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Abstract

The theoretical motion of a ball bearing has been studied in a previous paper. Using a control parameter, different

routes to chaos were described. The aim of this paper is to study the experimental routes to chaos in a ball bearing and to

confirm whether theoretical predictions of the phenomena are realistic.

An experimental test bench has been used and a numerical procedure has been proposed for observing Poincaré maps.

As the control parameter varies the bearing clearly shows the appearance of instability in its motion. Two different routes

to chaos are described as expected from the theory.

The first route is related to the first resonant frequency of the bearing. It is a sub-harmonic route. The second route,

associated with the second resonant frequency, is a quasi-periodic route.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Experiments in ball bearings are important for validating theories and bearing behaviour. To many users a
ball bearing is considered as a black box containing balls, one ball retainer, some lubricant and sometimes
seals. All parts are rotating except for one ring. Bearings are present in almost all rotating systems and are
unknown to users unless something goes wrong. This is an interesting field for research to develop predictive
methods to warn users before any damage in the case of bearing failure. An important literature deals with
bearing responses in condition monitoring in machines. In Refs. [1,2], the bearings vibrations are not only
evaluated by Fourier spectrums and mean values but also with characteristic tools used in nonlinear dynamics
such as phase portraits and Poincaré sections. An advanced work in this paper is to use these same tools to
quantify the vibration levels and to analyse the internal dynamics of a ball bearing. The understanding of ball
bearing behaviour implies a good knowledge of the load distribution of rolling element bearings, contact
angles and the contact pressures between balls and raceways.

Some arrangements for analysing the internal behaviour of ball bearings are well known. The simplest
method is to apply a thin copper layer onto the race-way, and then run the bearing for a short time under the
desired load. After completely dismantling the bearing assembly the challenge is then to analyse the state of
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the remaining copper layer. The circumferential shape of the uncovered steel is an indication of the contact
path. From this, the maximum loads and the unloaded area can then be located. In this experiment, the
contact slip generates local wear of the materials. This wear depends on the traction coefficient that is a
property of the lubricant but also the local temperature. In such experiments, one may obtain uncertain shapes
and therefore the conclusions are not straightforward. A completely different method would be to modify
parts of the bearing. A transparent and plastic outer ring is a useful way to obtain interferometry patterns
which are characteristic of contact loads. This kind of analysis is specifically used to determine contact
stresses. Finally, it is clear that there are still challenges in analysing the internal behaviour of bearings.

Fortunately, the safe dynamic motion of ball bearings is the most common behaviour encountered in
industry. Fittings and loads are applied to the bearings and are generally appropriately defined in order to
avoid high levels of vibrations, unexpected instabilities and low levels of reliability. In case the loads and
fittings are not correctly set, the vibration level increases and the dynamic motion of the ball bearing becomes
complicated.

Theoretical studies of bearing behaviour started in the early 1950s. At this time only quasi-static analysis
was possible. Inertia and damping were neglected but the influence of clearance and loads was clearly stated. A
kinematic study was proposed by Sunnersjo [3] who showed that vibration levels depended on inertia and
speed. Some experiments were carried out to validate the proposed theory. The influence of the type of loads,
radial clearance and rotational speed was then clearly demonstrated.

A nonlinear model of a ball bearing subject to a constant radial load was proposed by Fukata et al. [4]. It
shows the influence of the rotating speed. Chaos-like, super-harmonic and sub-harmonic motions were
analysed using time series and Poincaré maps. An increase of vibration levels around two specific rotation
speeds was also noticeable.

In Ref. [5] a nonlinear model of a ball bearing with five degrees of freedom was proposed to study its
stiffness under different kinds of loading. A three degree of freedom model was used in Ref. [6] and quasi-
periodic and sub-harmonic routes were reported. In Ref. [7], a two degree of freedom model was used to
simulate a radially loaded bearing. By modifying the damping factors of the model, different routes to chaos
were noticeable and related to critical speeds of the ball bearing. Around the first critical speed the ball bearing
shows instability and generates sub-harmonics of the ball pass frequency. Using the damping factor as a
control parameter, it is possible to reach a chaotic region after an infinite number of bifurcations. Around the
second critical speed, some combinations of the second resonant frequency and the ball pass frequency occur
and generate a quasi-periodic motion. As the internal damping factor of the bearing decreases, the number of
combinations of the two basic frequencies increases and rapidly overlaps, resulting in chaotic motion. Finally,
the introduction of some over-sized balls in the bearing generates chaotic motions; this route was called the
intermittent-like route.

