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Abstract

Observations of the induced transparency in the oscillations of a glass bar containing an “artificial crack™ in the form of
a saw-cut with a tightly inserted small metal plate are reported. In such a configuration, the increase of the resonator
quality factor with increasing wave amplitude (denoting a decrease of dissipation which will be referred to as self-induced
transparency) has been observed indicating an important role of the amplitude-dependent losses introduced by the inter-
surface contacts. The self-induced transparency manifests itself also by the discontinuities (jumps) in the acoustic wave
amplitude measured as a function of sweeping excitation frequency around the sample eigenfrequencies and by a self-
modulation instability of the primary acoustic wave. This instability leads to the generation of side-lobes in the wave
spectrum near the fundamental excitation frequency. The developed theoretical model confirms that all these observations
can be self-consistently attributed to nonlinearity of the sound dissipation process. Possible physical mechanisms of the
nonlinear dissipation are discussed. Although self-modulation has already been observed in nonlinear acoustical systems,
to the knowledge of the authors, the reported data constitute the first observation of the instabilities due to essentially
dissipative system behaviour that requires neither nonlinear elasticity nor multimode interaction.
© 2008 Published by Elsevier Ltd.

1. Introduction

In classical nonlinear acoustics of fluids and perfect crystals nonlinear phenomena are commonly attributed
to elastic (non-dissipative) nonlinearity of the material. Its origin is associated with weak anharmonicity of the
inter-atomic potential and the so-called geometrical nonlinearity (the (¥ - V)7 term in the Euler equation or
quadratic terms in the relation between strains and displacement gradients in the Lagrange variables) [1]. In
“non-classical” nonlinear acoustics of micro-inhomogeneous solids, the nonlinear phenomena are
conventionally attributed to the so-called hysteretic nonlinearity [2], which contains both elastic and
dissipative parts. These observations of nonlinear elasticity have lead to applications in non-destructive
testing/evaluation as reported in the review articles [3,4]. There is also increasing number of the experiments
indicating an important role of other dissipative mechanisms of nonlinearity [5,6], which are not related to
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hysteretic phenomena caused by microfriction and/or adhesion at microstructural defects in the material. It is
important that in the case of dissipative nonlinearities, both a regime of induced absorption (when the
absorption increases with increasing wave amplitude) and of induced transparency (when the absorption
diminishes with increasing wave amplitude) are possible [7]. We report observations of the regime of the
induced transparency in the oscillations of a glass bar containing an “artificial crack’ in the form of a saw-cut
with a tightly inserted small metal plate. In such a configuration, the increase in the resonator quality factor
with increasing wave amplitude was observed, which indicated an important role of the introduced inter-
surface contacts in the documented phenomena. The self-induced transparency manifests itself also by
discontinuities (jumps) in the acoustic wave amplitude measured as a function of sweeping excitation
frequency (i.e., discontinuities in the resonance curve) and by self-modulation of acoustic wave, leading to the
generation of the side-lobes in the wave spectrum near the fundamental excitation frequency. The developed
theoretical model confirms that all these observations can be self-consistently attributed to nonlinearity of the
sound dissipation process. Possible physical mechanisms of the nonlinear dissipation are discussed. From the
general physics point of view the reported observations contribute to increasing volume of experimental and
theoretical evidence of the spatiotemporal patterns formation via the development of instabilities in systems
driven away from equilibrium [8]. Indeed, the present paper shows that instabilities can develop in the
presence of suddenly decreasing positive dissipation, without the need of multi-component excitation [9],
multimode interaction [10], nonlinear elasticity or genuine negative dissipation [11].

2. Experimental set-up and observations

The experiments were carried on a set-up that allowed for simple comparison between two states of the
same sample, either with or without a crack-like defect. The idea was to use a “removable defect” in order to
get different configurations of the sample which differ only by the presence or absence of the defect. To
simplify the interpretation of the influence of the defect, we chose a well known geometry of the sample in the
form of a rod subjected to longitudinal excitation (see Fig. 1). It was made of glass with dimensions of about
20cm in length and 1cm in diameter. The rod was cemented via an intermediate piezoelectric disk-actuator
onto a heavy backload in order to produce a nearly acoustically rigid boundary condition. At the other end of
the rod, a light accelerometer was glued, so that this boundary could be considered as acoustically free. At a
distance of 1.5cm from the rigid boundary (that is in the region of near-maximal strain for the lower
eigenmodes) a saw-cut of 1 mm thickness and several mm depth was made, in which a small metal plate could
be inserted in order to create an artificial crack-like defect. Conditioning amplifier, analyser, generator and
power amplifier allowed for acquiring resonance curves, vibration spectra and temporal waveforms. For the
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Fig. 1. Experimental set-up constituted of a 1D rod-shape resonator with one rigid and the other acoustically free boundary. The glass rod
had a saw-cut in which a metallic plate could be inserted to create a crack-like defect.
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Fig. 2. Frequency response function for the sample with and without defect indicating that the defect influence is mostly dissipative, which
is clearly visible near the resonance maxima.

chosen dimensions of the sample, its several lower-order modes can be modelled with a good accuracy in the
framework of 1D approximation.

Preliminary measurements were performed on the sample in the absence of the defect. The obtained
spectrum of resonance frequencies confirmed the validity of the 1D model with one rigid and the other free
boundary conditions (see the dashed curve in Fig. 2): the ratios of the resonance frequencies to the first one
were close to odd integers. Acquisition of resonance curves with different levels of driving amplitude showed
that the defect-free sample was linear in the whole achievable range of excitation, that is up to strain of the
order of 107°.

The presence of the metal plate in the saw-cut introduces contacting interfaces into the sample. As real
macroscopic surfaces are not perfectly flat, the contact areca between the glass rod and the metal plate is
smaller than what is apparent [12], there is an ensemble of non-conformal contacts whose number and area
may change with the applied load. Non-conformal contacts are known to exhibit nonlinearities in their elastic
[12] and dissipative [7,13] behaviour. Such a nonlinear response is likely to affect the characteristics of
resonance curves. In the first approximation, nonlinear elasticity will influence the resonance frequencies,
while nonlinear dissipation will mostly manifest itself in the change of resonance amplitudes and quality
factors Q. Fig. 2 represents the frequency response function of the sample (FRF, i.e., the vibration spectrum
divided by the spectrum of the excitation). The solid curve is obtained in the presence of the defect at a
moderate excitation amplitude. It almost coincides with the dashed curve corresponding to the defect-free
configuration, showing the weak influence of the defect far from resonance frequencies. The most noticeable
manifestation of the defect is visible near the resonances in the form of lowering the resonance amplitudes.
This variation in the FRF amplitude at the resonances can be conveniently used for tracking the resonance-
peak Q-factor as a function of the excitation amplitude. Indeed, the amplitude at a resonance is proportional
to Q. Although for a linear oscillator, the Q-factor can be equivalently determined via the resonance width,
this method becomes ambiguous when the resonance curves are nonlinearly distorted and exhibit jumps as in
the examples shown in Fig. 3. However, even in such a case, using the Q-factor initially determined via the
resonance width in the linear small-amplitude regime and measuring the FRF amplitude at the resonance at
higher amplitudes, one can unambiguously evaluate the current value of the Q-factor in the nonlinear regime
as well. Therefore, the strong variation in the FRF amplitude clearly indicates pronounced modification of the
overall dissipation in the sample at different excitation amplitudes. In contrast, for a linear oscillator all FRF-
curves should be identical for all excitation amplitudes. Another remarkable feature revealed in the
experiments was that the resonance frequencies were kept almost unchanged: the nonlinear influence of the
defect in many cases was mostly restricted to modification of the dissipative characteristics of the sample.
Measurements performed with varying excitation amplitude show more clearly this tendency. Fig. 3 presents
several FRF-curves measured around the second mode and obtained in a rather wide amplitude range. The
remarkable feature of these curves is that the frequency shift is hardly noticeable (much less than the resonance
curve width), whereas the FRF amplitudes and thus the resonance Q-factor exhibits strong increase (up to 1.8
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Fig. 3. Successive FRF-curves obtained with 0.5dB steps in excitation amplitude. For 9 dB increase in the excitation amplitude the FRF-
maximum value increases with uneven rate over 4 dB in total (corresponding to strain increase from about 6.2 x 1077 to 2.8 x 107%). Inset
shows the relative evolution of resonance amplitude with driving amplitude.

