
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 318 (2008) 267–278

www.elsevier.com/locate/jsvi
Temporary lag and anticipated synchronization and
anti-synchronization of uncoupled time-delayed chaotic systems

Zheng-Ming Ge�, Yu-Ting Wong, Shih-Yu Li

Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC

Received 11 September 2007; received in revised form 21 March 2008; accepted 29 March 2008

Handling Editor: L.G. Tham

Available online 9 June 2008
Abstract

Without any control scheme and coupling terms, temporary lag and anticipated synchronization and temporary lag and

anticipated anti-synchronization are newly discovered in two identical double Mackey–Glass systems with different initial

conditions. When all initial conditions are positive, the lag synchronization is obtained. The negative initial values make

the time history inverse and temporary lag anti-synchronization occur. The phenomena both appear intermittently.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Since the first idea of synchronizing two identical chaotic systems with different initial conditions was
investigated by Pecorra and Carroll [1], chaos synchronization [2–8] has become an important topic in
engineering science. In Ref. [2], this study demonstrates that chaos synchronization between two different
chaotic systems using active control has been achieved. The Lorenz, Chen and Lü systems have been
controlled to be the new system. In Ref. [3], chaos synchronization of two identical chaotic motions of
symmetric gyros is presented. It has been demonstrated that applying four different kinds of one-way coupling
conditions can synchronize two identical chaotic systems. In Ref. [4], the dynamic behavior of a symmetric
gyro with linear-plus-cubic damping, which is subjected to a harmonic excitation, is studied in this paper. In
Ref. [5], synchronization of feedback method in two identical non-autonomous coupled systems has been
studied. Then the phase effect of two coupled systems and the transient time in unidirectional synchronization
also have been researched. In Ref. [6], the dynamic behavior of electro-mechanical gyrostat system subjected
to external disturbance is studied. In Ref. [7], a general scheme is proposed to achieve chaos synchronization
via stability with respect to partial variables. Three theorems for synchronization of unidirectional coupled
non-autonomous (also autonomous) systems by linear feedback are developed for systems with and without
system structure perturbations. In Ref. [8], the dynamic system of the vibrometer is shown to produce regular
and chaotic behavior as the parameters are varied. When the system is non-autonomous, the periodic and
chaotic motions are obtained by numerical methods. Many effective control schemes have been developed in a
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variety of fields. For example, parametric adaptive control for chaos synchronization has been proposed in
Refs. [9–17]. In Ref. [9], the problem of adaptive control and adaptive synchronization for the chaos
synchronization of two identical dynamo systems with uncertain two parameters is introduced. In Ref. [10], a
more rigorous method (parametric adaptive control) is developed to estimate model parameters by chaos
synchronization and a sufficient condition for parameter identification is drawn for the system with
parameters in linear form. In Refs. [11,12], a method using MICM is first developed to locate all attractors of a
system in a large region of study arbitrarily assigned, which is helpful for the global analysis of the system
never studied before. In Ref. [13], two methods are presented to achieve the synchronization: the adaptive
control and the Gerschgorin’s theorem. The adaptive control and the random optimization method are
investigated to achieve parameters identification in Refs. [14–16]. In Ref. [17], two theorems for adaptive
synchronization of unidirectional and mutual coupled non-autonomous chaotic systems are derived. By
adopting an adaptive law to estimate the Lipschitz constant an adaptive coupling gain is realized. Observer-
based control has been proposed in Refs. [18,19]. This paper [18] is dealing with the performances comparison
of two multivariable observer-based controllers of a catalytic RFR used to decrease noxious VOC amount
released in the atmosphere. In Ref. [19], three control design techniques, adaptive observer-based fuzzy control
design, variable structure control algorithm and disturbance attenuation theory are combined together to
construct hybrid indirect adaptive observer-based robust tracking control schemes. Variable structure control
has been proposed in Refs. [20,21]. A discrete nonlinear sliding mode variable structure approach to
implement the mutual synchronization of two globally coupled Henon map lattice (HML) systems is presented
in Ref. [20]. A new variable structure control (VSC) scheme to deal with synchronization of chaotic systems
with uncertainties is presented in Ref. [21]. Active control has been proposed in Refs. [22–26]. In Ref. [22], they
demonstrate that chaos in a Lorenz system of equations can be easily controlled using a sequential controller.
In Ref. [23], an adaptive controller is derived based on Lyapunov stability theory in order to overcome the
limitation of active control scheme, which can make both Rossler and Chen systems be synchronized in the
presence of system’s unknown parameters. In Ref. [24], a method generalizing active control to phase and anti-
phase synchronization is presented and simulate it by using Lorenz, Rossler, and Chen systems. In Ref. [25],
active control theory is using to synchronize two identical or different chaotic systems. The Lü system is
controlled to be Lorenz system. The Lü system is controlled to be Chen system. Also, Chen system is
controlled to be Lorenz system. The aim of this Letter [26] is to apply active control to synchronize both
Rossler and Chen dynamical systems. Anti-control has been proposed in Refs. [27–33]. In Ref. [27], anti-
control of chaos for a rigid body has been studied in the paper. For certain feedback gains, a rigid body can
easily generate chaotic motion. Basic dynamical behaviors, such as symmetry, invariance, dissipativity and
existence of attractor, are also discussed. The dynamic system of the suspended track with moving load system
has been studied in Ref. [28]. The synchronization of the master and slave system is studied. In Ref. [30], anti-
control of chaos is achieved by adding constant term, periodic term, impulse term, time-delay term and
adaptive control. In Ref. [30], chaos anti-control and synchronization of a 2-degrees-of-freedom loudspeaker
system are researched by many methods. First, a 2-degrees-of-freedom loudspeaker system model and states
equations of motion for it are introduced. Next, the bifurcation diagram and the Lyapunov exponent are
expressed by numerical analysis. In Ref. [31], anti-control of chaos is studied via adding a constant torque, a
x|x| term, and various periodic waves, such as the square wave, the triangle wave, and the sawtooth wave. In
Ref. [32], an autonomous hexagonal centrifugal governor system is studied. It plays an important role in many
rotational machines such as diesel engine, steam engine and so on. Two different procedures, linear and
nonlinear controllers with certain feedback gain are proposed to anti-control. The periodic and chaotic
motion of the autonomous system with time-delay is obtained by the numerical methods such as phase
trajectory, time history and power spectrum in Ref. [33]. Nonlinear control has been proposed in Refs. [34–36]
and so on. In Ref. [34], modification based on Lyapunov stability theory to design a controller is proposed in
order to overcome this limitation. The synchronization can be robustly achieved without the requirement to
calculate the conditional Lyapunov exponents. In Ref. [35], the chaotic synchronization of the chaotic system
devised by Lü et al. is investigated. A class of novel nonlinear control scheme for the synchronization is
proposed, and the synchronization is achieved by the Lyapunov stability theory. In Ref. [36], nonlinear
control method is used to synchronize two identical or different chaotic systems, and determine the controller
based on Lyapunov stability theory. Then the method is simulated by using two identical Lü systems and two
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different chaotic systems. The applications of chaos synchronization are implemented extensively including
secure communications, chemical, physical, and biological systems and neural networks.

