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Abstract

The classical method of separation of variables in conjunction with the translational addition theorem for cylindrical
wave functions are employed to obtain an exact solution for two-dimensional interaction of a harmonic plane acoustic
wave with an infinitely long (visco)elastic circular cylinder which is eccentrically coated by another (visco)elastic material
and is submerged in an ideal unbounded acoustic medium. The novel features of Havriliak—-Negami model for dynamic
viscoelastic material behaviour are used to take the rheological properties of the coating (and/or core) material into
consideration. The analytical results are illustrated with numerical examples in which a steel rod eccentrically coated with
(an eccentric steel shell filled with) dissipative materials of distinct viscoelastic properties is insonified by plane sound waves
at selected angles of incidence. The effects of incident wave frequency, angle of incidence, core eccentricity and dynamic
viscoelastic material properties on the backscattered form function spectra are examined. Limiting cases are considered
and fair agreements with available solutions are obtained.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous researchers have investigated the problem of acoustic scattering from coated obstacles
submerged in an unbounded fluid medium. In particular, the problem of the interaction of acoustic waves with
fluid-loaded cylinders and cylindrical shells with an external compliant layer has long been of practical
interest. For example, Junger and Garrelick [1] applied a Kirchhoff-type formulation to compute the
backscattering cross sections of rigid cylinders covered with partial coatings of arbitrary impedance.
Gaunaurd [2,3] used the approach developed by Doolittle and Uberall [4] in conjunction with the
Kelvin—Voigt viscoelastic model to solve the problem of an infinite hollow elastic cylinder covered with an
ideal layer of viscoelastic material. Neubauer [5] utilized results of the classical solution to the problem of
reflection by a two-layer cylindrical shell for the determination of the material properties of a reflection-
reduction coating, including inherent wave attenuation effects in both layers. Flax and Neubauer [6] developed
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a mathematical model to predict the wave pattern resulting from a plane acoustic wave scattered by a two-
layered absorptive cylindrical shell with different fluid media inside and outside. Poruchikov and Stepanov [7]
examined the effect of acoustic waves on a rigid immobile infinite cylinder covered with a thin compressible
coating and immersed in an unbounded fluid. Ayres and Gaunaurd [8] studied the acoustic wave scattering
from a hollow elastic cylinder covered with a viscoelastic coating, and calculated the mode shapes of the
resonances in the low-frequency range. Sinai and Waag [9] computed the scattered pressure field from a fluid-
loaded two-layered cylinder for a range of frequencies, material parameters, and emitter and detector
functions. Adamova and Kanibolotskii [10] analysed the problem of the optimal design of a cylindrically
laminar sound-reflecting shield for minimal sound transmission into a multilayered fluid-filled infinite cylinder
subjected to a plane harmonic wave of unit amplitude perpendicular to the axis of the cylinder. Ferri et al. [11]
addressed the scattering of acoustic plane waves from submerged cylinders that are partially covered with a
compliant (pressure-release) coating. Sinclair and Addison [12] developed the equations of the scattering of a
plane acoustic/elastic wave from a two-layered cylinder embedded in a solid or a fluid medium. Laulagnet and
Guyader [13] used asymptotic expansions to present the mathematical analysis and numerical results for the
vibroacoustic behaviour of a coated finite cylindrical shell. Laulagnet and Guyader [14] subsequently
considered acoustic radiation from partially coated finite shells and developed results for the total radiated
acoustic power and the surface average velocity response. Partridge [15] applied the deformed cylinder method
(DCM) to study acoustic scattering from elastic bodies (shells) that are covered to varying degrees by a
viscoelastic absorbing layer. Honarvar and Sinclair [16] developed a detailed formulation for the scattering of
an obliquely incident plane acoustic wave from a submerged clad rod. They calculated the effects of variations
in the cladding thickness on both the backscattered pressure spectrum and individual normal modes of
vibration. Ginsberg [17] considered the two-dimensional problem of scattering of a plane wave incident on an
infinite cylinder that is partially coated with strips of pressure-release material and presented a quantitative
analysis of the global effect on acoustic scattering of viscosity effects. Cuschieri and Feit [18] examined the
influence of a partial coating by a normally reacting (impedance) layer on the acoustic radiation from a fluid-
loaded, cylindrical shell of infinite extent and excited by either a line force or an incident plane acoustic wave.
Luo et al. [19] used the Donnell shell theory to present an analysis of sound radiation from a ring-stiffened
cylindrical shell coated with a viscoelastic layer. Fan et al. [20] assessed a resonance acoustic spectroscopy
technique for non-destructive evaluation of explosively welded clad rods, modelled as two-layered cylinders
with a spring—mass system to represent a thin interfacial layer containing the weld. Hasheminejad and Safari
[21] presented a rigorous analysis and numerical results for scattering of acoustic waves from a viscoelastically
coated cylinder submerged in a viscous fluid medium. Ivanov [22] investigated the direct and inverse problems
of plane wave diffraction by a circular cylinder with a perforated coating. He selected the parameters of the
perforated coating so as to ensure a given level of suppression for the field diffracted by the cylinder in the
context of the inverse problem. Mitri [23] developed theoretical analysis for the acoustic radiation force due to
incident plane progressive waves on elastic cylindrical shells covered with a layer of viscoelastic material. He
performed numerical calculations of the radiation force function for stainless steel cylindrical shells coated by
a phenolic polymer-type material and examined the effect of sound absorption by the viscoelastic layer.
Cuschieri [24] considered scattering and radiation of acoustic waves from a fluid-loaded infinite cylindrical
shell with an external compliant layer, and established the consistency between the scattering results from the
normally reacting impedance layer model of zero thickness to those from the multilayer shell model. In a
closely related problem, Barshinger and Rose [25] investigated the propagation of ultrasonic guided waves in
an elastic hollow cylinder with a viscoelastic coating, with application in non-destructive inspection of
viscoelastically coated piping and tubing.