A more recent study of the different kinds of motions in a nonlinear ball bearing model was proposed by
Harsha in Ref. [8]. The bearing behaviour was studied with different levels of load and speed. The
observations were similar to those in Ref. [7] with periodic, sub-harmonic and quasi-periodic Poincaré maps.

To describe these strange motions, tools specific to chaotic dynamics have to be introduced [9–11]. Fourier
spectra are convenient for detecting sub- or super-harmonics of a component, also in the case of complete
chaotic behaviour, but the quasi-periodic motion is impossible to detect except for the ideal case of two
incommensurate components. Some recent studies, not associated with bearing motion, have used phase
planes and Poincaré sections. The former just plots displacements as a function of themselves or their
derivative. An extremely efficient technique is then to sample the phase plane points using a convenient clock
frequency, in order to obtain a limited number of points. The resulting shape is an excellent tool to
characterise sub-harmonic, quasi-periodic or chaotic motions.

Most studies introduced here are merely theoretical, and a lack of experiments is noticeable. An interesting
paper, [12], deals with an experimental study of bearings in a rotor system. The work reported did not show
chaotic behaviour but a period-doubling phenomenon is obvious.

The work of Ghafari et al. [1] confirmed the existence of chaos in healthy bearings, and the potential of
chaos tools for the diagnosis of faults in rotating machinery. Another interesting paper is [2] in which faulty
bearings are analysed using Poincaré maps. These are indications that the theoretical chaos tools provide an
opportunity to demonstrate their power in industrial applications.
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As a continuation of Ref. [7], an experiment was carried out in this paper to confirm our predictions
of routes to chaos in ball bearings. The experiment is based on a test rig specially dedicated and an
experimental procedure to generate projection of attractors. This paper presents the main results of this
experiment.
2. Bearing modelling

The following bearing modelling was derived in Ref. [7] to study the routes to chaos and here provides
guidelines to design the experimental set-up. The resolution of the following equations allows us to calculate
the mass displacements permitting comparisons with experiments.
2.1. Equation of motion

As shown in Fig. 1, an ideally radially loaded ball bearing is considered. The two rings are rigid bodies and
so the raceways may be represented by two circles. The balls are assumed to be massless, the inner ring has no
translation but rotates around its axis z and the outer ring has two translations xe and ye in its plane but no
rotation about its axis z. The equation of motion of the outer ring is

Mx00e ðtÞ þ Cx0eðtÞ þ
XZ

j¼1

f jðtÞ cosðyjðtÞÞ ¼ F (1)

My00e ðtÞ þ Cy0eðtÞ þ
XZ

j¼1

f jðtÞ sinðyjðtÞÞ ¼ 0 (2)

where yjðtÞ ¼ yðtÞ þ ðj � 1Þ2p=N is the angular position of the jth ball, yðtÞ is the angular position of the
rotating frame associated with the ball retainer and f jðtÞ is the load associated with the jth ball. C is the
damping coefficient taking into account different dissipation phenomena that are not included in the model.
Its value is generally about 30% of the critical damping value. The loads f jðtÞ are calculated by the Hertz
formula:

f jðtÞ ¼ KdjðtÞ
3=2 (3)
Fig. 1. (a) Bearing geometry and (b) modelling.
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where K is a contact coefficient which is a function of the Young modulus of the contacting parts and of their
local curvatures and dj is an approximation of the distance between the two circles along the yj direction:

djðtÞ ¼ xðtÞ cos yjðtÞ þ yðtÞ sin yjðtÞ � e (4)
2.2. Ball bearing varying compliance (VC)

The stiffness of a radially loaded ball bearing is a function of the relative displacement of its inner and outer
ring, i.e. a function of the load applied to the bearing and the resulting equilibrium but also as a function of the
position of the balls. As the balls move in and out of the loaded area, the rigidity of the bearing varies, and
follows a periodic curve. This induces varying compliance vibrations in ball bearings. Using a simple bearing
model, it is possible to evaluate variations of the bearing stiffness. In case only two balls are loaded, equations
are simple:

Qx ¼
X2
j¼1

f jðtÞ cosðyjðtÞÞ ¼ F (5)

Qy ¼
X2
j¼1

f jðtÞ sinðyjðtÞÞ ¼ 0 (6)

The contact forces f jðtÞ are a function of the contact interference djðtÞ; therefore, the previous equations
become:

Qx ¼ Kd1ðtÞ
3=2 cosðy1ðtÞ þ Kd2ðtÞ

3=2 cosðy2ðtÞ ¼ F (7)

Qy ¼ Kd1ðtÞ
3=2 sinðy1ðtÞ þ Kd2ðtÞ

3=2 sinðy2ðtÞ ¼ 0 (8)

The resolution of this system gives us the expression for d1 and d2. The stiffnesses of the bearing are then
defined by the following expressions:

kxx ¼
qQx

qx
¼

3

2
F 1=3K2=3f xðyÞ (9)

kyy ¼
qQy

qx
¼

3

2
F1=3K2=3f yðyÞ (10)

kxy ¼ kyx ¼
qQx

qy
¼

qQy

qx
¼

3

2
F1=3K2=3f xyðyÞ (11)

These periodic functions in y are detailed in Ref. [13]. The average values of the stiffness assume the average
values of the resonance frequencies of the bearing. Of course because of the nonlinear behaviour strictly
speaking no linear resonance frequency, as such, actually exists. However, some amplification of the vibrations
appears around these frequencies leading to the wide use of the improper term ‘‘resonance frequencies’’:

f x ¼

ffiffiffiffiffiffiffi
kxx

M

r
; f y ¼

ffiffiffiffiffiffiffi
kyy

M

r
(12)

3. Experimental conditions

3.1. The test rig design

Predictable behaviour of the test rig is required and the design of the assembly is described in Fig. 2. An AC
electric motor drives the first hydrodynamic spindle through a belt. A second horizontal hydrodynamic spindle
is driven by a flexible coupling and supports the bearing. The rotor speed is easily controlled by the frequency
of the electrical supply.
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Fig. 2. Test rig equipment.

Table 1

Ball bearing parameters

Parameter Value

Bearing pitch diameter Dp ¼ 46:1mm

Ball diameter Db ¼ 9:525mm

Number of balls Z ¼ 8mm

Clearance e ¼ 100mm
Inner ring curvature Ri ¼ 4:45mm

Outer ring curvature Re ¼ 4:45mm

B. Mevel, J.L. Guyader / Journal of Sound and Vibration 318 (2008) 549–564 553
Because of the hydrodynamic spindles, the lubricant is subject to radial loads and therefore the speed cannot
be decreased below 500 rev/min, in order to prevent the shaft from stopping. The bearing outer ring is fitted in
a free housing whose mass provides a constant vertical load applied to the system.

3.2. General settings

Internal bearing friction forces are very low and the mass inertia is sufficiently high and so the rotation of
the outer ring around the bearing axis is not noticeable. The inner ring of the bearing is considered fixed except
the rotation around its axis. The outer ring is assumed free except for the rotation around its axis. The rotor
speed range was 500–3000 rev/min; the lower value is imposed by the spindles, the higher by the limitation of
the drive motor.

To observe the unstable behaviour of the ball bearing, it is necessary to have an experimental set-up
allowing one to excite the ball bearing at rotational speeds close to its resonance frequencies. This was not
simple because of the limitations for the rotation speed and the static load. The following calculations describe
the experiment. The ISO code of the ball bearing is 6206 and its main characteristics are given in Table 1.