Recently, the concept of synchronization has been extended to the scope, such as generalized, lag,
anticipated, phase and anti-synchronization. The basic synchronization called complete synchronization is
that the state vectors of the first system x(t) is equal to the state vectors of the second system y(t):y(t) ¼ x(t).
The lag synchronization [37] is that the state vector of the second system y delay that of driver system
x:y(t) ¼ x(t�T) with positive T. If T is negative, we have anticipated synchronization. If the synchronizations
are temporary and intermittent, they are called temporary lag synchronization (TLS) and temporary
anticipated synchronization (TAS). Lag anti-synchronization [38] means y(t) ¼ �x(t�T). When T is negative,
we have anticipated anti-synchronization. If they are temporary and intermittent, they are called temporary
lag anti-synchronization (TLAS) and temporary anticipated anti-synchronization (TAAS) [39].

It is discovered that TLS, TAS and TALS, TAAS appear for two identical double Mackey–Glass systems,
without any control scheme or coupling terms, but with different initial conditions.

The rest of this paper is organized as follows. In Section 2, temporary lag and anticipated synchronizations
(TLS, TAS) and temporary lag and anticipated anti-synchronization (TALS, TAAS) are described. In
Sections 3 and 4, simulations of TLS, TAS, TLAS and TAAS for two identical double Mackey–Glass systems
with different initial values are given. Finally, some conclusions are given in Section 5.