Analytical solutions of interior or exterior boundary value problems in various fields such as potential
theory, acoustics and electromagnetism, are strictly dependent on the shape of boundaries. In particular, when
multiple interfaces are present in a wave field, there is an interaction between them due to cross scattering.
Several researchers have studied the wave interaction problems involving eccentric cylindrical boundaries.
Most of these researchers have utilized classical separation of variables techniques in conjunction with
translational addition theorems for cylindrical wave functions. Roumeliotis et al. [26] was perhaps the first
who solved the problem of scattering of electromagnetic waves from an eccentrically coated infinite metallic
cylinder. Shen [27] analysed electromagnetic scattering from an imperfectly conducting cylinder embedded in a
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non-concentric chiroplasma cylinder. Morse et al. [28] showed that acoustic scattering by a non-concentric
circular cylinder exhibits scattering processes not present in the simple case of uniform thickness. Roumeliotis
and Kakogiannos [29] treated the scattering of a plane acoustic wave normal to the axis of an infinite
impenetrable or penetrable cylinder of acoustically small radius, eccentrically coated by a penetrable cylinder.
Danila et al. [30,31] used the generalized Debye series expansion (GDSE) method for calculation of the
scattered field due to a plane wave incident on concentric or eccentric fluid—solid cylindrical interfaces.
Roumeliotis and Savaidis [32] investigated the scattering of a plane electromagnetic wave by an infinite-
circular dielectric cylinder, containing eccentrically an elliptic metallic one. Yin et al. [33] examined the
multiple scattering from two infinitely long, parallel, non-overlapping circular impedance cylinders
eccentrically coated with Faraday chiral media at normal incidence. Tanyer and Olsen [34] used perturbation
theory to obtain a closed-form expression for the field produced by a plane wave incident on an infinitely long
conducting cylinder, coated with a lossy dielectric of non-uniform thickness. Savaidis and Roumeliotis [35]
treated the scattering of a plane electromagnetic wave by an infinite elliptic dielectric cylinder, coating
eccentrically a circular metallic or dielectric inner cylinder. Yousif and Elsherbeni [36] presented the analytical
solution for the scattering of electromagnetic plane waves from an infinitely long homogeneous cylinder of
arbitrary material, in an eccentric coating at oblique incidence. Simao et al. [37] used the Debye series
formalism to analyse the resonant scattering of light by a dielectric cylinder with an eccentric cylindrical
metallic inclusion. Hasheminejad and Azarpeyvand [38] presented an exact analysis of acoustic radiation from
a vibrating cylindrical source eccentrically suspended within a fluid cylinder. Savaidis and Roumeliotis [39]
investigated scattering of a plane electromagnetic wave by an infinite-circular dielectric cylinder coating
eccentrically an elliptic dielectric one. Hu et al. [40] developed an analytical technique, referred to as the
scattering matrix method (SMM), to analyse the scattering of a planar wave from a conducting cylinder
coated with non-uniform magnetized ferrite. Just recently, Mushref [41] developed series solution for
electromagnetic (TM) wave scattering by an eccentrically coated circular cylinder in matrix form.

The above review clearly indicates that while there exists a notable body of literature on wave scattering
from coated cylindrical obstacles, rigorous analytic or numerical solutions for sound wave scattering from a
compound (visco)elastic cylinder with an eccentric core seem to be non-existent (see Fig. 1). Our primary goal
is to fill this gap. Therefore, in this paper, we employ the novel features of Havriliak—Negami model for
viscoelastic material behaviour, which is known to be among the most successful descriptions for the
frequency dependence of the complex modulus of polymeric materials in the glass transition region [42,43],
along with the translational addition theorem for cylindrical wave functions to formulate an exact analysis for
the proposed problem. Attention is focused on the effects of core eccentricity as well as the dynamic
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Fig. 1. Problem geometry.
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viscoelastic material properties on the backscattering form function spectra. The proposed model is of interest
essentially due to its inherent value as a canonical problem in structural acoustics. The presented exact
solution can form an invaluable guide for assessment of effect of the coating non-uniformity (core eccentricity)
on the scattered sound field of compound cylindrical components including viscoelastic materials. It is of
important practical value in non-destructive characterization of clad rods or wires [20,44—50], cylindrical shells
with dissipative fillings [51-53], coated optical fibers [54,55], and acoustic waveguides [56—59]. It can also serve
as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.