times, see the evolution of the FRF-maximum amplitude in the inset). On such a plot, FRF-curves for a linear
system would coincide and inset would present horizontal line. Here, in contrast, the higher is the excitation
level, the higher is the curve, thus manifesting that the acoustic loss decreases with increasing amplitude. For
convenience, we will call this behaviour induced transparency. The term “induced” means that it is controlled
by the amplitude (i.e., it is nonlinear) and “‘transparency’ means that the dissipation decreases, the medium
becomes less opaque. An interesting feature of several of these curves is the appearance of jumps, consisting in
sudden increase of the FRF amplitude with only slight change in the driving frequency. These jumps indicate
existence of some instability (or bistability) in the system. Another phenomenon typical of these samples was
the effect of self-modulation observed in the vicinity of the resonance frequencies for sinusoidal excitation
exceeding a certain threshold. This modulational instability manifests itself in slow (on the scale of the driving
frequency) periodic modulation of the envelope of the oscillations. The period of this modulation vary with the
driving frequency and with the excitation amplitude and could almost tend to infinity (that is to near-zero
modulation frequency). The modulation could have a complicated shape and could be rather deep as shown in
the upper part of Fig. 4 (obtained close to the resonance frequency of the fourth mode, which exhibited a
behaviour similar to that of the second mode). The spectrum of this signal (shown in the bottom of Fig. 4)
indicates that the modulation appears as broadening of the peaks corresponding to the harmonics of the
driving frequency but without existence of subharmonics (the modulation side-lobes are resolved in the inset).

3. Mathematical modelling

Various models are known that reproduce effects like jumps and modulation instability. For instance, the
Duffing oscillator exhibits bistability that manifests itself by jumps on experimentally acquired resonance
curves [11]. This effect is caused by the nonlinear elasticity and is accompanied by a variation in the resonance
frequency. According to the results of our experiments, we can neglect nonlinear elasticity in modelling, since
the nonlinear resonance shifts were negligible compared to the resonance-curve width variations. In strongly
nonlinear media, a monochromatic driving can excite subharmonics or frequency pairs whose sum equals to
the driving frequency. Signals of this type are characterised by a modulation of the temporal waveforms and
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Fig. 4. Example of temporal acoustic envelope waveform (a) with well developed self-modulation and its associated spectrum (b).
The inset shows the main peak with a resolution that makes sidebands visible.

by the presence of frequency components significantly lower than the driving frequency in the spectrum [10].
We did not observe such frequency components. Another system that demonstrates a behaviour similar to
modulation instability is the Van der Pol autonomous oscillator [11] with an additional external excitation.
The autonomous oscillator is self-exciting since it exhibits nonlinear dissipation that is negative at low
amplitude and becomes positive above a threshold. Additional external excitation at a frequency close to that
of the self-oscillations may either synchronise the oscillator or induce a regime of modulated oscillations. Our
experiments manifested, however, that the nonlinear dissipation due to the defect always remained positive,
although it could decrease with the excitation amplitude. Since the already documented models accounting for
self-modulation cannot be directly applied to our experiments, we have developed a model based on the
observations of the linear behaviour in the defect-free sample and the essentially nonlinear-dissipative
influence of the defect.

Thus no nonlinear elasticity was introduced in the model in the form of a 1D resonator of length L
which is driven at x = 0 by a sinusoidal displacement of amplitude 4, at angular frequency w. Boundary
x = L of the resonator is free. The displacement field U of the resonator is then described by the following
equations :

U — COU D(Uxxta Uxt) -
U(x=0,1t) = Ay cos(w, t) (1)
U.x=L1)=0

where indices ¢ and x denote time and space derivatives, respectively, ¢y is the linear sound speed in the

material. D is the dissipation operator that takes the conventional form a; U,,, in the linear case, where o, is
the linear viscosity coefficient. Introducing the variable V' = U — A4, cos(wf) one may get equivalent equations



532 L. Fillinger et al. /| Journal of Sound and Vibration 318 (2008) 527-548

with zero boundary conditions, but with a source in the right-hand side of the wave equation:

Vi — C(% Vix — D( Vexts th) = AOU)2 COS(G)[),
Vx(x = L’ [) = 0

The advantage of this formulation is that the eigenmodes of the associated conservative linear system are
known. They have the form @,(x) = sin(k,x) with wavenumbers k, = (2n — 1)n/(2L), where n = 1,2,3,... are
the mode numbers. Each mode corresponds to angular frequency w, = cok,. Arbitrary displacement ¥ can be
represented via the basis of the eigenmodes: V =", V,(1)®,(x), where V', is the amplitude of the nth mode.
For a sinusoidal excitation close to a resonance frequency, mostly the mode associated with that frequency will
be excited, so that the system reduces to a single oscillator.

Let us now consider a dissipation operator of the form:

D( V xts th) = [051 + aZf( th)é(x - xcr)] V xt- (3)

The first term represents the linear non-localised dissipation (background dissipation), whereas the second
term accounts for the presence of the localised defect and thus contains a Dirac delta-function d(x — x¢;).
Factor f (V) describes the nonlinear dissipation at the defect. The dissipation function f'is supposed to tend
to a constant at low amplitude in order to describe a nearly linear behaviour of the resonator at lower
amplitudes, f(0) = 1, '(0) = 0. Further, the Taylor expansion of the dissipation function fshould not contain
a linear term, and its lowest non-constant term should be quadratic. Thus function f is even in the first
approximation, and we will see later that only its even part contributes to the dynamics of the system in the
first approximation. Under such assumptions, at low amplitudes the dissipation operator (3) reduces to
(o1 4+ 020(x — X¢r)) Vs, Which corresponds to a linear (though partially localised) dissipation. We are
interested in modelling the induced transparency, which means that the dissipation function should be
decreasing in a certain range of oscillation amplitudes. Furthermore, it should remain positive to be physically
relevant to the experiments. The argument of this dissipation function is chosen to be the strain rate V,,. Note
that the location of the defect with respect to the strain- or displacement distribution quantitatively modifies
its influence on the dissipation in the system, the result of which also depends on a particular model of the
nonlinear dissipation operator (involving displacements, their gradients or rates). For example, one may
assume that the nonlinear dissipation can be rather a function of strain than the strain rate. One or another
choice of the dissipation operator would change the details and modify quantitative factors, but the main
qualitative conclusions on the system behaviour, which are obtained below using the operator described by
Eq. (3), will remain valid. In particular, the conclusion on the self-modulation characteristic frequencies will
remain valid, since we consider the system behaviour in a narrow frequency range near a particular resonance.

