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Abstract

In this paper the out-of-plane dynamic stability of inclined cables subjected to in-plane vertical support excitation is

investigated. We compute stability boundaries for the out-of-plane modes using rescaling and averaging methods. Our

study focuses on the 2:1 internal resonance phenomenon between modes that occurs when the excitation frequency is twice

the first out-of-plane natural frequency of the cable. The second in-plane mode is excited directly, while the out-of-plane

modes can be excited parametrically. An analytical model is developed in order to study the stability regions in parameter

space. In this model we include nonlinear coupling effects with other modes, which have thus far been omitted from

previous models of parametric excitation of inclined cables. Our study reflects the importance of such effects. Unstable

parameter regions are defined for the selected cable configuration. The validity of the proposed stability model was tested

experimentally using a small-scale cable actuator rig. A comparison between experimental and analytical results is

presented in which very good agreement with model predictions was obtained.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Cable-supported structures such as cable-stayed bridges are susceptible to vibration problems since they are
relatively flexible and lightly damped. Cable dynamics can be strongly nonlinear, with internal coupling
between modes and parametric coupling with external effects, such as the deck dynamics in the case of a cable-
stayed bridge. These nonlinear effects can produce complex behaviour resulting in large amplitude cable
vibrations; see for example the review by Nayfeh and Pai [1]. Parametric excitation can occur at specific ratios
of excitation frequency to cable natural frequency, the most significant of which occurs at the 2:1 ratio, at
which small excitation amplitudes at the cable anchorage can result in very large cable vibrations [2]. These
vibrations can occur in-plane (defined as the plane in which the cable sags statically) or out-of-plane, even if
the anchorage excitation is limited to just the in-plane direction, which is generally the dominant direction
when a cable-stayed bridge cable is excited by deck motion.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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It has been shown that, provided sag is small, the second in-plane and out-of-plane cable natural frequencies
are twice the first out-of-plane natural frequency although the first in-plane mode is slightly detuned due to
cable sag [3]. If the lower support experiences vertical motion close to 2:1 resonance of the first out-of-plane
mode it will directly excite the second in-plane mode. Due to cable nonlinearity, the motion of the second in-
plane mode and the external excitation may, if the excitation is of sufficient amplitude, induce internal
resonance in either the first or the second out-of-plane cable modes or both modes. This paper concentrates on
determining the level of vertical excitation of the lower cable support required for the onset of an internally
excited out-of-plane response. We refer to the onset of an out-of-plane response as the instability point of the
semi-trivial solution—the solution where only the second in-plane mode is excited.

Modal stability studies of cable dynamics that consider parametric excitation were usually based on the
Mathieu or Hill equation [4,5] without including nonlinear interaction between modes. The response in a
single cable mode has been considered, see for example Refs. [2,6,7]. The study presented by Takahashi [8]
included more than one mode of vibration but without modal coupling and so the problem reduces to
uncoupled Mathieu equations. Other studies have considered autoparametric resonance of an inclined cable
interacting with a beam, including nonlinearities, but only including a single in-plane mode [9,10]. An
alternative cable-deck model proposed by Georgakis et al. [11] and developed by Lorenzo [12] allows for
autoparametric resonance and nonlinearities and includes multiple cable modes, but has only been solved by
numerical simulation.

Simulation studies which include modal coupling between in-plane and out-of-plane modes of sagging
cables have been reported in Refs. [13–19]. Experimental studies of this problem have been conducted by
Alaggio and Rega [20 and Rega and Allagio [21], however explicit stability regions for the semi-trivial solution
have not been calculated analytically. Here, we use a modal model to compute the instability boundary for a
range of excitation frequencies close to the 2:1 resonance for an inclined cable, including nonlinear modal
interaction. For a specific excitation frequency, the point of instability is found by considering the local
stability of the out-of-plane modes about zero amplitude response as the excitation amplitude increases. The
point at which local out-of-plane modal instability occurs indicates the onset of oscillations for that mode and
hence the semi-trivial solution is no longer valid.