2. Temporary lag and anticipated synchronization and temporary lag and anticipated anti-synchronization

Consider the first time-delay chaotic system

_x ¼ f ðx; xt; tÞ, (1)

and second time-delay chaotic system

_y ¼ f ðy; yt; tÞ, (2)

where x; y 2 Rn are n-dimensional state vectors, xt ¼ x(t�t) are corresponding time-delay state vectors, and
f : Rn ! Rn defines a vector function in n-dimensional space. The error are defined as e ¼ x(t�T)�y(t). If the
following conditions hold, the systems are in temporary lag synchronization:

ei ¼ xiTj
� yi ¼ 0; i ¼ 1; 2; . . . ; ppn; j ¼ 1; 2; . . . ;m for tiTj1

ptptiTj2
, (3)

where xi, yi are the state vectors of the system, Tj is the time which xi lag behind yi in the jth intervals. When Tj

is negative, we have temporary anticipated synchronization.
In the case of anti-synchronization, the states of the systems which have opposite signs, the error

e ¼ x(t�T)+y(t) will converge to zero. Therefore, we can say the temporary lag anti-synchronization is
achieved when the following conditions are satisfied:

ei ¼ xiTj
þ yi ¼ 0; i ¼ 1; 2; . . . ; ppn; j ¼ 1; 2; . . . ;m for tiTj1

ptptiTj2
, (4)

where xi, yi are the state vectors of the system, Tj is the time which xi lag behind yi in the jth intervals. When Tj

is negative, we have temporary anticipated anti-synchronization.

3. The lag and anticipated synchronization of two identical double Mackey–Glass systems

We consider two double Mackey–Glass systems which consist of two coupled Mackey–Glass equations [40]:

_x1 ¼
bx1t

1þ xn
1t
� rx1; _x2 ¼

bx2t

1þ xn
2t
� rx2 � x1, (5)

and

_y1 ¼
by1t

1þ yn
1t
� ry1; _y2 ¼

by2t

1þ yn
2t
� ry2 � y1. (6)

The system is a model of blood production of patients with leukemia. The variables x1, x2 are the
concentration of the mature blood cells in the blood, and x1t, x2t are presented the request of the cells which is
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Fig. 1. The phase portraits and the bifurcation diagram for double Mackey–Glass system.
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made after t seconds, i.e. xit ¼ xi(t�t) (i ¼ 1, 2). The time delay t indicates the difference between the time of
cellular production in the bone marrow and of the release of mature cells into the blood. According to the
observations, the time t is large in the patients with leukemia and the concentration of the blood cells becomes
oscillatory.

In our study, we keep the delay time fixed in 20 s (t ¼ 20) and the parameters are shown as follows: b ¼ 0.2,
r ¼ 0.1, and n ¼ 10. The system is chaotic in foregoing conditions as shown in Fig. 1 [41]. All the numerical
simulations are implemented by Matlab. The initial conditions we choose are constant, i.e. the variable x(t+y)
maintains a constant for all yA(�t, 0).

Fig. 2 shows the time histories of double Mackey–Glass system with initial conditions
(x10, x20) ¼ (0.001, 0.001), (y10, y20) ¼ (0.0015, 0.0015), respectively. Because the similar characteristics exist
for x1, y1 and for x2, y2, we only draw the time histories of x1, y1 (Fig. 2(a)–(f)) and the time histories of error,
e1 ¼ x1Tj

� y1 (Fig. 2(g)–(l)). From Fig. 2, the temporary lag and anticipated synchronizations appear
intermittently. Lag synchronizations are more than anticipated synchronization. In Table 1, we marshal the
length of the temporary lag (anticipated) synchronization and the lag (anticipated) of x1 to y1, which are
varied in each intervals. There are four lag synchronous intervals and two anticipated synchronous intervals
between 30,000 s. Notice that the longest interval occur at the first interval, about 1200 s. Others are hundreds
seconds long.

We also find the trend of decreasing the length of the temporary synchronization with increasing
initial conditions. As the initial values increase, the time intervals for temporary lag or anticipated
synchronization decrease. Table 2 shows the lengths of the first time interval where the initial values are varied
from 0.00001 to 0.1, L1 and L2 indicate the length of first temporary synchronization of x1, y1 and of x2, y2,
respectively. From the curve fitting presented in Figs. 3 and 4, the relations between L1, L2 and x10, x20 are
obtained as follows:

L1 ¼ �229:93 lnðx10Þ � 262:06, (7)

and

L2 ¼ �229:88 lnðx20Þ � 261:58. (8)

They are essentially identical.