We shall now obtain simpler equations describing the nonlinear system. Substituting the modal
decomposition of the displacement field into Eq. (2) and singling out the nth mode, the frequency of which
is close to the driving frequency, one obtains approximately:

Ay’ cos(wt)

L
(Vn,rt + alk,21 Vn,z + C(2)k,21 Vn) 5 + o Vn,tki (pi(xcr)f( Vn,t(p;,(xcr)) = k
n

“4)
A more accurate equation would involve summation over the modes in the dissipation term. However, we
retain there only the nearly resonant nth mode, which means that we consider only the self-action of the mode,
bearing in mind that other modes give negligibly small contributions to the total displacement field, which is
consistent with the experimental observations. The system now reduces to the equation of an oscillator. For
further consideration, it will be convenient to use non-dimensional variables. We will use the normalised time
T = wy,t and variable S = k,V, corresponding to the strain component of the excited mode. Then the
oscillator equation can be rewritten as

1
Sw + ®ST + S = 2F cos(v1) (&)
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with
L _ L f(@S: costknXer)) sin(kyXer)”
S O &) ’

where v = w/w, ~ 1 is the normalised driving frequency, F = A¢v?/L is the normalised driving amplitude.
0, = ¢o/(a1ky) is the quality factor that the mode would have in the absence of the defect, and Q, =
Lco/(2ozk,) is its minimal value considering only the loss at the defect. By assumption, the dissipation function
can be replaced by 1 at low amplitude. The low-amplitude quality factor Q, of the mode is then given by

1
1+ (0,/0,)sin*(kyxer)

As the observed modulation was slow on the scale of the driving frequency, it is natural to use the slowly
varying amplitude technique. We search a solution in the form S = a cos(vt + ¢), where a and ¢ are the slowly
varying amplitude and phase. The derivative of S over 7 involves the derivatives of @« and ¢ which are small
parameters of the order of u < 1. When applying the slowly varying amplitude technique, a first-
order approximation should keep only terms of the order of u. The terms of the order of y? (involving two
derivatives of a or ¢ over t) in S, will be neglected, and S;; can be approximated as S, ~
—(v? + 2vp,)a cos(vt + @) — 2va, sin(vt + ¢). We are interested in resonant behaviour, which assumes
sufficiently small dissipation: the resultant quality factor is high (of the order of ') and only zeroth-order
approximation of S; should be substituted in the dissipation term. At zeroth order, derivative S, ~
—va sin(vt + @) contains only a v component. But the nonlinearity of the dissipation function will produce
harmonics of the driving frequency. Further we should only keep the terms at frequency v (harmonic balance),
so that the dissipation term should be approximated as S;/Q(S;)~ I'1 cos(vt + @) + I'; sin(vt + ¢).
Coefficients I'; are obtained by projection of the dissipation term on the relevant Fourier component. For
instance:

(6)

QO=Q1

(7

S S/ QSDsinG + )t avf(@)
’ foz Y sin2(vt + @)dt (N

®)

and I'j is obtained by substituting the sin by cos. However, the contribution related to I'; is only a small
correction to the term containing I, and can be neglected. Furthermore, only the even part of the dissipation
function contributes to the expression of I'», while I'y is a function of its odd part. Since the odd part of the
dissipation function does not contribute to the period-averaged dynamics of the system, therefore in the first-
order approximation it was not introduced in the model. Notation f(a) is introduced for convenience, and it
will be referred to as the averaged dissipation function.

Using the identity cos(vt) = cos(vt + @) cos(¢) + sin(vt + ¢) sin(¢), the source term of Eq. (5) can be
decomposed into two quadrature components. Substitution of this decomposition into Eq. (5) and combining
coefficients at independent components cos(vt + @) and sin(vt + ¢) yield the following equations for the
amplitude a and the phase ¢:

—2va, — avf(a)/ Q, = 2F sin(g). ©)

This system can be simplified taking into account that the excitation frequency v is close to that of the
considered mode (v &~ 1): 1 —v? = (1 — v)(1 + v) & —2vAv, where the normalised detuning from the resonance
frequency Av =v — 1~O(p) is also a small parameter. This finally leads to the approximate dynamical
equations for the mode, which will be analysed as follows:

alAv + ap, = —F cos(@),
a: + af (a)/(2Qy) = —F sin(g).

These equations do not depend directly on the introduced dissipation function, but on its averaged
counterpart. As we have imposed several constraints on the dissipation function, we will briefly consider how

{ a(l —v?) — 2avep, = 2F cos(¢),

(10)
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they are related to the averaged dissipation function f before proceeding to the analysis of the model defined
by Egs. (10).

3.1. Remarks about the averaged dissipation function

Evaluation of the averaged dissipation function f associated with a given dissipation function f requires the
computation of the integral (8). Explicit relationship between f and fis not available in the general case, but
can be readily obtained if f'is a low-order polynomial function. The hypothesis of a linear behaviour at low
amplitude imposes that the normalised f tends to unity in the small-amplitude limit. The induced time-
averaged transparency can be described by introducing in f'a quadratic term with a negative coefficient. But
such a term will lead to negative dissipation when the argument is far from zero, so that higher-order term(s)
should be considered. Odd character of a cubic term will prevent compensation of the negative contribution of
the quadratic term. Then a quartic term with a positive coefficient should be chosen:

fpoly(a) =1 + ﬁlaz + ﬁ2a4' (11)

A proper choice of the coefficients values (ff; <0 and 5, > ﬁf/4) will prevent occurrence of negative dissipation.
Neglecting the background dissipation and omitting spatial terms related to the defect location, the temporal
averaging procedure yields for the local dissipative function of the defect an expression qualitatively similar to
Eq. (11), but with modified coefficients:

fla)=1+3p,a* +3p,a". (12)

This is a polynomial function of the same form as the dissipation function itself. It could be checked that for a
positive-definite function f,, the averaged dissipation function f is also non-negative. The background
(distributed) dissipation is responsible for a constant positive correction that was neglected above in order to
show that the defect is responsible for a positive contribution to the dissipation, whatever is the amplitude. We
also remind here that our analysis is performed for the case when the system is excited near one of its
resonances. This means that the form of the averaged dissipation function given by Eq. (12) is applicable in a
narrow frequency range around a resonance, so that the frequency dependence in f is weak and therefore will
be neglected. The above discussed polynomial dissipation function allows for modelling the induced
transparency with the net positive dissipation, but diverges far from the origin. Another form of the
dissipation function can be proposed which does not diverge:

f(@)=r+ (1 —ryexp(—(a/a)™), (13)
where a, is the characteristic strain amplitude for which the transition between two levels of absorption
f(a < a;)—>1 and f(a > a,)—>r takes place, m is an integer that allows to control the width of the transition
zone. This model of dissipation function allows one to model the induced transparency if r is chosen between
0 and 1. It will ensure nearly linear behaviour for low (¢ < a.) and high (a > a.) amplitudes. There is no
explicit relationship to link this averaged dissipation function f to £, but the latter should have qualitatively
similar shape.