The analysis was validated against an experimental set-up, consisting of an inclined cable attached to an
electro-mechanic actuator, such that the lower anchorage point can be excited vertically. The cable
displacements were tracked using a high-speed vision system [22]. The points of instability of the semi-trivial
solution are detected in the experiment by looking for the onset of oscillations in the out-of-plane modes. The
first in-plane mode is less susceptible to internal resonance when the excitation is at approximately twice the
first out-of-plane frequency as the modal frequency is higher than the first out-of-plane frequency due to the
cable sag [3]. However as the excitation frequency increases this mode may also be excited. Consideration of
this mode is beyond the scope of the present study but the frequencies at which this mode is excited are
identified in the experimental results.

In Section 2 a theoretical study of the stability of the semi-trivial solution is presented. The accuracy of the
theoretical results are assessed in Section 3 by testing a small-scale cable both in simulation and
experimentally. A comparison of the new model with existing models is discussed in Section 4 and
conclusions are drawn in Section 5.

2. Theoretical study

Firstly we present a modal model of the cable dynamics [23]. When the excitation is close to twice the first
out-of-plane natural frequency, the second in-plane mode is directly excited close to resonance. In addition to
this the first and second out-of-plane modes may be excited parametrically or via nonlinear modal coupling.
We therefore reduce the model to these three modes of interest.

Considering the modes of interest, the second step in the analysis is to scale the equations and introduce
detuning in the excitation frequency to allow a study in the region around 2:1 resonance. We perform first-
order averaging to derive differential equations of the response amplitudes for the sine and cosine components
of the three modes. In the third step of the analysis we use these equations to assess the local stability at the
zero amplitude point for the two out-of-plane modes in the presence of the external excitation and in-plane
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motion. For either of the out-of-plane modes, local instability at the zero amplitude point will result in a
response in that mode and hence mark the stability boundary of the semi-trivial solution. Finally, we consider
the amplitude of response of the second in-plane mode just below the stability boundary of the semi-trivial
solution and use this to derive a relationship between the excitation amplitude and frequency detuning
parameter at the semi-trivial solution stability boundary. These stability boundaries are plotted in parameter
space to indicate regions of stability and instability for each mode similar to plotting Arnold tongues for a
single-degree-of-freedom Mathieu equation [5].
2.1. Step 1—Equations of motion

There have been many presentations of the equations of motion for cables [1]. In this paper we adopt the
modal equations derived by Warnitchai et al. [23] for inclined cables with small sag. Their derivation includes
the effects of support motion at both ends of the cable and accounts for cubic nonlinearities. The cable is
supported at end points a and b and the direction of the chord line from a to b is defined as x, see Fig. 1. The
cable equilibrium sag position and the chord line both lie in the x2z plane, therefore z represents in-plane
motion and y represents out-of-plane motion. The angle of inclination of the chord line relative to the
horizontal is defined as y. Following Warnitchai et al. [23], the modal representation of the out-of-plane cable
motion may be expressed as

mynð €yn þ 2xynoyn _yn þ o2
ynynÞ þ

X
k

nnkynðy
2
k þ z2kÞ þ

X
k

2bnkynzk

þ 2Znðub � uaÞyn þ znð€va þ ð�1Þ
nþ1 €vbÞ ¼ F yn (1)

and the in-plane cable motion as

mznð€zn þ 2xznozn _zn þ o2
znznÞ þ

X
k

nnkznðy
2
k þ z2kÞ þ

X
k

2bnkznzk þ
X

k

bknðy
2
k þ z2kÞ

þ 2Znðub � uaÞzn þ znð €wa þ ð�1Þ
nþ1 €wbÞ � anð €ub � €uaÞ ¼ Fzn (2)

where yn and zn are the generalised displacements of the cable in the nth out-of-plane and in-plane modes,
respectively; subscripts a and b denote the top and bottom anchorage points, respectively; myn ¼ mzn ¼ m is
the effective mass (m ¼ rAL=2); L is the cable length; ss is the cable static stress; l

2 is Irvine’s parameter [3], A

is the cross-sectional area, r is the density, g is gravity and E is Young’s modulus. The equivalent modulus of
the cable Eq, the distributed weight perpendicular to the cable cord g, and the parameters kn, nnk, bnk, Zn, zn,an,
l2, and F yn and F zn which represent external cable loading in the y and z direction, respectively, are given by
ava

wa

ua

vb

wb

w

v
u
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Fig. 1. Definition of cable coordinate system.
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Warnitchai et al. [23]:

Eq ¼
1

1þ l2=12
E; g ¼ rg cos y; l2 ¼

E

ss

gL

ss

� �2

nnk ¼
EAp4n2k2

8L3
; bnk ¼

EApgn2

4Lss

1þ ð�1Þkþ1

k

 !
; Zn ¼

EqAp2n2

4L2

zn ¼
2m

np
; an ¼

2mgLEq

n3p3s2s
ð1þ ð�1Þnþ1Þ; kn ¼

2l2

p4n4

� �
ð1þ ð�1Þnþ1Þ2

Fyn ¼

Z L

0

YAfn dx; F zn ¼

Z L

0

ZAcn dx (3)

where YA and ZA are the external loads per unit length and fn and cn are the out-of-plane and in-plane mode
shapes, which are taken to be sinusoidal. Finally, the out-of-plane and in-plane natural frequencies, oyn and
ozn, respectively, are given by

oyn ¼
np
L

ffiffiffiffiffi
ss

r

r
; ozn ¼

np
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ss

r
ð1þ knÞ

r
(4)

See Warnitchai et al. [23] for details of the derivation. Note that (i) these equations assume that the sag and
end displacements are small, (ii) it is assumed that damping can be modelled as viscous with modal damping
ratios xzn and xyn and (iii) this derivation assumes sinusoidal linear mode shapes which are approximated to
the actual modeshapes in the presence of sag, resulting in minor errors for the odd in-plane modes [1] (however
these modes are not relevant to the study reported here).

2.2. Step 2—Scaling and averaging

The cable is excited vertically at the bottom anchorage (point b) with amplitude D and angular
frequency O. In this case the end conditions are ua ¼ va ¼ wa ¼ 0, ub ¼ d sin y, wb ¼ d cos y and vb ¼ 0,
where d ¼ D cosðOtÞ is the vertical anchorage displacement. No external forces are applied along the length of
the cable.

In the simulation and experimental study presented in the next section the sag was such that oz1 ¼ 1:08oy1.
The first in-plane mode is therefore sufficiently separated in frequency from the first out-of-plane mode for 2:1
resonance between the in-plane mode and the excitation (which is close to twice the first out-of-plane natural
frequency) not to occur. The remaining modal frequencies have the theoretical relationships
oz2 ¼ oy2 ¼ 2oy1; we denote o2 ¼ oz2 ¼ oy2 and o1 ¼ oy1 (experimental values are given in Section 3).
From Eqs. (1) and (2), we can rewrite the modal equations of motion for the three modes being considered
(assuming negligible response in other modes in the frequency range considered) as

€y1 þ 2xy1o1 _y1 þ o2
1y1 þW 11y3

1 þW 12y1ðy
2
2 þ z22Þ þN1dy1 ¼ 0

€y2 þ 2xy2o2 _y2 þ o2
2y2 þW 21y2y2

1 þW 22y2ðy
2
2 þ z22Þ þN2dy2 ¼ 0

€z2 þ 2xz2o2 _z2 þ o2
2z2 þW 21z2y

2
1 þW 22z2ðy

2
2 þ z22Þ þN2dz2 ¼ B€d (5)

where W nk ¼ nnk=m, Nn ¼ 2Zn sin y=m and B ¼ z2 cos y=m. This is a set of nonlinear equations with
parametric excitation terms which we can examine via scaling and averaging.

Introducing the small parameter �, we scale the equations such that they are in the standard Lagrange form,
see Refs. [24,25]:

€xþ o2
nx ¼ �f ð _x;x; tÞ (6)

to reflect the fact that the response is dominated by the linear undamped response (a discussion of scaling is
given in Bakri et al. [26]). The following transforms are made xy1! �xy1, xy2 ! �xy2,xz2! �xz2,
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ðyi; ziÞ ! �1=2ðyi; ziÞ, B! �1=2B and d! �d, giving

€y1 þ o2
1y1 þ �ð2xy1o1 _y1 þN1dy1 þW 11y3

1 þW 12y1½y
2
2 þ z22�Þ ¼ 0

€y2 þ o2
2y2 þ �ð2xy2o2 _y2 þN2dy2 þW 21y2y2

1 þW 22y2½y
2
2 þ z22�Þ ¼ 0

€z2 þ o2
2z2 þ �ð2xz2o2 _z2 þN2dz2 þW 21z2y

2
1 þW 22z2½y

2
2 þ z22�Þ ¼ �B

€d (7)