2. Formulation
2.1. Acoustic field equations

Consider a plane compressional acoustic wave normally incident upon a compound cylinder defined by two
non-concentric cylindrical surfaces of radii “a” and “b” immersed in an ideal boundless fluid medium. The
problem geometry is shown in Fig. 1. Two polar coordinate systems (r,,0; i = 1,2) are introduced to describe
the different acoustic fields inside the coated cylinder. The cylinder axes extend to infinity and are parallel.
Their origin-to-origin separation is d, and point P is an arbitrary field point outside the cylinder. The problem
can be analysed by means of the standard methods of theoretical acoustics. Since the surrounding
compressible medium is assumed to be inviscid and ideal (i.e., it cannot support shear stresses), the state of
stress in the fluid is purely hydrostatic and the field equations may conveniently be expressed in terms of a
scalar velocity potential as [60]

v=Vo, p=iopyp, Ve+ke=0, (1)

where k = w/cy is the wavenumber for the dilatational wave, pq is the fluid density, v is the fluid particle
velocity vector, p is the acoustic pressure, ¢y is the speed of sound in the fluid, and in view of the fact that the
incident wave is time-harmonic with the circular frequency w, we have assumed harmonic time variations
throughout with the e’ dependence suppressed for simplicity.

The dynamics of the problem may be expressed in terms of appropriate scalar potentials that can be
represented in the form of an infinite generalized Fourier series whose unknown scattering coefficients are to
be determined by imposing the proper boundary conditions. The incident wave in the cylindrical coordinate
system of the outer cylinder (r,0;) may be written in the standard form [21]

oo
Pine. (11,01, 0) = @y Y 1" T(kry)e" "), 2)

n=—00
where ¢ is amplitude of the incident wave, o is the angle of incidence, and J,, is the cylindrical Bessel function

of the first kind [61]. Furthermore, the acoustic field scattered by the compound cylinder, is conveniently
expressed in the form [21]

Pucat (11, 01,0) = > Ap(@w)H,(kry) ", (3)

n=—0o0
where A4,(w) is an unknown scattering coefficient, H,(x) = J,,(x) +1Y,(x) is the cylindrical Hankel function of

order n [61]. Also, using Eq. (1), the radial velocity and pressure in the acoustic fluid are, respectively, written
in terms of the total acoustic field potential ¢ = @jnc. T Pscar. aS

a > n oyl i —0 = in
v, (r1, 01, 0) = a—(f = ko, n;wl J (ke e @1=20) 4 kn;w An(0)H (kry)e™, (4a)
plr1, 01, 0) = iopyp = wpypy Y I Tu(kr)e" " Fiwpy > An(@)H (ki)™ (4b)
n=—00 n=—oo

where prime denotes differentiation with respect to the argument.
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2.2. Viscoelastic field equations

Accurate mathematical modelling of materials manifesting quite definite rheological properties (e.g.,
viscoelastic damping materials) is difficult mainly because their measured dynamic properties are frequency
and temperature dependent, and can also depend on the type of deformation and amplitude. Consequently,
mathematical models describing the behaviour of viscoelastic materials cannot be clearly linked to the physical
principles involved and thus empirical approaches are used. The most popular approach, called the structural
damping model, uses complex constants as the material moduli. Strictly speaking, for viscoelastic and
isotropic materials, two independent complex moduli are necessary for mechanical characterization; for
example the complex Young’s modulus E*(w) = E'(w)+iE’(w) and the complex shear modulus
G*(w) = G(w)+iG"(w). Both moduli, in principle, are frequency dependent. The main difficulty is the
simultaneous presences of the Young’s and shear complex moduli as well as the Poisson ratio. Practically,
however, for viscoelastic isotropic materials the hypothesis of a constant (frequency-independent) and real
Poisson ratio is often adopted [62].

The frequency dependent complex modulus G*(w) = G'(w)+iG"(w) of a polymer has several commonly
observed characteristics: a rubbery plateau (Gy) at low frequencies, a glassy plateau at high frequencies (G.,),
and a rapidly changing modulus in the vicinity of the glass transition. The glass transition region is also
characterized by a peak in the loss modulus (G”) and a peak in the loss factor, n(w) = G"(0)/G' (®) (e.g., see
Fig. 2). There have been several analytical models for this behaviour suggested in the literature with the most
important expressions being the single relaxation time model of Cole-Cole [63], the Davidson—Cole method
[64] which includes asymmetric frequency behaviour, and finally the Havriliak—Negami (HN) model [65]
which includes aspects of the previous two models (i.e., it is a generalization of the single relaxation time
model that combines both the broadening of the Cole—Cole model and the asymmetry of the Davidson—Cole
model). Hartmann et al. [42] has shown that the H-N model can accurately describe the dynamic mechanical
behaviour of polymers, including the height, width, position, and shape of the loss factor peak. Therefore, in
the glass transition region, the real and imaginary parts of the complex shear modulus, G*(w) may
advantageously be specified according to Havriliak—Negami model as [42]:

(Go = Gxo) cos(p9)
[1 4+ 2w7t* cos y + w?*2]P/2

G'(w) = (G — Go) sin(BY)
[1 4 207" cos y + w222’

G(w) =Gy +

)
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Fig. 2. The corresponding fit of HN equations for real part of the shear modulus and the loss factor for the selected polymers in a wide

frequency range (—— m, polymer 2; ——— m, polymer 10; ------ 1, polymer 16; ——, polymer 2; ----- G, polymer 10; ------ G,
polymer 16).
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where y = an/2, and the loss factor is specified by
G'(w) (1 — X)sin(fI)
G'(®)  [14 201 cos y + 021 — (1 = X)cos(B9)

n(w) = (6)

in which
and 9 _, o't*siny
X =Gy/Gy, and Y(w)=tan H—Tacosy'
Here we note that n(w) depends only on the ratio X = Gy/G,, not on their individual values. Furthermore, G,
(relaxed modulus) and G, (unrelaxed modulus) are the limiting values of the shear modulus at low
and high frequencies, respectively, ©( = 1/wg) is the relaxation time associated with the polymer glass
transition centre frequency (loss factor peak), o is a dimensionless parameter (0 <o < 1) that governs the width
of the relaxation, and f is another dimensionless parameter (0<f<1) that governs the asymmetry of the
relaxation.

The viscoelastic material under consideration is assumed to be linear, macroscopically homogeneous, and
isotropic for which the constitutive equation, for harmonic time functions, may be written as [66]

g = A (w)dje + 20 (w)ey, "

where 6;; is Kronecker delta symbol, 2¥(w) and p*(w) are complex, frequency-dependent Lame functions
which are determined according to the standard relations

2
@) = 125 G@), i) = GH(w), ®)

in which the real and imaginary parts of the complex shear modulus, G*(w), are specified in Eq. (5). Also, the
wave motion inside the coating or core of the compound viscoelastic cylinder is governed by the classical
Navier’s equation [67]

2

d
a_zlzl — [V 4 (O + fF)V(V - u) )

subject to the appropriate boundary conditions. Here, p is the solid material density, and u is the vector
displacement that can advantageously be expressed as sum of the gradient of a scalar potential and the curl of
a vector potential:

p

u=Vp+Vxy, (10)

with the condition V- = 0, and noting the two-dimensional nature of the problem (i.e., the translational
invariance of the incident sound field along the z-axis of the compound cylinder; see Fig. 1), we may adopt the
simplifying assumption = (0.,0.,4) [21]. The above decomposition enables us to separate the dynamic
equation of motion into the classical Helmholtz equations:

(V + K2 =0,
(V2 + k2 =0, (1D
where k. and k, are complex wavenumbers, known as [66]

ko=l fy =2 (12)

VEFE+um /T Vil

Furthermore, the relevant displacement components in polar coordinates in terms of compressional and
shear wave potentials may simply written as [67]

_0¢ 1oy
r=r i’
1o oy

U =130 3r (13)
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and the corresponding stresses in the viscoelastic compound cylinder are [67]

ou

Oy = 2/1*7' + /I*Sa
or
10u, Oup up
Y _
o0 = H <r 0 o r>’ (19

where ¢ = V.u= V2 = —k?¢.
The field expansions for the standing longitudinal and shear waves reverberating inside the coating material
may be written as [21,29]

o0

b= [Bu@)u(klr)e™ + Cul)H,(klr)e™],
=3 DDA K™ + Ey (o) H, (Klr)e™), (15

where B, through E, are unknown transmission coefficients and the index “I”’ throughout the formulation
refers to the parameters associated with the coating material (Fig. 1). Moreover, the field expansions in the
cylindrical core may be represented by [21]

4’11("2, 0, ) = Z Fn((U)Jn(kilrz)ei"OZ,

V(2. 00,0) = Y Gu(@) (ki rp)e™, (16)

in which F, and G, are unknown coefficients and the index “II”’ throughout the formulation refers to the
parameters associated with the core material (Fig. 1). The unknown coefficients 4,,(w) through G, () will be
determined next by imposing the suitable boundary conditions.