4. Analysis of the model

We will proceed to the analysis of Egs. (10) in several steps. The equilibria of the system will be first
considered. As the slow variables in system (10) describe oscillations of a mode, a static equilibrium for
variables in Eqs. (10) corresponds in fact to a sinusoidal oscillation with a constant amplitude. Thus, finding
the equilibria will allow us to simulate resonance curves of the system. At the next step we will consider the
stability of these equilibria. It will be shown that the number of the equilibria and their character may change
depending on the system parameters leading to bifurcations. We will see that the system may exhibit
instabilities that may lead to a switching towards another equilibrium, corresponding to the experimentally
observed jumps at the resonance curves, or at certain parameters a limit cycle may exist, corresponding to
experimentally observed self-modulation. Finally, special cases of the excitation parameters and dissipation
function will be considered.
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4.1. Equilibrium states of the system

Eq. (10) are a system of first-order differential equations. Analysis of the behaviour of such equations
usually begins with the study of their static equilibria [8], which either attract or repel the system in
their vicinity. We consider stationary points (@, @), which by definition satisfy conditions 4, = ¢, = 0. From
Egs. (10), this leads to

@l (@)/(2Qy)) + @(Av)* = F?, (14a)

/(@)/(2QyAv) = tan(@). (14b)
This set of equations relates the parameters @ and ¢ describing the stationary response of the system to
parameters F and Av characterising the excitation. For a given excitation, the first equation allows one to
obtain the amplitude @, and once @ is known, the second equation gives the phase @¢. From a geometrical point
of view, Eq. (14a) is the equation of a surface in the space (Av,a, F). This surface of stationary amplitudes
F = F(a, Av) is represented in Fig. 5. The dissipation function used to compute this figure (and the following)
is of the type of Eq. (13) with parameters Q, = 100, a. = 1, r = 1/2 and m = 4. This corresponds to a twofold
decrease in dissipation in a narrow amplitude range around the unit amplitude. From Eq. (14a), we see that
the intersections between the stationary amplitude surface and the planes in which F is constant are the
resonance curves. Some of them are represented in Fig. 5 on the surface itself and in projection on the
horizontal plane below. It appears that the surface # has a local minimum. This point, at amplitude a,,
belongs to a resonance curve associated with a value of F that we call Fy. This critical resonance curve is
constituted of the point corresponding to the local minimum at Av = 0 (i.e., at the resonance frequency) and
the open branch that exists at any driving frequency (see the bold line in Fig. 5, in which other critical
resonance curvesare also shown in bold). The surface also has a saddle point at (Av = 0, a;, F») that defines
another critical resonance curve. A distinctive feature of this curve is that it crosses itself. There is also a third
critical resonance curve that is characterised by the existence of a single point with vertical (i.e., orthogonal to
the frequency axis) tangent at each side, whereas neighbouring curves have either two such points or no
vertical tangent at all (see the curve labelled F35 in Fig. 9). These single vertical tangent corresponds to F = F3
and Av = +Av;s.

These critical values F| < F,<F3 of F determine four driving strain intervals in which resonance curves
demonstrate qualitatively different shapes. The middle column (b) of Fig. 6 shows examples of those curves
normalised to the driving strain (that is FRFs). Dashed lines in this figure are linear resonance curves for the
quality factors Q = 100 and 200. These curves corresponding to linear dissipation should be compared with

Fig. 5. Stationary amplitudes surface % with resonance curves (see the solid and dash-dotted lines on the surface and their projections on
the frequency—amplitude plane). Resonance curves shown by the solid lines are associated with critical values of F.



536 L. Fillinger et al. /| Journal of Sound and Vibration 318 (2008) 527-548

(@)  fysandf, (b) a/F (a.u.) (c) ¢ (rad.)
(1a) / [(1b) TN 400
‘"_"_"_'}l_"_!"_'\'\_"_"_"_' 350
o
v
9
(2a) f
'
v
<9
v
LL
(3a)
K
v
9
v
'

(4a)

F>F5

a? Av (1073 Av (1073

Fig. 6. Schematically shown dependences f';, and f'., as functions of squared amplitudes a for different excitation amplitudes F (column
(a)), and the respective amplitude (column (b)) and phase (column (c)) of the resonance curves for a system exhibiting strong induced
transparency (scales appear only on top plots). The dashed curves correspond to nearly linear behaviours (at low and high amplitudes).

the solid curves plotted for the nonlinear dissipation function corresponding to Q = 100 at low amplitudes
and twice higher Q-factor at the high-amplitude limit. At low driving strain (¥ < F), the resonance curve is
constituted of a single branch whose shape is close to that of the linear curve for Q = 100 (see Fig. 6-1b). For
the driving strain between F; and F,, another branch appears around resonance frequency (Fig. 6-2b). This
new branch is a closed one. Increasing the driving strain over F; (Fig. 6-3b) will produce a confluence of
the two branches, from which only a single-branch curve remains. This curve is multi-valued as a function
of the detuning Av. For even higher amplitude (greater than F5), the resonance curve is again single-valued
(Fig. 6-4b). Due to the localised amplitude range in which the nonlinear dissipation function significantly
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changes its value, the shape of the resonance curves is close to that of the linear-curve shapes except in the
range where the oscillation amplitude is close to critical. The right column of Fig. 6 represents the phase for
the corresponding nonlinear resonance curves (the dashed lines shown for comparison again correspond to the
linear FRFs). The phase is constituted of the same number of branches as its associated resonance curve, and
is multi-valued in the same frequency interval. This is a direct consequence of Eq. (14b) which defines a
bijection between @ and @ at a given Av.

Now we have described the resonance curves for a particular example of the dissipation function and have
seen that it differs from the linear case (where the resonance curves are single-valued and are always of same
shape). Obviously, resonance curves cannot be multi-valued if the stationary amplitude surface does not have
(at least) a local minimum. Let us consider what constrains on the averaged dissipation function imposes the
existence of this local minimum on the stationary amplitude surface F. Since a minimal excitation amplitude F
providing a given amplitude @ corresponds to the exact resonance, Av = 0, the minimum should be sought
along the amplitude direction ar zero detuning. At Av =0 the left-hand side of Eq. (14a) reduces to
(df @/ (2Q0))2. For convenience of the further discussion, we introduce notation f4;:

fas@) = (af (@) /(20y))*. (15)

The square root of f;(a) correspond to the intersection of the stationary amplitude surface and the plane
Av = 0; it appears partially as a dashed line in Fig. 5. Function f'; is represented in Fig. 7. In the linear case,
[ 4is 1s monotonic since f(a) = 1. Viewed as a function of 42, it is a growing straight line the slope of which is
controlled by the quality factor Q,. The higher the Q, is, the lower is the slope. Occurrence of induced
transparency will increase the Q-factor and therefore decrease the slope. Considering an ideal case of induced
transparency in which the dissipation possesses two asymptotic values corresponding to low- and high-
amplitude regimes, the associated f 4, should tend asymptotically to straight lines for the low and high
amplitudes. Such lines are shown in the dash-dotted style in Fig. 7. If the induced transparency is too weak, as
is illustrated by the dashed curve connecting points A and C, function f 4, remains monotonic and has no
minima. On the contrary, if the induced transparency is sufficiently pronounced, then function f 4 has a local
minimum (or minima) as is illustrated by the non-monotonic segment AB on the solid curve in Fig. 7.