4. The lag and anticipated anti-synchronization of two identical double Mackey–Glass systems

In this section, we add one, two, three or four minus sign to the initial conditions, TLS and TLAS occur
alternatively.
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Table 1

The length of temporary lag (anticipated) synchronization and the lag (anticipated) of x1, x2 to y1, y2

x1, y1 x2, y2

Time intervals (s) Length of temporary

synchronization (s)

Lag of x1

to y1 (s)

Time intervals (s) Length of temporary

synchronization (s)

Lag of x2

to y2 (s)

1 0–1187 1187 17 0–1194 1194 17

2 8730–9215 485 37 8740–9360 620 38

3 14630–15000 370 �8 14640–15010 370 �8

4 18103–18611 508 77 18111–18658 547 77

5 19387–19983 596 55 19390–19990 600 55

6 28580–29010 430 �7 28530–28980 450 �6

Table 2

The lengths of the first time intervals of TLS and TAS where the initial values are varied from 0.00001 to 0.1

Initial conditions (x10 ¼ x20, y10 ¼ y20) L1 L2

(10�5, 1.5� 10�5) 2593 2593

(5� 10�5, 7.5� 10�5) 1759 1759

(10�4, 1.5� 10�4) 1683 1683

(5� 10�4, 7.5� 10�4) 1806 1806

(10�3, 1.5� 10�3) 1187 1186

(5� 10�3, 7.5� 10�3) 843 843

(0.01, 0.015) 1031 1033

(0.05, 0.075) 382 382

(0.1, 0.15) 231 231
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Fig. 3. The curve fitting of initial condition x0 to the length of temporary lag or anticipated synchronization L1.
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Table 3

The time histories of double Mackey–Glass system with negative initial values

Case Initial conditions x1: blue, y1: red X2: blue, y2: red

0 (0.001, 0.001), (0.0015, 0.0015)

Lag synchronization Lag synchronization

1 (�0.001, 0.001), (0.0015, 0.0015)

Lag anti-synchronization Lag anti-synchronization

2 (0.001, 0.001), (0.0015, 0.0015)

Lag synchronization Lag synchronization

3 (0.001, 0.001), (�0.0015, 0.0015)

Lag anti-synchronization Lag anti-synchronization

4 (0.001, 0.001), (0.0015, �0.0015)

Lag synchronization Lag synchronization

Z.-M. Ge et al. / Journal of Sound and Vibration 318 (2008) 267–278 273
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Table 3 (continued )

Case Initial conditions x1: blue, y1: red X2: blue, y2: red

5 (�0.001, �0.001), (0.0015, 0.0015)

Lag anti-synchronization Lag anti-synchronization

6 (�0.001, 0.001), (�0.0015, 0.0015)

Lag synchronization Lag synchronization

7 (�0.001, 0.001), (0.0015, 0.0015)

Lag anti-synchronization Lag anti-synchronization

8 (0.001, �0.001), (�0.0015, 0.0015)

Lag anti-synchronization Lag anti-synchronization

9 (0.001, �0.001), (0.0015, �0.0015)

Lag synchronization Lag synchronization

Z.-M. Ge et al. / Journal of Sound and Vibration 318 (2008) 267–278274
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Table 3 (continued )

Case Initial conditions x1: blue, y1: red X2: blue, y2: red

10 (�0.001, �0.001), (�0.0015, 0.0015)

Lag synchronization Lag synchronization

11 (�0.001, �0.001), (0.0015, �0.0015)

Lag anti-synchronization Lag anti-synchronization

12 (�0.001, �0.001), (�0.0015, �0.0015)

Lag synchronization Lag synchronization
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Table 3 shows the results of the simulations. There are interesting phenomena. The minus sign makes the
original time history inverse but with same magnitude, i.e. two time histories are symmetric to the abscissa.
From Case 1–4, it is found that the inverse effect only appears when the initial condition x10 or y10 is negative.
On the contrary, it does not work for x20 and y20. The trajectories of x1 and x2 are upside down as x10 is
negative, and the trajectories of y1 and y2 show the similar characteristics with negative y10. In these two cases,
the lag anti-synchronizations exist. Because the negative initial conditions x20, y20 have no influence on the
systems, there are still lag synchronizations in Case 2 and 4. Case 5–9 show the results where there are two
negative initial conditions at the same time. In Case 5 and 7, only the inverses of x1 and x2 occur, so two
systems are in lag anti-synchronization. Case 6 and 9 maintain lag synchronization because both trajectories
are opposite in the former case and no inversion exists in the latter case. Case 8 shows the lag anti-
synchronization where the trajectory of y1 and y2 is reversed. Finally, the simulations where there are three
and four negative initial values, are presented respectively. It is easy to know that Case 10 is the same as Case 6
and Case 11 and Case 1 are quite alike.