2.3. Boundary conditions and addition theorem

The specific boundary conditions that have to be satisfied for the coating medium 7 in contact with the
surrounding acoustic fluid (i.e., at r; = a) are [21]:
v, = —iwuf, p= —afr, 6,{0 =0. 17)
Also, at r, = b, the relevant displacement and stress components in the coating medium 7/ must be equal to
those in the core medium I7 [21]:

r _ I I _ I
ur,() - ur,()’ o-rr,r() - Grr,r()' (18)

Now, to satisfy the above boundary conditions (fulfil orthogonality), a class of mathematical relationships
called the addition theorems may advantageously be employed which in general allows one to translate the
expressions of wave fields in different local coordinate systems into the same coordinate system (i.e., to study
the fields scattered by the various interfaces, all referred to a common origin). Accordingly, we shall express
the cylindrical wave functions of the first (second) coordinate system in terms of cylindrical wave functions of
the second (first) coordinate system by application of the classical form of translational addition theorem for
cylindrical Bessel functions [68]:

e8]
H(kl r)e™ = Y Ty u(kl yd)H (kL )™,
m=—0Q

Tkl e = Z Tnem(kL )T (kL r2)e ™. (19)

m=—00
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The above addition theorem may advantageously be utilized in Eq. (15) to express the field potentials in the
viscoelastic coating merely with respect to the first or the second coordinate system, i.e., we may either write

(1. 00,0) = Y [Bu@)u(k(roe"" + Co(w)H,(kire"™).

N GRIROE _fj [Du()] u(klr)e"™ + E()H,(kbri)e™], (20)
. et
¢1(r2, 02, ) = _fj [Bu()u(kelr2)e™” + Co(w)H y(kbr2) €],
Vi(r2, 05, 0) = fj [Du(@) u(k{r2)e"™ " + E(@)H,(k{r>)e™], 1)
where T
By(@) = fj Bu(oWnakld), )= " Col)yn(kld),
D= S D@ nKld), Eyo)= S Enedunlkld) 22)

Finally, utilization of the expansions (2), (3), (16), (20) and (21) in the boundary conditions (17) and (18)
yields
— kH! (ka)A, + iok'al (k'a)B, + iok'aH! (kK a)C, + wnJ,(k'a)D,
+ onH,(k!a)E, = ¢,i"kaJ! (ka)e "™, (23a)

iwpoHu(ka) Ay + [25 (k) T u(kla) — 205 (k)T (kL )] B,
+ A (kL) Hy(kela) — 205 (k) H)y (k)] Gy — Qimpcf fa®)[J (k) — akl T, (k[a)]D,
— Qing JaP)[H (K a) — ak! H (K'a)|E, = —owpyi"'e " ], (ka), (23b)

2ingi[aklJ! (kK'a) — J, (kK a)]B, + 2inui[ak H' (Kla) — H (K a)]C,
— 13T (k) + a2 (kD)2 T (K a) — ak! g (K a))D,
— Wi H (k) + 22(kK)Y H) (K a) — ak! H! (K a))E, = 0, (23¢c)

k'bJ (,kK!b)B, + K'bH! (K'b)C, + inJ (kK b)D, + inH (k' b)E,
— K'b g (K" b)F, — ind (K" b)G, =0, (23d)

inJ ,(k'b)B, + inH ,(k'b)C,, — kK'bJ (kK!b)D, — kK!bH! (k! b)E,
—ind (k" b)F, + K" bJ (K'b)G, = 0, (23¢)

(32T Wb — 208 (k2T D) B, + [ (KDY HL (K b)Y — 24 (KDY HL(KLB)IC,
— (Qinggy /B ukelb) — bkl (kB)ID,, — (inyc} /b H (k(b) — bk H,(k!D)IE,
— YT, bY — 20 (KT T (D), + Qingd, /D) W (k) — b T (K1 )G, = 0, (230)
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2ingf[bkLT, (kLb) — Ju(kLb)1By + 2iniy bk H  (kb) — H,(k.b)IC,
— WP Tk [b) + B> (k)T (kib) — bkL T, (kID)ID,
— 1 Hy(k[b) + b* (kLY i (klb) — b H, (k!D)]E,
— 2inmgcy [k T (kL' b) — Ju(kL BYIF, + i3 [0 (k! B)
+ DM T (K by — BT (KB G, = 0. (23g)

This completes the necessary background required for the exact analysis of the problem. Next we consider
some numerical examples.

3. Numerical results

In order to illustrate the nature and general behaviour of solution, we consider a number of specific
numerical examples in this section. Realizing the large number of parameters involved here, no attempt is
made to exhaustively evaluate the effect of varying each of them. Thus, our attention is confined to a
particular model. The ambient fluid is assumed to be water at atmospheric pressure and room temperature
(po = 1000 kg/m?, ¢y = 1485 m/s). Two general combinations of constituent materials for the core and coating
are considered. In the first case, the inner core of the compound cylinder is supposed to be fabricated from
steel (py; = 7850 kg/m?, Ay =121.15x 10, Wi = 80.77 x 10”) while the outer coating is elastomeric with a
fixed radius of » = 1 cm for selected thickness ratio parameters (b/a = 0.5, 0.75, 0.9). In the second case, the
situation is reversed, i.e., the eccentric shell is made of steel and is filled with polymeric materials. Hartmann
et al. [42], for the first time, reported all the input parameters necessary for a complete description of
viscoelastic material properties for a set of polyurethane polymers within the context of Havriliak—Negami
theory. The HN fitting parameters for three selected polymers with distinctively different dynamic viscoelastic
properties (i.e., polymers 2, 10 and 16) in the frequency range of our interest are compiled in Table 1. The
corresponding fit of HN equations for shear moduli, (w), and loss factor, n(w), (i.e., the first of Egs. (5) and
(6)) for the selected polymers in a relatively wide frequency range, are displayed in Fig. 2. Polymer 2 is found
to basically have the highest damping (loss factor), and polymer 16 is found to have the lowest damping in the
frequency range of our interest.