We can now formulate that the resonance curves will be multi-valued if in a certain amplitude range the
condition 0f 4,/0a <0 is fulfilled. Substitution of Eq. (15) allows one to rewrite this condition in terms of f:

f@< —f(a)/a (16)
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Fig. 7. The dissipation function f'j; (thick solid curve) exhibiting strong induced transparency between points A and B shown as functions
of . Thin solid lines correspond to three characteristic “excitation lines” f « corresponding to critical strains F;, F», F'3. The dashed line
connecting points A and C has a positive slope everywhere and represents a dissipation function f4, exhibiting weaker induced
transparency insufficient to create a local minimum on fy;.
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This condition means that function f decreases (locally) faster than 1/a. If Eq. (16) is satisfied somewhere,
some resonance curves of the system will be multi-valued. We assume that Eq. (16) is satisfied in a single
interval [ay, a;]. On the border of that interval, 9f 3;;/0a = 0 and it follows that a; and a, are positions of the
local maximum and minimum of f 4, respectively (because f 4 is increasing outside of [a;, az]). Two critical
amplitudes @, and a; are defined and they are reached at resonance for the critical values of normalised strain
F% = f4(a2) and F% = f4s(a1), respectively (as it follows from Eqs. (14a) and (15)).

Introducing the “‘excitation function” f,:

fola) = F> — a®AV? (17)

allows one to interpret the equilibrium defined by Eq. (14a) as an intersection between functions f'4;; and f,.
Each particular resonance curve corresponds to the manifold of intersections of fy, with a family of f,
associated with the same value of F. Plotted as a function of @2, such a family is an ensemble of straight lines
passing through the point (¢ = 0, F?). The slope of such a line is equal to —(Av)>. All the lines are decreasing,
the highest line is the horizontal one obtained at resonance, Av = 0. Schematic examples of these lines are
given in the left column of Fig. 6 for the different ranges of F. At low amplitudes (F<F, Fig. 6-1a), the
horizontal line £, (associated with the resonance) passes below the local minimum of f 4, and intersects it in a
single point. When F is between F; and F, (Fig. 6-2a), the horizontal f, passes between the local minimum
and maximum of f j;;. The resonance curves are therefore multi-valued (three equilibrium amplitudes exist for
small enough (Av)?). With increasing (Av)’ the function [« becomes steeper, and after the threshold slope, at
which the line f, is tangent to f 4, only a single intersection remains. For Fr <F <F5 (see Fig. 6-3a), the
horizontal f, passes over the local maximum of f 4 , so that the resonance is single-valued at resonance
Av = 0, and two slopes allow for tangency between f, and f ;. These slopes define two frequency intervals,
symmetrical around the resonance, where the resonance curve is multi-valued.

Let us discuss in more detail such a resonance curve, an example of which is given in Fig. 8(a). The
dissipation function f 4, and several characteristic lines f, are shown in Fig. 8(b). Let us assume that the
driving frequency is swept, and the system moves along the resonance curve starting at point A and passing
through the resonance to point A’ (see Fig. 8). Then the oscillation amplitude on the resonance curve and the
position of the intersection between f 4, and f ., will change continuously everywhere except at point B (where
a jump upward to point C occurs) and point E (where a jump downward to point G occurs). The position of
the jumps on the Av-axis are given by the slopes of the respective tangent .. Let us consider how these two
slopes evolve as F is increased further. From Fig. §(b), one can see that lines f, tangent to the local maximum
and minimum will both become steeper while the two tangency points (B and E) will approach each other.
They will coincide in the inflection point of f, for certain excitation amplitude F = F3 and detuning
Av = £Av;. If the driving strain is higher than F'3, none of the curves f, is tangent to f 4 (see Fig. 6-4a) and
only single intersections may occur, so that the resonance curve becomes again single-valued.

(b)
2xle-5

AN

-5 0 5 0 1 2 3
Av (1073) >

Fig. 8. (a) Resonance curve exhibiting jumps associated with a driving amplitude F in the range between F, and F3. (b) Function f g
(curved line) and functions f, (straight lines) plotted for the same driving strain at several different detunings.



L. Fillinger et al. | Journal of Sound and Vibration 318 (2008) 527-548 539

We have seen therefore that at a given driving amplitude, the resonance curve is multi-valued when there
exists f ., tangent to f 4. The slopes of these critical f., give the frequency intervals where resonance curves are
multi-valued.

Let us define the subset J of the stationary amplitude surface # = F(a, Av), where values F and Av and the
respective a correspond to excitation line f, that is tangent to function f . As lines f., are decreasing,
they can only be tangent to f g, at its decreasing part, that is for amplitudes between a; and a,. Each
given d € [a;, a] readily yields the derivative of f 4 at this point. On the other hand, by the definition of f,
(Eq. (17)), the slope of the f., tangent to f 4 at that point is equal to the derivative of f;, with respect to a>.
The associated value of Fis then obtained by prolonging the tangent up to a = 0. The subset J C F(a, Av) is
therefore a curve on the surface % parameterised by the amplitude @ in the following way:

ae [al,az]

d . @@ +af @]
d(az)fdis(a) - 4Q6 ) (18)
F? = f4(@) + (Av)* @

J = J (Av,F,a) so that —(Av)? =

The projection of subset J on the (Av, a) plane is represented in Fig. 9 by the boundary, marked J, of the shaded
zone. This boundary corresponds to starts of jumps presented in Fig. 8. Further, tangent lines f.,, corresponding
to the boundary J in Fig. 9, intersect function f 4 at other points (located either at lower or at larger amplitude
as is illustrated in Fig. 8: the f ., tangent at point B also has an intersection at point C, the f, tangent at point E
has another intersection at point G). These intersection points correspond to jump arrivals, and the ensemble of
all arrival points constitutes in Fig. 9 the outer oval-like boundary shown by the solid line and denoted as J'. The
analysis of stability of the equilibrium points of Egs. (10) in the next section will demonstrate how the sufficiently
strong induced transparency can produce switching between stable branches of multi-valued resonance curves,
which qualitatively reproduces the experimentally observed jumps visible in Fig. 3.