According to the symmetric relations between cases with negative initial conditions and the original cases,
the lengths of the lag anti-synchronizations and the lags of x1 to y1 are all invariant, just as that in Table 1
which is listed in Section 2.

The time histories and the error dynamics e with initial conditions (x10, y10) ¼ (�0.001, 0.001),
(x20, y20) ¼ (0.0015, 0.0015) are shown in Fig. 5. Comparing with Fig. 2, nothing is changed except the
inverse of x1 and y1.
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5. Conclusions

In this paper, temporary lag or anticipated synchronization and the lag or anticipated anti-synchronization
of double Mackey–Glass systems with small and similar initial conditions are discovered. For the first interval
of TLS, when all initial values are positive, temporary lag synchronizations are found. The trajectory will be
reversed if the initial condition of x1 or y1 is negative. In these cases, the lag or anticipated anti-
synchronization exists. From the results of simulation, we find six temporary lag (anticipated) synchronization
intervals in 30,000 s. The numerical simulations of temporary lag and anticipated synchronization and anti-
synchronization are showed in this paper. In fact, our new double Mackey–Glass systems with different delay
time t can be used in transfusion of blood between two persons. Our future work will study model for different
persons with different initial conditions in transfusion of blood. The theoretical analysis and its applications
should be open for further work in the future.
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Chaos, Solitons and Fractals 25 (2005) 1049–1056.

[3] H.-K. Chen, T.-N. Lin, Synchronization of chaotic symmetric gyros by one-way coupling conditions, ImechE Part C: Journal of

Mechanical Engineering Science 217 (2003) 331–340.

[4] H.-K. Chen, Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, Journal of Sound and Vibration

255 (2002) 719–740.

[5] Z.-M. Ge, T.-C. Yu, Y.-S. Chen, Chaos synchronization of a horizontal platform system, Journal of Sound and Vibration 268 (2003)

731–749.

[6] Z.-M. Ge, T.-N. Lin, Chaos, chaos control and synchronization of electro-mechanical gyrostat system, Journal of Sound and

Vibration 259 (2003) 585–603.

[7] Z.-M. Ge, Y.-S. Chen, Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, Solitons and Fractals 21

(2004) 101–111.

[8] Z.-M. Ge, C.-C. Lin, Y.-S. Chen, Chaos, chaos control and synchronization of vibromrter system, Journal of Mechanical Engineering

Science 218 (2004) 1001–1020.

[9] A. El-Gohary, R. Yassen, Adaptive control and synchronization of a coupled dynamo system with uncertain parameters, Chaos,

Solitons and Fractals 29 (5) (2006) 1085–1094.

[10] Y. Yang, X.-K. Ma, H. Zhang, Synchronization and parameter identification of high-dimensional discrete chaotic systems via

parametric adaptive control, Chaos, Solitons and Fractals 28 (2006) 244–251.

[11] Z.-M. Ge, P.-C. Tzen, S.-C. Lee, Parametric analysis and fractal-like basins of attraction by modified interpolates cell mapping,

Journal of Sound and Vibration 253 (3) (2002) 711–723.

[12] Z.-M. Ge, S.-C. Lee, Parameter used and accuracies obtain in MICM global analyses, Journal of Sound and Vibration 272 (2004)

1079–1085.

[13] Z.-M. Ge, W.-Y. Leu, Chaos synchronization and parameter identification for loudspeaker system, Chaos, Solitons and Fractals 211

(2004) 231–247.

[14] Z.-M. Ge, C.-M. Chang, Chaos synchronization and parameter identification for single time scale brushless DC motor, Chaos,

Solitons and Fractals 20 (2004) 889–903.

[15] Z.-M. Ge, J.-K. Lee, Chaos synchronization and parameter identification for gyroscope system, Applied Mathematics and

Computation 63 (2004) 667–682.

[16] Z.-M. Ge, J.-W. Cheng, Chaos synchronization and parameter identification of three time scales brushless DC motor, Chaos, Solitons

and Fractals 24 (2005) 597–616.

[17] Z.-M. Ge, Y.-S. Chen, Adaptive synchronization of unidirectional and mutual coupled chaotic systems, Chaos, Solitons and Fractals

26 (2005) 881–888.

[18] D. Edouard, P. Dufour, H. Hammouri, Observer based multivariable control of a catalytic reverse flow reactor: comparison between

LQR and MPC approaches, Computers and Chemical Engineering 29 (2005) 851–865.