Accurate computation of cylindrical Bessel functions is achieved by employing the relevant MATLAB
specialized math functions. Computations for derivatives of cylindrical Bessel functions were accomplished by
utilizing (9.1.27) in the handbook by Abramowitz and Stegun [61]. A MATLAB code was constructed for
treating boundary conditions, to determine the unknown scattering/transmission coefficients, and other
relevant acoustic field quantities as a function of non-dimensional frequency, ka = wa/c,, at selected core
eccentricity parameters, e = d/(a—b). The computations were performed on a Pentium IV personal computer
with a maximum truncation constant of 71,,,x = mmax = 30 to assure convergence in the high-frequency range,
and also in case of high core eccentricity. The convergence of numerical solutions were systematically checked
in a simple trial and error manner, by increasing the truncation constants (i.e., including higher number of
modes) while looking for steadiness or stability in the numerical value of the solutions [38].

Table 1
Havriliak—Negami fitting parameters

Parameter Polymer 2 Polymer 10 Polymer 16
Gy (MPa) 1.558 2.243 1.728

G, (GPa) 3.573 0.8208 1.888

7 (s) 1.574 x 107° 3.107 x 1073 8.268 x 1072
o 0.5332 0.7236 0.6602

p 0.0269 0.0935 0.0574

p (kg/m?) 1092 1106 1170

v 0.4 0.4 0.4
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The most relevant acoustic field quantity is the (far-field) scattering form function amplitude, with the
standard definition [69]:
/&wscat(rl’ 01: CO)
a Pinc.

The two most important incidence angles are oy = 0 (end-on) and oy = /2 (broadside), as they best help to
expose the physics of the problem. Figs. 3-5 displays the variation of the backscattered form function
amplitude with ka for end-on (ag = 0) and broadside (xg = 7/2) incidence upon a compound cylinder with
viscoelastic coating and steel core for selected core eccentricities (e = 0%, 25%, 50%, 75%, 90%), coating
thicknesses (b/a = 0.5,0.75,0.9) and material types (i.e., polymers 2,10,16). Careful examination of the figure
leads to the following important observations. The form function curves associated with polymer 2 (polymers
10 and 16), which is highly (are lightly) damped at intermediate and high dimensionless frequencies (see
Fig. 2), exhibits a distinctively inferior oscillatory (show a highly resonatory) behaviour at these frequencies,
especially in the end-on incidence (op = 0) situation. At very low wavenumbers, there is a single notable sharp
resonance in the response spectra (i.e., at ka =~ 0.18) for the polymer 2 coating, which is clearly linked to its
relatively low level of damping at these frequencies. The response spectra for polymers 10 and 16, on the other
hand, show no sign of a resonance excitation, which is undoubtedly related to their relatively high level of
damping at very low frequencies (see Fig. 2). Core eccentricity has a notable effect on the form function
spectra for the compound cylinder with a relatively thick coating (b/a = 0.5), especially for polymer 10
(polymer 2) in the end-on (broadside) incidence case. Decreasing coating thickness leads to a natural decrease
in the effect of core eccentricity, while numerous sharp peaks in the resonance spectrum begin to appear in the
intermediate and high-frequency range. The latter effect may clearly be linked to the revealing of resonances
associated with the steel core. This effect can even be observed in case of polymer 2 coating, which has the
highest damping in the intermediate and high-frequency range (e.g., note several relatively large amplitude
peaks appearing in the associated form function spectrum in Fig. 5).

Increasing core eccentricity in the end-on incidence case leads to an interesting behaviour in the
backscattered spectrum, especially for the compound cylinder with a thick coating (b/a = 0.5). In particular,
Fig. 3 shows that increasing core eccentricity in the end-on incidence situation causes overall dampening of
resonances for the compound cylinder with polymer 10 (polymer 16) coating in the low (low and intermediate)
frequency range. This may be linked to the fact that the incident wave encounters increasingly more dissipative
material with increasing core eccentricity for this angle of incidence. Another interesting effect of increasing
core eccentricity is appearance of a whole new set of resonance frequencies which seem to be absent in case of
a compound cylinder with a concentric core (i.e., some of the modes which cannot be regularly excited in the
concentric case, will be excited as the compound cylinder becomes eccentric). This can even be clearly observed
for example in the form function spectrum associated with the highly damped polymeric coating no. 2, which
exhibits several (single or compound) large peaks as the core becomes non-concentric in the broadside
incidence situation (see Figs. 3 and 4). Furthermore, in the eccentric situation, some of the resonances shift to
the lower frequencies, while they may also bifurcate (e.g., note the compound resonances observed for
polymer 2 coating for some eccentricities in the second columns of Figs. 4 and 5). The latter observation is also
in accordance with the findings of Danila et al. [70], who noted a decrease in some of the resonance frequencies
in addition to observation of the bifurcation effect for a metallic shell of non-uniform wall thickness as the
core eccentricity increases (see their Figs. 2 and 6).