Av (1073

Fig. 9. Resonance curves and instability zones. Notation SN is for stable nodes; UN, unstable nodes; SP, saddle points.
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4.2. Stability of the equilibrium states
The stability of the equilibrium points discussed above can be readily studied considering infinitesimal

perturbations around an equilibrium (@, @). The perturbed solution (@ + da, ¢ + d¢) satisfies the linearised
equations following from Egs. (10):

8a
Jard@ o)
5 = 20, ] 50" (19)
Av fa|°?
- Lo

Solution of such a system is a linear combination of exp(4.f) where A, are the eigenvalues of matrix in

Eq. (19):
Je = Ay £/ A] — 43, (20a)

_ Y@+a @
4 =-FOLTE, (20b)
4, OV @ - @1 a2, (20¢)
40,

If at least one of the characteristic values 4. has a positive real part, the perturbation will grow with time and
the equilibrium will be unstable. We will therefore study the sign of the real part of the eigenvalues as a
function of the stationary amplitude & and detuning Av corresponding to the equilibrium points.

Some lines f, have three intersections with f 4 (see Fig. 6). Note that at @ = 0 inequality /', > f 4 1s valid,
and this inequality is inversed after each intersection point. At the first intersection that occurs in the first
increasing part of f, line f., passes below f4;. Then 1, is again above f 4, after the second intersection that
occurs in the decreasing part of ;.. At that second intersection point, the derivative of f', is therefore greater
than the derivative of f;, otherwise ., could not pass over f; at that point. That means that for such a, the
relationship

d
d(a?)

is satisfied. It can be verified from Eq. (20c) that A, <0 if this condition is satisfied. We also can see from
Eq. (18) that on curve J corresponding to equality

d
fex(@ = —(Av)* > @fdis(ﬁ)

d .
—(AV)2 = mfdis(a),
value 4; = 0. The zone where 4, <0 corresponds to the interior of J, the latter being the locus of a saddle-
node bifurcation. In the interior of J, the square root in Eq. (20a) is greater in the absolute value than 4, so
that the two eigenvalues are real and of opposite signs, which corresponds to unstable equilibrium points of
the saddle-type (SP). This interior zone of curve J is shaded in Fig. 9.

Outside of this zone inequality A, >0 is valid. The argument of the square root in Eq. (20a) can be either
positive or negative, but in both cases the signs of the real parts of A, are determined by the sign of 4. In the
linear case, 4 reduces to —1/(2Q,) which is negative, all equilibria are stable (and neither the SP zone inside J
nor boundary J itself do exist). Such equilibrium points whose eigenvalues have real parts of the same sign are
nodes (note that often term focus is used for nodes having the imaginary parts of the eigenvalues). The latter
distinction does not influence stability, and we will denote both the types as nodes. Outside of zone J (if it
exists due to nonlinear dissipation) or everywhere (if J does not exist), equilibrium points are nodes that are
stable if 4; <0 (SN: stable node). This readily gives a condition for existence of a second instability zone:
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points outside of J so that 4;>0 are unstable nodes (UN: unstable node). The latter in accordance with
Eq. (20c) requires the condition

Fa< -2/ @]/a. (1)

Inequality (21) is similar to condition (16) that requires sufficiently rapid decrease of the positive-averaged
dissipation function f However, Eq. (21) requires the derivative of f to be even more negative. This new
condition can therefore be satisfied only at some parts of interval [a;, a;] introduced for condition (16). The
averaged dissipation function used for simulations admits only one such interval [a},a3]. Points with
equilibrium amplitude @ € [a], a5] located outside zone J are unstable nodes. They are denoted as the UN-zone
in Fig. 9 localised between the horizontal straight lines corresponding to amplitudes a} and aj.

After classification of the resonance curve types (single- or multi-valued) and the equilibrium types (SP, UN
or SN), possible regimes of the considered system can be also readily classified. Being attracted by a stable
point, the system will simply remain there. Near unstable equilibria the system will be repelled and could then
be attracted by a stable fixed point if the latter exists. For multiple equilibria, their number and nature, as well
as the initial conditions will determine the system behaviour. For instance, we can recover the jumping
behaviour presented in Fig. 8. On a resonance curve associated with values of F between F; and F3, like the
dash-dotted curve in Fig. 9, all points are stable except of those inside of boundary J. Jumps therefore has to
start at points where the resonance curve crosses boundary J of the shaded zone and must arrive at boundary
J' as is illustrated in Fig. 9.

Furthermore, in the absence of strong perturbation, the jumps cannot take place in a zone inside of J’ but
outside of J, because even if multiple equilibria exist, the initial equilibrium is stable in such a case.

Let us now consider resonance curves for smaller excitation amplitudes F between F; and F,. Such
resonance curves are composed of a closed loop and an open branch. It can be seen in Fig. 9 (dotted curves)
that the open branch is stable, as well as the upper part of the closed branch. This implies that an experimental
acquisition of such a curve will only give its stable part. The lower part of the closed loop is not observable
because of its instability, and the upper part can only be retrieved if the system switches to the upper branch in
the case of a strong perturbation sufficient to bring the system in the attraction zone of the upper branch.

Attraction zones for different equilibria can be conveniently represented on the phase plane (a, @)
corresponding to the discussed system. In the case of a single and stable equilibrium, all trajectories on the
phase plane will tend to this single attractor. If multiple attractors coexist, for instance, one saddle point and
two stable nodes (which is the case for most of the excitation parameters leading to multiple equilibria), then
the stable nodes constitute two attractors and the saddle point belongs to the frontier between their basins of
attraction.

Behaviour of dynamical systems such as Egs. (10) is often characterised via vector fields of tangents to
trajectories of the representation point on the phase plane. Starting from a particular point (a, ), the system
(10) can be rewritten in order to give directly the time derivative of the variables (and thus to determine
tangents to the trajectories on (a, ¢)-plane):

¢ = —F cos(p)/a — Av,
a = —F sin() — af (a)/(2Qy).

Using these equations, equilibrium points can be interpreted as intersections between the curves defined by the
right-hand sides of Egs. (22) at @ = 0 and ¢ = 0. These curves are shown by thin solid lines in the right part of
Fig. 10 (together with the tangent vector fields), and their intersections represent multiple equilibria for
resonance curves with one branch (top plot) and two branches (bottom). The left part of Fig. 10 shows the
respective resonance curves. The vector fields in the right plots give an instructive representation on the basins
of attraction for the equilibrium points. One may see that each point with amplitude a lower or equal to the
amplitude of the lower equilibrium belongs to its basin of attraction (whatever is the phase variable ¢), so that
even arbitrary strong phase perturbations will not switch the system towards the other equilibrium. Such
switching requires sufficiently strong amplitude perturbation accompanied by a proper phase condition. The
low-amplitude equilibrium is therefore highly stable and the closed branch of the resonance curve would be
hardly observable in experiment.

(22)
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Fig. 10. Phase field for given excitation parameters (b,d) and the respective stationary amplitudes shown as bullet points on the resonance
curve for the same parameters (a,c). The thin solid curves on the right plots correspond to stationary values of either a or ¢. Thick solid
curves correspond to trajectories almost coinciding with the boundaries of the attraction basins of those equilibrium points.