A standard value of the Young’s modulus of the balls and rings is considered. The Hertz theory gives a
contact stiffness of 0:98361010 Nm2=3. The rotor frequency and the ball pass frequency are linked by the
following equation:

f pb ¼ Z
f i

2
1:�

Db

Dp

� �
¼ 3:573 f i (13)
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Fig. 3. Resonance frequencies f x ð�Þ and f y (+) as a function of the mass added to the bearing.
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Assuming that the radial load is equal to the weight of the mass M, one can calculate the static deflection
(see Eqs. (13) and (14) in Ref. [7]) and the resonance frequencies of the mass-loaded ball bearing are:

f x ¼
658

M1=3
Hz; f y ¼

258

M1=3
Hz (14)

The frequency f x corresponds to the motion in the direction of the vertical static load, and f y to the vibration
in the unloaded perpendicular direction. The mass M is added to the outer ring in order to lower the critical
speeds to remain, within the range of 500–3000 rev/min; however, the loads applied to the spindles have to
remain in an acceptable range. Fig. 3 illustrates the values of the resonant frequencies versus M. The
frequencies f x and f y are given for masses below 10 kg, which is the maximum radial load acceptable for the
test rig. The maximum value of the ball pass frequency f pb is reached when the rotor speed is 3000 rev/min
(i.e. 50Hz):

ðf pbÞmax ¼ 3:573� 50 ¼ 178:5Hz (15)

The horizontal line indicates the higher value of the ball pass frequency f bp max. When only 3 kg are added to
the outer ring, f pb reaches the first critical speed f y but even for increased values of M up to the maximum
possible limit, the f bp max line remains below the second critical speed f x. Therefore, the only sub-harmonic
route to chaos is likely to occur in a 6206 bearing with an internal clearance of 100mm and a mass of 5 kg
added to the outer ring. This configuration is discussed in Section 5. To get within the range of the second
critical speed, a modification of the assembly was necessary. The mass M was increased to 18 kg but was
partially supported by a vertical spring; thereby, the radial static load applied to the bearing remains
unchanged. This configuration is explored in Section 6. It is clear at this step that a complete quasi-periodic
route to chaos cannot be reached with these settings: the maximum value of f pb remains below f x even for
higher values of M; this indicates that the excitation frequency is not supposed to reach the second chaotic
region.

4. Measurements and numerical treatments

4.1. Data acquisition

The bearing is centrally located in the housing M and the measurements are made on the outer diameter of
the housing as shown in Fig. 4. The two piezo-accelerometers are attached to the mass; their directions are
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Fig. 4. Bearing and added mass: type and location of sensors.
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chosen to be vertical and horizontal. One optical sensor is located facing the bearing. It is sensitive to the
variation of light reflected by the balls.

The two piezo-accelerometers describe the motion of the bearing in its plane. The optical sensor generates a
pulse at each pass of one ball with respect to a fixed point of the rig. This pulse is used as a trigger to sample xe

and ye, the horizontal and vertical displacements that are used to build the attractors without taking into
account the effect of irregularities.

Though it is a good quality bearing, the remaining geometrical imperfections of the raceways and the balls
generate residual noise. The vertical xeðtÞ and horizontal yeðtÞmotions (response signal) get through a low-pass
filter whose cut-off frequency is 400 and 1000Hz (pulse signal). This operation was necessary to eliminate the
signal noise.
4.2. Construction of Poincaré maps

The topological properties of attractors are independent of the phase plane used. Any degree of freedom of
the assembly is convenient for the analysis of the dynamical behaviour. In this work, the phase portrait is built
by using one motion of the bearing and its time derivative to obtain the corresponding Poincaré maps. Both
signals are sampled at the ball pass frequency and then plotted one versus the other. Since no experimental
device could perform all these functions, both velocity signal and pulse signals were transferred to a computer.
Due to electronic considerations, each pulse is generated with a delay with respect to the ball pass. This
phenomenon causes irregularities in the resulting attractor’s projections. Therefore, a special numerical
routine was developed to sample the vertical and horizontal motions of the bearing using an adjustable delay
between pulses and the selection of samples. After some trials, a proper delay was chosen.