The forcing frequency is close to twice the first out-of-plane natural frequency. Therefore we write O ¼
2o1ð1þ mÞ and then scale m! �m such that O ¼ 2o1ð1þ �mÞ in the scaled domain. Using this, taking into
account that o2 ¼ 2o1 and applying the time transform t ¼ ð1þ �mÞt, we can write

y001 þ o2
1y1 þ �ð2xy1o1y

0
1 þN1dy1 � 2mo2

1y1 þW 11y3
1 þW 12y1½y

2
2 þ z22�Þ ¼ Oð�2Þ

y002 þ o2
2y2 þ �ð2xy2o2y

0
2 þN2dy2 � 2mo2

2y2 þW 21y2y2
1 þW 22y2½y

2
2 þ z22�Þ ¼ Oð�2Þ

z002 þ o2
2z2 þ �ð2xz2o2z

0
2 þN2dz2 � 2mo2

2z2 þW 21z2y
2
1 þW 22z2½y

2
2 þ z22� � Bd00Þ ¼ Oð�2Þ (8)

where fg0 represents the derivative with respect to t and we assume the higher-order terms with respect to � are
negligible.

We introduce the notation fx11; x22; x32g ¼ fy1; y2; z2g where the second subscript in xij represents
whether the variable relates to a first or second mode. We also introduce the shorthand version for the
equations in Eq. (8)

x00ij þ o2
j xij ¼ �X i for fi; jg ¼ f1; 1g; f2; 2g; f3; 2g (9)

where the terms X i may be derived by comparing Eqs. (8) and (9).
The equations are now in a form which can be averaged (see for example Refs. [24–26]). We apply

transformations to xij in the form

xij ¼ xijc cosðojtÞ þ xijs sinðojtÞ (10)

x0ij ¼ �ojxijc sinðojtÞ þ ojxijs cosðojtÞ (11)

Applying these transforms to Eq. (9) and applying the condition that the derivative of the right-hand side of
Eq. (10) must equal the right-hand side of Eq. (11) for all three modes gives

x0ijc ¼ �
�

oj

sinðojtÞX i; x0ijs ¼
�

oj

cosðojtÞX i (12)

From inspection of the equations in Eq. (12), it can be seen that the derivative terms of xijc and xijs are small
and so over a short timespan xijc and xijs may be treated as constant [25]. We can therefore average equations
(12) over an oscillation at frequency o1, treating the xijc and xijs terms within X i as constant over the
oscillation (taking the values xijca and xijsa, where subscript a indicates that they are approximate averaged
values). Note that this averaging is applied to equations expressed in terms of scaled time t, and is equivalent
to averaging over two oscillation at excitation frequency O with respect to time t (since Ot ¼ 2o1t). During the
averaging process many of the terms within X i are averaged out indicating that although these terms cause
oscillations in xij they do not affect the underlying amplitude trajectory of xij. Applying the averaging
technique [24] gives the following equations for the averaged parameters:

y01ca ¼ �
�

o1
xy1o

2
1y1ca þ ½mo

2
1 þ

N1

4
D�y1sa �

3

8
W 11y1saY 2

1a �
1

4
W 12y1sa½Y

2
2a þ Z2

2a�

� �

y01sa ¼
�

o1
mo2

1 �
N1

4
D

� �
y1ca � xy1o

2
1y1sa �

3

8
W 11y1caY 2

1a �
1

4
W 12y1ca½Y

2
2a þ Z2

2a�

� �
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y02ca ¼ �
�

o2
xy2o

2
2y2ca þ mo2

2y2sa �
1

4
W 21y2saY 2

1a �
1

8
W 22y2sa½3Y 2

2a þ Z2
2a� �

1

4
W 22z2saC2a

� �

y02sa ¼
�

o2
mo2

2y2ca � xy2o
2
2y2sa �

1

4
W 21y2caY 2

1a �
1

8
W 22y2ca½3Y 2

2a þ Z2
2a� �

1

4
W 22z2caC2a

� �

z02ca ¼ �
�

o2
xz2o

2
2z2ca þ mo2

2z2sa �
1

4
W 21z2saY 2

1a �
1

8
W 22z2sa½3Z2

2a þ Y 2
2a� �

1

4
W 22y2saC2a

� �

z02sa ¼
�

o2
mo2

2z2ca � xz2o
2
2z2sa �

1

4
W 21z2caY 2

1a �
1

8
W 22z2ca½3Z2

2a þ Y 2
2a� �

1

4
W 22y2caC2a �

1

2
BDo2

2

� �
(13)