4.3. Limit cycle and self-modulation

So far, we discussed only resonance curves with a saddle point and stable nodes. Let us now consider a
resonance curve that crosses only the SN- and UN-zones, but not the SP-zone. This case corresponds to the
driving amplitudes higher than F';, for which the resonance curves are single-valued. Since even in the unstable
UN-zone the system does not diverge, this suggests the existence of a limit cycle corresponding to a non-
stationary (oscillating) solution. This conclusion is also supported by the existence of non-zero imaginary part
of eigenvalues (20a) in this parameter range, which may be used for a rough estimation of the expected
oscillation frequency.

However, such estimates are based on the linearised system (19) assuming infinitesimal oscillation
amplitude, whereas experimental observations (see, e.g., Fig. 4) revealed the cases of rather pronounced
modulation. Description of such regimes in the framework of the small perturbation approach was
insufficient, so that numerical simulations based on nonlinear equations (10) were performed.

The numerical simulations showed that the threshold conditions (for jumps or for the non-stationary
regimes of self-modulation) are well predicted by the perturbation theory. Figure 11 demonstrates typical
examples of the self-modulation regimes. The upper part of the figure shows parts of resonance curves with
indicated instability zones. Three resonance curves that cross the UN-zone are presented. Particular points
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Fig. 11. Simulated temporal amplitude behaviour for various excitation parameters in the modulation instability zone.

that are labelled from (a) to (e) correspond to various driving conditions. Temporal signals associated with
those excitations are represented in the lower part of Fig. 11. The simulations (a), (b) and (c) correspond to
identical stationary amplitudes. They are obtained by proper simultaneous increase in the parameters F and Av.
Simulations (d), (b) and (e) are obtained at the same driving level, but with increasing detuning Av from the
resonance. It can be seen from (a), (b) and (c) that the period of the limit cycle decreases as the driving
frequency gets away from resonance. It was also observed that amplitude excursions in the self-modulation
regimes could get beyond the range [a}, a5] but remain between critical amplitudes a; and a, (see, respectively,
dashed horizontal lines in Fig. 11 and the wider separated solid lines). In accordance with experimental
observations, the numerical simulations based on Eqs. (10) and analytically found imaginary parts of
eigenvalues (20a) of linearised system (19) consistently predicted that the frequency of the self-modulation may
range from near-zero values to values of the order of the resonance curve width.
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We have found a new mechanism that leads to bifurcations associated with bistability and self-modulation.
It differs from mechanisms of self-modulation earlier discussed in nonlinear acoustics owing to its purely
nonlinear-dissipative character with strictly positive dissipation. This mechanism suggests that the system
exhibits sufficiently strong induced transparency. It is the steepness of the dissipation diminishing with
increasing excitation amplitude which is important, rather than the amount of the dissipation decrease. For
instance, such phenomena should be expected in systems with dissipation that decrease in a stepwise fashion.

4.4. Special cases and more general dissipation functions

In addition to classification of main dynamical regimes considered above, let us briefly consider some mixed
types on the system behaviour. So far, based on the experimental data we considered the nonlinearity of the
system as purely dissipative. The analysis performed above has confirmed that the modulational instability
and the bistability of resonance curves can occur for the dissipation nonlinearity alone. In the absence of
nonlinear elasticity, the right and left parts of resonance curves are symmetrical, although positions and
magnitudes of jumps due to the induced transparency are essentially asymmetric at the left- and right-halves of
the resonance curve. The reason for this asymmetry is elucidated in the schematic Fig. 8, where the right jump
downward is essentially weaker and is more distant from the resonance maximum than the left jump upward.
On the scale of the frequency sweep presented in the experimental Fig. 2, only one (closest to the resonance)
jump downward is visible, its magnitude being essentially smaller than that of its upward counterpart located
at the left part of the resonance curve. It can be noted that together with the pronounced induced
transparency, a slight shift of the resonance frequency can be distinguished for FRF-curves in Fig. 2 indicating
a weak odd-type elastic nonlinearity. However, main features of the considered nonlinear-dissipative
mechanism should remain in the presence of accompanying nonlinear elasticity, although the latter may
induce more pronounced asymmetry between the system behaviours for frequencies below and above the
resonance frequency. For instance, it is well known that cubic elastic non-linearity leads to simultaneous shift
and bending of resonance curves (Duffing oscillator [14]), which may induce jumps (bistability) only at one
(concaved) side of the resonance curve. Thus additional odd-type elastic nonlinearity, depending on its sign,
may either enhance or reduce the asymmetry of the jumps, which is intrinsic to the purely dissipative
nonlinearity.

Concerning the analysis of stability of the equilibrium points and their graphical interpretation as
intersections of the dissipation curve f 4, and the “excitation line” f, (like it is illustrated in Fig. 7), the main
conclusions should also keep their validity in the presence of an additional odd-type nonlinear elasticity. The
latter should make the frequency detuning Av dependent of the amplitude, Av = Av(a), which in its turn,

(a) (b)
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Fig. 12. (a) Some particular cases which are likely to take place where instability zones meet. Vertical arrow points a jump that occurs

before what should be expected without stability analysis. The other arrow points out the behaviour of the system with three unstable
equilibria. (b) displays a trajectory in such a case; the inset shows the trajectory cycling around the fixed points.
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Fig. 13. Successive FRF-curves for the fourth mode obtained with 0.5dB steps in excitation amplitude. Insets show the relative evolution
of resonance amplitude (left) and resonance frequency normalised to resonance width (right) with driving amplitude.

according to Eq. (17), should transform straight lines f,, (when considered as functions of @?) into bended
curves. Nevertheless, the graphical interpretation of the equilibrium points as intersections of f 4 and f, and
conclusions concerning the associated jumps (as shown in Fig. 8) qualitatively remain the same.

If the elastic nonlinearity is sufficiently strong, then the resonance curve associated with F, (see Fig. 9) can
be bent so strongly that it becomes multi-valued only at one side (for example, only below the resonance
maximum). In such a case, the jump could only be observed at one side of the resonance curve. Fig. 13,
corresponding to the FRF-functions obtained for the fourth resonance of the sample, demonstrates such a
mixed case of coexisting dissipative and odd-type elastic nonlinearities. The latter causes quite a pronounced
shift and bending of the resonance curves, which results in the presence of jumps only at one side of the
resonance.

Another peculiar feature visible in Fig. 13 is an essentially uneven “‘strength’ of the induced transparency.
Namely, amplitude ranges, in which the system exhibits the induced transparency sufficient to cause jumps,
are separated by a range where the induced transparency is weaker and is unable to induce jumps. Therefore,
the condition of the self-modulational instability can also be satisfied in several amplitude ranges, between
which the induced transparency is not sufficiently strong to induce the self-modulation. Correspondingly,
at the stability maps, instead of only one amplitude range corresponding to modulational instability (like in
Fig. 9), several MI-ranges may occur. These zones may be crossed by the system several times when
varying either the excitation frequency of the excitation amplitude. Thus during monotonic variation of
those parameters, the self-modulation may appear and disappear several times. Physically, different types of the
induced transparency are associated with more or less complex structure of the interfaces in the artificial defect.
By slightly varying the insert position in the saw-cut, our set-up allowed us to obtain different properties of the
system: almost pure dissipative nonlinearity (as in Fig. 2) and the mixed nonlinear-dissipative/nonlinear elastic
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Fig. 14. Experimental spectra around the driving frequency of the vibrations of the system excited with varying frequency close to the
second resonance. The main line represents the driving frequency, other components are related to side-lobes of modulation and present a
non-trivial behaviour.

behaviour (like in Fig. 13) including the cases of multiple zones of the modulational instability. An example of
such multiple appearance/disappearance of the MI is shown in Fig. 14, which demonstrates that characteristics
of the modulation can depend on the driving parameters in a non-trivial manner. Three frequency intervals are
visible in which the modulation is active. In the two extreme intervals, the modulation frequency demonstrates
a linear dependence on the driving frequency and tend to zero frequency where modulation vanishes. Between
these intervals is another frequency interval in which modulation happens. The modulation frequency
dependence is not linear with the driving frequency in that interval.