Fig. 5 illustrates the influence of filtering on a phase portrait and a Poincaré map. The original signal results
are presented on the left, the phase portrait on the top and the Poincaré map on the bottom. On the right, the
same signals after low pass frequency filtering are shown. This operation eliminates the high-frequency noise
and gives a more comprehensible plot. The noise problem comes from the calculation of the signal time
derivative, which is calculated numerically as a finite difference. Another difficulty encountered is the accuracy
of the sampling process. Fig. 6 illustrates this point: a quasi-periodic attractor is in the centre which has been
obtained with the proper sampling frequency. The plots on the right and left show the attractors resulting
from a slight shift of 1Hz in the sampling frequency. In both cases, the attractor is modified and becomes
more complicated. Thus, the accuracy of the sampling is an important parameter. For periodic motions, the
phenomenon is particularly sensitive because a slight shift in the sampling would result in a quasi-periodic
attractor.
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Fig. 5. Influence of low-pass filtering on phase portrait and Poincaré maps. Before filtering: (a) phase portrait, (c) Poincaré map; After

filtering: (b) phase portrait, (d) Poincaré map.
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Fig. 6. Influence of a slight shift in the sampling frequency: (a) �1Hz, (b) 0Hz, (c) +1Hz.
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5. Internal resonance observation

In the previous paper [7], two routes to chaos were predicted and associated with internal resonances in the
vertical and horizontal directions. To observe the experimental routes to chaos, it is important to set the
internal resonances of the assembly in order to meet the theoretical predictions. A very simple design to
observe the experimental resonances in the assembly is to consider the bearing motion at a low speed. Since the
bearing clearance is large and the applied load is small, only a maximum of two balls is loaded. The periodic
motion of the assembly is governed by the ball pass frequency. Each ball has two basic rotational degrees of
freedom: the first speed is around its own z-axis and the second one is around the bearing z-axis. As the
loading of one ball is removed for a short time only one ball remains loaded and supports the shaft. As this
last ball moves on, the shaft falls on a new ball which then becomes loaded. This generates a large transition of
the bearing stiffness, and the resulting transient motion shows the internal resonance frequencies of the
system.
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5.1. Horizontal resonance of the bearing

The horizontal resonance of the bearing can be observed in its horizontal motion. Fig. 7 presents a time
history of the measured and calculated horizontal velocities. The ball pass period is clearly the basic period of
the two curves. Inside each ball pass period, a limited number of decreasing oscillations is noticeable. These
oscillations are characteristic of the horizontal resonance of the bearing. The obtained calculated signal is
stable, showing constant amplitudes with time. Differences between theory and experiment exist; however, if
averaged periods are considered, they agree quite well.
Fig. 7. Horizontal velocities; bearing type 6206J100 loaded with M ¼ 5kg; rotation speed ¼ 537 rev=min; experiments -, numerical –.

Fig. 8. Vertical velocities x; bearing type 6206J100 loaded with M ¼ 5 kg; rotation speed ¼ 537 rev=min; experiments -, numerical –.
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5.2. Vertical resonance of the bearing

The time history of the vertical motion is presented in Fig. 8. The measured signal is clearly subject to
imperfection. The ball pass period is not constant and different observations show variations from �6% to
þ7% around an average value that is close to the theoretical value. Despite these imperfections in the
measured signal, it is possible to make some observations. The ball pass is the basic period of the vertical
speed. During each ball passage, some sub-oscillations take place. Their amplitudes are maximum after each
peak of the ball pass and then decrease with time. It is possible to observe this slight change of the sub-
oscillation period, explained by the continuous change in the bearing stiffness with the position of the balls.
Theoretically, the period varies continuously from a minimum to a maximum. Using the experimental data, it
is possible to extract the average value of the sub-oscillation frequencies in x (260Hz) and y (370Hz)
directions.
6. The sub-harmonic route to chaos

6.1. Experimental settings

In the case of a non-suspended mass of 5 kg attached to the bearing, the first critical speed can be reached
and the sub-harmonic route to chaos is predicted. The results are shown in Figs. 9 and 10. As mentioned in
Section 2, the control parameter used to describe that route is the rotor speed. Fig. 9 presents the filtered time
series, and Fig. 10 presents the corresponding phase portraits and Poincaré maps.
6.2. Experimental results

In the following, we introduce a notation that simplifies the comprehension of the observations: a sub-
harmonic motion, characterised by a period whose value is n time that of the fundamental period of the
excitation, will be defined as Tn.