Figs. 6-8 displays the variation of the backscattered form function amplitude with ka for broadside/end-on
incidence upon a compound cylinder with steel casing and viscoelastic core for selected core material types,
shell thicknesses and core eccentricities. Comments as in above discussions may readily be made. The most
important distinctions are as follows. When the shell thickness is comparable to core size (b/a = 0.5), the type
of viscoelastic core material has nearly no effect on the backscattered form function amplitude, irrespective of
core eccentricity and/or angle of incidence (Fig. 6). This is clearly due to relatively high impedance of
the massive shell in comparison with the viscoelastic filling material. As the shell thickness decreases
(b/a =0.75,0.9), the effect of dynamic viscoelastic properties of the core gradually becomes more evident.
Nevertheless, even in case of a relatively thin coating (i.e., a comparatively thick viscoelastic core, b/a = 0.9),

If (71,01 = T+ 09, @)| ~ lim (24)

— 00
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Fig. 3. Variation of the backscattered form function amplitude with dimensionless frequency for broadside and end-on incidence upon a
compound cylinder with viscoelastic coating and steel core for selected core eccentricities, coating thickness (b/a = 0.5) and material types;

(a) e = 0%, (b) e = 25%, (c) e = 50%, (d) e = 75%, (¢) e = 90%, (

polymer 2; ———— polymer 10; --- - polymer 16).



S.M. Hasheminejad, S. Kazemirad | Journal of Sound and Vibration 318 (2008) 506—526

bla=0.75

(a) 0y =0 0 = T0/2
40 : 40 :
20 P 20 P

! H

o ' P §

P i P A

'\."\‘4':.—,6'\ - —‘,/ 1 3 ’\_",\'"'ro‘“\ e
0 ==t i AN 0 Eyer; ST TR NN
0 2 4 6 8 10 0 2 4 6 8 10

(b)

20

40
I
20 i :
b
i I
| Jis | [ "
(I ; hspra /
0 R AN L == ,;-\
0 2 4 6 8 10
40 H 1
i
1
1
l i
| I
20 :e :
i i !
5 ; i
i ; Ao
s o et VNLA O 78 e 4 b N
0 === Sl
0 2 4 6 8 10

L 40 T T

A Lo !

varow H . ]

oo . !
podnonh HH 1
o P |
noawn 20 . !
nohn h p i o i \
l'\| i :“.,' Vo I " 55 I i
R A \ /l|,\ n I " ,I;;a o /B

X gV e N I A i
bt b N ! A g I
ST 0 Le== LS SN
0 2 4 6 8 10 0 2 4 6 8 10
ka ka

517

Fig. 4. Variation of the backscattered form function amplitude with dimensionless frequency for broadside and end-on incidence upon a
compound cylinder with viscoelastic coating and steel core for selected core eccentricities, coating thickness (b/a = 0.75) and material
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Fig. 5. Variation of the backscattered form function amplitude with dimensionless frequency for broadside and end-on incidence upon a
compound cylinder with viscoelastic coating and steel core for selected core eccentricities, coating thickness (b/a = 0.9) and material types;
(a) e = 0%, (b) e =25%, (c) e = 50%, (d) e = 75%, (e) e = 90%, (—— polymer 2; ———— polymer 10; polymer 16).
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Fig. 6. Variation of the backscattered form function amplitude with dimensionless frequency for broadside/end-on incidence upon a
compound cylinder with steel casing and viscoelastic core for selected core material types, shell thickness (b/a =0.5) and core
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compound cylinder with steel casing and viscoelastic core for selected core material types, shell thickness (b/a = 0.75) and core
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Fig. 8. Variation of the backscattered form function amplitude with dimensionless frequency for broadside/end-on incidence upon a
compound cylinder with steel casing and viscoelastic core for selected core material types, shell thickness (b/a =0.9) and core
eccentricities; (a) e = 0%, (b) e = 25%, (c) e = 50%, (d) e = 75%, (e) e = 90%, (—— polymer 2; ———— polymer 10; ------ polymer 16).
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the effect of changing polymer type is not perhaps as great as it was originally expected, nearly irrespective of
core eccentricity or angle of incidence (e.g., in comparison with the relatively remarkable effects observed in
Figs. 3-5 for the viscoelastically coated cylinders). Furthermore, as the viscoelastic core eccentricity increases,
most of the resonances shift to the lower frequencies, while very few of them may bifurcate (i.e., in comparison
with the notable number of compound resonances observed for some eccentricities in Figs. 4 and 5). This
notable leftward shift of resonances may be explained by the fact that as the viscoelastic core eccentricity
increases (steel shell thickness in some parts decreases), the overall stiffness of the compound cylinder in the
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Fig. 9. (a) Backscattered form function amplitude versus nondimensional frequency for normal incidence upon a copper-clad concentric
aluminium rod immersed in water ( Honarvar and Sinclair’s results [16]; O present results). (b) The first few modal resonance
frequencies versus relative eccentricity for a water submerged and air-filled eccentric aluminium shell (—— Danila et al.’s results [70];
O present results).
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region in which the surface waves predominantly propagate effectively decreases. The latter observation is
especially true for polymer 2 (i.e., the polymer with the lowest shear moduli G'; see Fig. 2) for which the
highest amount of leftward shift in the resonances are observed (e.g., see Fig. 7). As the stiffness of viscoelastic
core increases, this leftward shift decreases (e.g., see Fig. 7 where polymer 16 which has the highest stiffness
shows the smallest amount of shift).