Note that even for a relatively simple form of the nonlinear dissipation function f j with a single interval
[a}, a;] of the modulational instability, besides the equilibrium variants discussed in the previous section, other
regimes are possible, albeit for very limited ranges of parameters. Namely, near the inflection point of a
monotonically decreasing function fg4, for a nearly tangent ‘“‘excitation line” f,, three intersections
(equilibriums) may occur, so that all three points belong to the amplitude range [a}, a}] corresponding to MI
and all three are unstable. Such a situation may happen in a narrow vicinity of the left and right vertexes of the
oval-like curves encountering the zones of jumps at the resonance curves (see Fig. 9). In more detail, the
behaviour of the system in such special cases is elucidated in Fig. 12 demonstrating two examples. The figure
presents the instability zones, one resonance curve associated to F3 and two special resonance curves crossing
the very edge of the oval-like zones of jumps. It should be reminded here that the boundary of the inner (grey
colour) oval-like zone corresponds to tangent points of the “excitation line” f, at the negative-slope part of
function f'y;, which corresponds to point of vertical slope at the resonance curves. The left resonance curve in
Fig. 12 is a multi-valued one on which we should expect the occurrence of jumps. Without the stability
analysis, the jump down would have been expected to start from point marked B, where the resonance curve
slope is vertical. However, actually the jump may start earlier at point A, because the whole segment AB of
the curve is already unstable since it belongs to the UN-zone located in the region [af, a’] shown by the
horizontal line in Fig. 12. This earlier jump is associated with the combination of the unstable node, the saddle
point and the stable node corresponding to the intersections of the resonance curve and the vertical line started
at point A.

The other special resonance curve shown in Fig. 12 corresponds to values of F slightly below F3. This
resonance curve is multi-valued, and in a very small detuning interval close to Avs all its three values for a
given frequency correspond to unstable equilibrium points within the range [a}, a3]: one point is a saddle inside
J, and the two others, outside of J, are yet located between a} and a} (and are therefore unstable nodes). The
right part of Fig. 12 shows a trajectory in the phase space corresponding to the latter case. The trajectory
evolves in the direction of the three fixed points and finally follows a limit cycle encountering all three points as
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is shown in the inset in a larger scale. For increasing excitation amplitude at the point corresponding to 3 and
Av; (intersection of the resonance curve F3 with J) on the left plot in Fig. 12 this triple equilibrium degenerates
into one unstable node encountered by the limit cycle. Thus, in the near vicinity of (F5, Avs) the limit cycle can
encounter either one or three equilibrium points. For these special cases only the thresholds are slightly
shifted, which does not result in a qualitatively new behaviour of the system.

5. Conclusion

The experiments performed have demonstrated the possibility of bistability and self-modulation in systems
with microstructure-induced nonlinearity. The developed model allows one to reproduce the main features of
the experiments by introducing in the system purely dissipative nonlinearity. It was proven that the resonance
curves could be multi-valued if the nonlinear dissipation manifests itself in the form of strong enough induced
transparency. This multi-valued character allows the observation of jumps on the resonance curves.
Furthermore, it is demonstrated that even stronger induced transparency can lead to another instability
mechanism. Namely, the stationary amplitude can become unstable and the system can be attracted by a limit
cycle, which corresponds to the experimentally observed self-modulation regime. This constitutes the first
experimental observation and theoretical elucidation of such a dissipative behaviour. From the mathematical
analysis of stability of the linearised system, we formulated conditions (that is properties of the nonlinear
dissipation and the driving parameters) for which these regimes can be observed. Since the fully developed self-
modulation regime corresponds to essentially nonlinear non-stationary solutions, numerical simulations based
on the non-stationary nonlinear equations were performed for comparison with the experiments. It is shown
that main features of the self-modulation and bistability similar to experiments can be obtained by
appropriately tuning the dissipation function [15]. The details of the dissipation function cannot be
reconstructed from the experimental data on the equilibrium points observable only for stable parts of the
resonance curves. The relation of the self-modulation parameters and the dissipation function is rather
complex, so that the inverse problem, that is the reconstruction of the detailed shape of the dissipation
function from the self-modulation features, probably has no unique solution and requires deeper theoretical
developments. For instance, modelling of the experimentally observed examples of self-modulation with
multiple temporal scales also requires further studies.

Physically, the nonlinearity of the experimental sample is connected to the presence of the insert placed in
the saw-cut. The insert adds interfaces with multiple contacts between them. Several mechanisms can
contribute to the observed transparency. For instance, contacts are known to exhibit efficient dissipation
mechanisms such as stick-slip (due to friction) and thermoelastic dissipation. Those effects are known to be
amplitude-dependent [7,13], and it has already been proved that their contribution to the overall dissipation
can be important [16]. The strong induced transparency may be caused by the inherent amplitude-dependent
character of these mechanisms at each contact and by a variation in the number of the contacts with varying
excitation amplitude. The self-modulation regime may present some similarity with another type of
thermoelastic instability of contacts described in Ref. [12, p. 391]. For a sliding contact with varying loading,
the friction forces (and the associated dissipation) will be greater for maximal loads. These local regions will
expand due to thermoelastic effect, which may result either in creation or disappearance of contacts. When
such a contact is broken, the dissipation due to sliding friction stops and the temperature locally diminishes, so
that the contact restores again. The thermoelastic instability of sliding contacts therefore implies periodic
opening and closing of some micro-contacts. In our experiments, there is no heat source due to continuous
sliding. But the acoustic excitation may generate the heat source at contacts, some of which may open after a
certain time due to strains caused by thermal expansion. Opening of such contacts should decrease the
acoustic energy dissipation, which corresponds to the induced transparency of the system. Due to heat
diffusion the contact can relax to the initial closed state, so that the process can repeat periodically and can
manifest itself as the experimentally observed slow modulation. Alternatively, the asymmetrical stiffness of
contacts leads to an influence of the vibrations on the average state of the contacts. This provides another
opportunity to modulate the characteristics/number of the contacts, and therefore another mechanism likely
to contribute to the self-transparency.
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These results extend the list of manifestations of the ‘“‘non-classical” acoustic nonlinearity and provide
better insight in the physics of nonlinear interaction of elastic waves with crack-like defects, which is the
background of nonlinear-acoustic method for crack diagnostics.
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