At a low speed, ðn ¼ 537 rev=minÞ, the motion is T1 periodic. Small oscillations between the large ones are
due to the rotor falling on each new ball entering the bearing’s loaded area zone. The phase portrait in Fig. 8
shows a complicated plot whose points are, however, close to each other. The corresponding Poincaré map on
the right shows some points grouped in a limited area of the phase plane. In the perfect case, only one point
could be seen but shaft vibrations make the points arrange in a close to point-like configuration.

When the rotor speed is 973 rev/min, the motion remains periodic T1 while the signal-to-noise ratio is better.
The reason for this is not a modification of the geometrical properties of the assembly but a diminishing
importance of the rotor collision. Each impact of the rotor on a new ball is tainted with randomness, and when
the number of rotor rebounds is minimised, the random component of the motion decreases. Therefore, the
Poincaré map in Fig. 10 contains very close points.

At n ¼ 1578 rev=min, the time series show a periodic motion while the speed as well as the period of the
motion has increased. This phenomenon betrays a bifurcation. In the frequency domain, the ball pass
frequency is not the primary component of the motion since the sub-harmonic f pb=2 has appeared. The
motion is T2 periodic. The Poincaré map in Fig. 8 shows two spots of points.

At n ¼ 2082 rev=min, the motion remains T2 periodic but the signal-to-noise ratio is higher and the
Poincaré map shows two distinct groups of points. Getting near the first critical speed is characterised by an
increase in amplitudes of the motions along the two axes.

When n ¼ 2183, the sub-harmonic f pb=2 governs the spectrum of the horizontal motion but noise has
increased and therefore the Poincaré map is not very clear. The time series shows irregular amplitudes T2
periodically spaced. These irregularities in the time history reflect the noise present in the spectrum. Finally,
when n ¼ 2754 rev=min, the motion is again T1 periodic and the Poincaré map shows very close points. In the
frequency domain, the ball pass frequency is the larger component but some noise is still present around the
sub-harmonic f pb=2. The time series shows a T1 periodic motion whereas the signal is not perfectly regular.
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6.3. Simulation results

The theoretical time series presented in Fig. 9 are in good agreement with the experimental results, especially
at low speeds. The phenomenon of bifurcation, which is experimentally observed at n ¼ 1578 rev=min, is
theoretically present at n ¼ 973 rev=min with a T2 periodic motion. At n ¼ 2082 rev=min, theoretical and
experimental curves correspond and both show a T2 periodic motion. The experimental amplitudes are
Fig. 9. Times series of the horizontal motion of the 6206J100 bearing loaded with M ¼ 5kg; n ¼ 537(a), 973(b), 1578(c), 2082(d), 2183(e),

2754(f) rev/min.
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Fig. 10. Measured phase portrait (P) and Poincaré maps (M) in the ðxe; x0eÞ phase plane. Bearing type 6206 loaded with M ¼ 5kg;

n ¼ 537(1), 973(2), 1578(3), 2082(4), 2183(5), 2754(6) rev/min.

B. Mevel, J.L. Guyader / Journal of Sound and Vibration 318 (2008) 549–564560
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slightly higher; this applies to the maximum amplitude during one period, but also to the second peak during
one period.

As the speed reaches 2754 rev/min, the theoretical motion remains T2 periodic, despite the experiment being
T1 periodic. This indicates some limitations in our theoretical model.

This experiment confirms our theoretical prediction of a sub-harmonic route to chaos when the rotor speed
reaches the first critical frequency. However, only the first bifurcation can be observed because the damping of
the bearing is too high to allow other bifurcations to occur as suggested in Ref. [7].

7. The quasi-periodic route to chaos

7.1. Experimental settings

The mass added to the outer ring is increased to 18 kg and must be suspended as explained in Section 3. The
second critical speed of the bearing should be around 3000 rev/min. As the rotor speed slowly increases from a
low speed to its maximum value, the dynamic motion of the bearing changes and first describes a sub-
harmonic route as shown previously, and then returns to a periodic motion before the occurrence of a
bifurcation which results in a quasi-periodic motion. To characterise this quasi-periodic route to chaos of the
bearing, the vertical motion is well adapted as it occurs around the resonance frequency of the vertical motion.
Time series of the vertical speed are shown in Fig. 11, corresponding spectra in Fig. 12 and finally Poincaré
maps in Fig. 13.

