as
hypar, spherical and cylindrical shell panels in descending order of their respective values of o*.

8. Conclusions

The following conclusions are derived:
A.
 The authors’ HSDT formulations may be recommended for determining the values of o* of plate and shell
panels. This is based on observing good agreement between the authors’ results with those available in the
published literature.
B.
 Comparative study of values of o* of three additional shell panels leads to the following conclusions.
1. As expected, the clamped boundary condition is a better performer showing higher values of o* for all

the three types of shell panels and for different values of other geometric parameters.
2. Both for the cylindrical and spherical shells, the gradual decrease of the values of R improves the values

of o* when the other geometrical parameters, boundary conditions and volume fraction index n are
kept constants.

3. For hypar shells, the increasing value of c improves the value of o* for identical geometrical parameters,
boundary conditions and volume fraction index n.

4. Both for the cylindrical and spherical shells, decrease of the thickness h improves o* when other
geometrical properties, boundary conditions and volume fraction index n are kept constants.

5. The increase of o* of shell panels either due to decrease of radius parameter R/a or increase of thickness
parameter a/h is possibly due to the dominance of either the stiffness or mass effect in the respective
cases.

6. Comparative study of the values of o* for the same or identical values of radius parameter establishes
the superiority of the hypar shell followed by the spherical and the cylindrical shell panels irrespective of
the boundary conditions and the volume fraction index n.
Acknowledgments

The authors are thankful to the AICTE, New Delhi, for providing financial assistance to carry out this
research work under the National Doctoral Fellowship Scheme.

Appendix A

The inertia matrix [m] for the present higher-order theory is given by

m ¼

I1 0 0 0 I2 I3 0 0 I4

0 I1 0 �I2 0 0 I3 �I4 0

0 0 I1 0 0 0 0 0 0

0 �I2 0 I3 0 0 �I4 I5 0

I2 0 0 0 I3 I4 0 0 I5

I3 0 0 0 I4 I5 0 0 I6

0 I3 0 �I4 0 0 I5 �I6 0

0 �I4 0 I5 0 0 �I6 I7 0

I4 0 0 0 I5 I6 0 0 I7

2
66666666666666664

3
77777777777777775

The parameters I1, I3 and (I5, I7) are linear inertia, rotary inertia and higher-order inertia terms, respectively.
The parameters I2, I4 and I6 are the coupling inertia terms and are expressed as follows:

ðI1; I2; I3; I4; I5; I6; I7Þ ¼

Z h=2

�h=2
ð1; z; z2; z3; z4; z5; z6Þrdz,
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where r ¼ ðrc � rmÞ ð2zþ hÞ=2h
	 
n

þ rm and the shape function matrix [N] is given by

N ¼

Ni

Ni

Ni

Ni

Ni

Ni

Ni

Ni

Ni

2
66666666666666664

3
77777777777777775

i ¼ 1, 8 and Ni is the shape function for the node i.
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