[19] H.-F. Ho, Y.-K. Wong, A.-B. Rad, W.-L. Lo, State observer based indirect adaptive fuzzy tracking control, Simulation Modelling

Practice and Theory 13 (2005) 646–663.



ARTICLE IN PRESS
Z.-M. Ge et al. / Journal of Sound and Vibration 318 (2008) 267–278278
[20] X. Yin, Y. Ren, X. Shan, Synchronization of discrete spatiotemporal chaos by using variable structure control, Chaos, Solitons and

Fractals 14 (2002) 1077–1082.

[21] C.-C. Wang, J.-P. Su, A novel variable structure control scheme for chaotic synchronization, Chaos, Solitons and Fractals 2 (2003)

275–287.

[22] E.-W. Bai, K.-E. Lonngren, Sequential synchronization of two Lorenz systems using active control, Chaos, Solitons and Fractals 7

(2000) 1041–1044.

[23] Z. Li, C.-Z. Han, S.-J. Shi, Modification for synchronization of Rossler and Chen chaotic systems, Physics Letters A 301 (3/4) (2002)

224–230.

[24] M.-C. Ho, Y.-C. Hung, C.H. Chou, Phase and anti-phase synchronization of two chaotic systems by using active control, Physics

Letters A 296 (1) (2002) 43–48.

[25] M.-T. Yassen, Chaos synchronization between two different chaotic systems using active control, Chaos, Solitons and Fractals 23

(2005) 153–158.

[26] H.-N. Agiza, M.-T. Yassen, Synchronization of Rossler and Chen chaotic dynamical systems using active control, Physics Letters A

278 (2001) 191–197.

[27] H.-K. Chen, C.-I. Lee, Anti-control of chaos in rigid body motion, Chaos, Solitons and Fractals 21 (2004) 957–965.

[28] Z.-M. Ge, H.-W. Wu, Chaos synchronization and chaos anticontrol of a suspended track with moving loads, Journal of Sound and

Vibration 270 (2004) 685–712.

[29] Z.-M. Ge, C.-Y. Yu, Y.-S. Chen, Chaos synchronization and chaos anticontrol of a rotational supported simple pendulum, JSME

International Journal, Series C 47 (1) (2004) 233–241.

[30] Z.-M. Ge, W.-Y. Leu, Anti-control of chaos of two-degree-of-freedom louderspeaker system and chaos system of different order

system, Chaos, Solitons and Fractals 20 (2004) 503–521.

[31] Z.-M. Ge, J.-W. Cheng, Y.-S. Chen, Chaos anticontrol and synchronization of three time scales brushless DC motor system, Chaos,

Solitons and Fractals 22 (2004) 1165–1182.

[32] Z.-M. Ge, C.-I. Lee, Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal

centrifugal governor, Chaos, Solitons and Fractals 282 (2005) 635–648.

[33] Z.-M. Ge, C.-I. Lee, Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-

delay, Chaos, Solitons and Fractals 23 (2005) 1855–1864.

[34] H.-K. Chen, Global chaos synchronization of new chaotic systems via nonlinear control, Chaos, Solitons and Fractals 23 (4) (2005)

1245–1251.

[35] Ju.-H. Park, Chaos synchronization of a chaotic system via nonlinear control, Chaos, Solitons and Fractals 23 (2005) 153–158.

[36] L.-L. Huang, R.-P. Feng, M. Wang, Synchronization of chaotic systems via nonlinear control, Physics Letters A 320 (4) (2004)

271–275.

[37] E.M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Lag synchronization in time-delayed systems, Physics Letters A 292 (2002) 320–324.

[38] G.-H. Li, S.-P. Zhou, An observer-based anti-synchronization, Chaos, Solitons and Fractals 29 (2006) 495–498.

[39] H.-K. Chen, L.-J. Sheu, The transient ladder synchronization of chaotic systems, Physics Letters A 355 (2006) 207–211.

[40] M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science 197 (4300) (1977) 287–289.

[41] Z.-M. Ge, Y.-T. Wong, Chaos in integral and fractional order double Mackey–Glass systems, Mathematical Methods, Physical

Models and Simulation in Science and Technology (2006).


	Temporary lag and anticipated synchronization and �anti-synchronization of uncoupled time-delayed chaotic systems
	Introduction
	Temporary lag and anticipated synchronization and temporary lag and anticipated anti-synchronization
	The lag and anticipated synchronization of two identical double Mackey-Glass systems
	The lag and anticipated anti-synchronization of two identical double Mackey-Glass systems
	Conclusions
	Acknowledgments
	References