7.2. Experimental results

When n ¼ 1259 rev=min, the spectrum shows two major peaks which are the ball pass frequency f bp and a
second one defined as f w. Modulations are present but f bp is clearly the main frequency.
Fig. 11. Times series of the vertical motion of the 6206J100 bearing loaded with M ¼ 18 kg; from bottom to top: n ¼ 1259(a), 1797(b),

2267(c), 2485(d), 2905(e) rev/min.
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Fig. 12. Spectrum of the vertical motion of the 6206J100 bearing loaded with M ¼ 18 kg; from bottom to top: n ¼ 1259(a), 1797(b),

2267(c), 2485(d), 2905(e) rev/min.

B. Mevel, J.L. Guyader / Journal of Sound and Vibration 318 (2008) 549–564562
At n ¼ 1797 rev=min, the motion in time series seems to be almost controlled by the ball pass frequency. The
spectrum shows a higher peak for f pb than f w.

When the speed is 2267 rev/min the time series shows a signal in which the f pb frequency is easily noticeable.
The Poincaré map is close to a single point.

When n ¼ 2485 rev=min, the ratio f w=f pb is 1.035. The two frequencies f pb and f w govern the time series.
The Poincaré section changes, and its size becomes larger, but no particular pattern is yet noticeable. The
evolution of the motion is clearly noticeable when n ¼ 2905 rev=min. The ratio is 1.09. At this time,
the frequency f w controls the motion, and f pb is only noticeable in the small oscillations of the signal. The
Poincaré map is very similar to a curve. The line is not continuous since the motion is quasi-periodic, and a
long observation time would be necessary to complete the curve. The shape of the Poincaré section indicates
that the second resonant speed of the bearing is very close. It was not possible to increase the speed of the
rotor, and so the output of the second route to chaos could not be observed in this experiment.

7.3. Simulation results

The analysis of the theoretical simulations gives tendencies that can be compared to experiments.
At 1259, 1797 and 2267 speeds, the theoretical Poincaré maps show a finite number of points: respectively 4,

1 and 4 points. This is a characteristic of sub-harmonic motion. Experimentally the observation is not so clear
because of the presence of noise in measured signals, but correlations are possible.

At n ¼ 1259, the four points in the theoretical Poincaré map must be compared to the 4 small circles in the
experimental Portrait de phase. These results are actually not very different, if the noise in measurements is
taken into account. In the experiment, each small circle can be viewed as one point with uncertainty associated
with the noise. Moreover, two circles are very close and can be seen as one point.

At n ¼ 1797, the single point in the theoretical Poincaré map is to be compared to the two circles clearly
noticeable in the experimental Portrait de phase.
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Fig. 13. Phase portrait and Poincaré maps of the 6206J100 bearing loaded with M ¼ 18 kg; (t) experimental phase portrait in the ðx0e;x
00
e Þ

phase plane; (p) experimental phase portrait in the ðx0e; x00e ) phase plane; (c) numerical Poincaré maps in the ðx0e; x00e Þ phase plane;

n ¼ 1259(1), 1797(2), 2267(3), 2485(4), 2905(5) rev/min.
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At higher rotation speeds, the theoretical attractor indicates a quasi-periodic motion and in the last case it
probably indicates chaotic motion.

8. Conclusions

The existence of two different routes to chaos in a ball bearing dynamic motion has been experimentally
observed. The first route is related to the horizontal resonant frequency of the bearing. Around this frequency,
the system is unstable and generates some sub-harmonics of the excitation at the ball pass frequency.

Around the vertical ‘‘resonance frequency’’, a lower frequency f w appears in the motion spectrum.
Depending on the frequency ratio between f bp and f w, a sub-harmonic motion is noticeable, and in that case
the order of the sub-harmonic motion depends on this ratio. As the speed reaches the second critical speed, the
amplitude ratio between f bp and f w becomes close to 1 and results in a quasi-periodic motion. An interesting
experimental observation is the quasi-periodic Poincaré map obtained at the highest possible speed of our rig.

Finally, the authors hope that this paper will encourage future work of this kind which will provide other
experimental observations of routes to chaos in bearings.
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