where Y 2
1a ¼ y2

1ca þ y2
1sa, Y 2

2a ¼ y2
2ca þ y2

2sa, Z2
2a ¼ z22ca þ z22sa are the modal amplitudes, C2a ¼ y2caz2ca þ

y2saz2sa represents cross coupling terms and D is the amplitude of vertical anchorage displacement,
d ¼ D cosðOtÞ.

2.3. Step 3—Localised stability

Now we examine the first-order differential equations (13) to assess the stability boundary of the semi-trivial
solution. The external excitation will lead directly to in-plane motion. With increasing excitation amplitude
either of the out-of-plane modes can be excited, marking the boundary of the semi-trivial solution parameter
space. To find the boundary of the semi-trivial solution in parameter space we examine the localised stability
of each out-of-plane mode about zero response assuming that the other out-of-plane mode has zero
amplitude.

For the first out-of-plane mode we can write

y01ca

y01sa

8><
>:

9>=
>; ¼ �

�xy1o1 �
N1D
4o1
� mo1 þ

W 12Z2
2a

4o1

�
N1D
4o1
þ mo1 �

W 12Z2
2a

4o1
�xy1o1

2
6664

3
7775

y1ca

y1sa

8><
>:

9>=
>; (14)

where we have set the second out-of-plane mode amplitudes to zero and neglected the higher-order y1ca and
y1sa terms as we are considering the stability about the y1a ¼ 0 point. We note that this partially linearises the
equations. However, the nonlinear internally excited W 12Z2

2a-based terms remain. The resulting eigenvalues, w
(where we apply the scaling w! �w), are given by

16o2
1w

2 þ 32xy1o
3
1wþW 2

12Z4
2a � 8W 12mo2

1Z
2
2a þ 16o4

1ðm
2 þ x2y1Þ �N2

1D
2 ¼ 0 (15)

Initially when the excitation amplitude is small (such that D and Z2
2a are small) the eigenvalues have negative

real parts and hence the stable solution set is from zero excitation up to the boundary at which the real part of
one of the eigenvalues is zero. This stability boundary is given by

W 2
12Z4

2a � 8W 12mo2
1Z2

2a þ 16o4
1ðm

2 þ x2y1Þ �N2
1D

2 ¼ 0 (16)

Using the same technique for the second out-of-plane mode and noting that o2 ¼ 2o1 and W 22 ¼ 4W 12, the
local eigenvalue equation is given by

16o2
1w

2 þ 64xy2o
3
1wþ 3W 2

12Z4
2a � 32W 12mo2

1Z2
2a þ 64o4

1ðm
2 þ x2y2Þ ¼ 0 (17)

As before, when the excitation amplitude is small the eigenvalues have negative real parts and hence the stable
solution set is from zero excitation up to the boundary at which the real part of one of the eigenvalues is zero.
When m is negative (i.e. when the excitation frequency is below 2o1) the eigenvalues are stable for all Z. For
positive m the stability boundary is defined by

3W 2
12Z4

2a � 32W 12mo2
1Z2

2a þ 64o4
1ðm

2 þ x2y2Þ ¼ 0 (18)
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For this equation real positive solutions for Z2
2a only exist if mX

ffiffiffi
3
p

xy2, and if this condition is satisfied there
are two real positive solutions for Z2

2a and hence two stability boundaries. For mo
ffiffiffi
3
p

xy2 the second out-of-
plane mode is stable about the zero amplitude position for all Z2a and hence for all excitation amplitudes D.