Finally, in order to check overall validity of the calculations, we first computed the backscattered form
function amplitude, |f,.(r1,0, = m,w)|, versus non-dimensional frequency for normal incidence upon a copper-
clad concentric aluminium rod immersed in water by setting, d =0, a = 0.915cm, b = 0.870cm, p; = 8900,
prr=2694, wi=539%10" 5, =26x10" 25 =8.06x10"", and 2 =591x10" in our general
MATLAB code. Fig. 9a demonstrates that our numerical results closely follow the numerical data extracted
from Fig. 2 in Ref. [16]. As a further check, we computed the first few modal resonance frequencies [71] versus
relative eccentricity for a water submerged and air-filled eccentric aluminium shell. The outcome as displayed
in Fig. 9b shows good agreement with the numerical results presented in Fig. 2 of Ref. [70].

4. Conclusions

Various complicating effects such as material viscoelasticity and/or core eccentricity can exist in compound
cylindrical components that can obscure the acoustic analysis of such structures. This work presents analytical
solutions as well as numerical results for two-dimensional scattering of plane sound waves by an eccentric
compound circular cylinder including dynamic viscoelastic effects. The solution is based on the translational
addition theorem for cylindrical wave functions and the Havriliak—Negami viscoelastic model which is among
the most successful descriptions for the frequency dependence of the complex modulus of polymeric materials
in the glass transition region. The far-field backscattered form function amplitude spectra is computed for
selected materials, angles of incidence, incident wave frequencies, core eccentricities, and coating thicknesses.
The most important observations for a metallic cylinder (steel rod) eccentrically coated with viscoelastic
materials are as follows. At very low dimensionless frequencies, the response spectra for polymers 10 and 16
(polymer 2) display no sign of a resonance excitation (displays a single notable sharp peak), which is linked to
their (its) relatively high (low) level of damping at these frequencies. The form function curves associated with
polymer 2 (polymers 10 and 16), which is highly (are lightly) damped at intermediate and high frequencies,
exhibits a distinctively inferior oscillatory (show a highly resonatory) behaviour at these frequencies, especially
in the end-on incidence situation. Decreasing the viscoelastic coating thickness leads to a natural decrease in
the effect of core eccentricity, while numerous large amplitude sharp peaks in the resonance spectrum appear
in the intermediate and high-frequency range which is primarily linked to the revealing of resonances
associated with the metallic core, especially for the low damping polymers 10 and 16. For the compound
cylinder with a thick polymer 10 (polymer 16) coating, increasing core eccentricity in the end-on incidence case
causes overall dampening of resonances in the low (low and intermediate) frequency range. This is explained
by the fact that the incident wave encounters increasingly more dissipative material with increasing core
eccentricity for this angle of incidence. Furthermore, increasing core eccentricity leads to appearance of a
whole new set of resonance frequencies which seem to be absent in case of a compound cylinder with a
concentric metallic core (i.e., some of the modes which cannot be regularly excited in the concentric case, are
excited as the compound cylinder becomes eccentric). Moreover, some of the resonances shift to the lower
frequencies, while they may also bifurcate (i.e., some of the resonances become compound) in the eccentric
core situation.

The key observations for an eccentric metallic (steel) shell filled with viscoelastic materials are as follows.
When the shell thickness is comparable to the elastomeric core size, the type of viscoelastic material has nearly
no effect on the backscattered spectra, irrespective of core eccentricity and/or angle of incidence. As the shell
thickness decreases, the effect of dynamic viscoelastic material properties of the core gradually becomes more
pronounced. Furthermore, as the viscoelastic core eccentricity increases, many of the resonances shift leftward
to the lower frequencies, while few of them may bifurcate. This may be explained by the fact that as the
metallic shell thickness in some parts decreases, the overall stiffness of the compound cylinder in the region in
which the surface waves predominantly propagate effectively declines. Moreover, as the stiffness of
viscoelastic core increases (e.g., for polymer 16), the above noted leftward shift decreases. The proposed model
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demonstrates the call for consideration of core eccentricity (coating non-uniformity) in addition to the
dynamic viscoelastic material properties in acoustic analysis (non-destructive characterization) of cladded
cylindrical components.
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