Finally to allow the calculation of the semi-trivial solution boundary we must derive an equation for Z2a in
terms of the excitation amplitude noting that just below a point on the solution boundary the out-of-plane
modes have zero amplitude. We can therefore reduce the equations for the second in-plane mode in Eq. (13) to

z02ca ¼ �
�

o2
xz2o

2
2z2ca þ mo2

2 �
3

8
W 22Z2

2a

� �
z2sa

� �

z02sa ¼
�

o2
mo2

2 �
3

8
W 22Z2

2a

� �
z2ca � xz2o

2
2z2sa �

1

2
BDo2

2

� �
(19)

Setting these equations to zero, the steady-state amplitude of oscillation of the second in-plane mode may we
written as

16o4
1B2D2 ¼ 64o4

1ðm
2 þ x2z2ÞZ

2
2a � 48o2

1mW 12Z4
2a þ 9W 2

12Z6
2a (20)

Solving Eq. (20) with Eqs. (16) and (18) allows the amplitude of excitation at which the boundary of stability
occurs for the first (second out-of-plane) mode, to be found as a function of the support motion frequency. We
first express the semi-trivial solution boundary equations, Eqs. (16) and (18), and the amplitude equation (20)
in nondimensional form using the parameters:

�s ¼
ss

E
gy ¼

rgL cosðyÞ
Ass

Ẑ2a ¼
Z2a

L
D̂ ¼

D
L

(21)

Using these expressions and the equations in Eq. (3), the first out-of-plane boundary equation (16) may be
written as

p4Ẑ
4

2a � 8�smp2Ẑ
2

2a þ 16�2s ðm
2 þ x2y1Þ �

144

ð12þ l2Þ2
sin2ðyÞD̂

2
¼ 0 (22)

and the second out-of-plane boundary equation (18) as

3p4Ẑ
4

2a � 32�smp2Ẑ
2

2a þ 64�2s ðm
2 þ x2y2Þ ¼ 0 (23)

where Irvine’s parameter may be written as l2 ¼ g2y=�s. Finally the steady-state amplitude of oscillation of the
second in-plane mode equation (20) may we written as

16�2s cos
2ðyÞD̂

2
¼ 64p2�2s ðm

2 þ x22zÞẐ
2

2a � 48p4�smẐ
4

2a þ 9p6Ẑ
6

2a (24)

(Note that when reversing the transforms xy1! �xy1, etc. the scaling factor � cancels out.)

3. Stability boundaries: theory, simulation and experiment

The experiment consists of a 1.98m long, steel cable which is inclined at 201 to the horizontal. The cable has
a diameter of 0.8mm and has a mass of 0.67 kg/m (in the experiments this is achieved by attaching lead
weights at 60mm interval). The static tension of the cable is 205N. The experimental set-up is shown in Fig. 2.
This gives nondimensional parameter values: �s ¼ 2:04� 10�3 and gy ¼ 59:7� 10�3 (giving l2 ¼ 1:74). These
were chosen to approximately match a typical full-scale bridge cable of length 400m, mass per unit length
130 kg/m and tension 8000 kN [12].

MATLAB/Simulink was used in conjunction with a dSpace DS1104 RD controller board to implement an
actuator controller and data acquisition system. The cable was dynamically excited using a electrically driven
ball-screw actuator which applies a displacement to the cable anchorage point in the vertical direction. The
instrumentation consisted of two load cells (aligned with the cable) to measure the static tension and the
dynamic force acting at the top and bottom cable anchorages, one LVDT displacement transducer to be able
to track and control the actuator movement and a digital incremental encoder used to control the initial
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Fig. 2. Experimental set-up.

Table 1

Cable natural frequencies

oy1 (Hz) oy2 (Hz) oz1 (Hz) oz2 (Hz)

Experimental 4.40 8.76 4.72 8.77

Theoretical 4.41 8.81 4.71 8.81
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inclination of the cable. A high-speed vision system [22] was used to measure the cable motion at nine different
points both in-plane and out-of-plane.

Natural frequencies and damping ratios were identified experimentally using free vibration tests. The
natural frequencies agreed well with the theoretical values (Eq. (4)) and are summarised in Table 1. The modal
damping ratios over the range of oscillation amplitudes of interest were estimated to be approximately
x ¼ 0:2% for all three modes.

3.1. Theoretical stability boundaries

The theoretical stability boundaries in terms of the normalised excitation amplitude D=L and the
corresponding normalised amplitude of the second in-plane mode at the out-of-plane Z2a=L for a normalised
excitation frequency O=o2 are found by numerically solving Eqs. (20) and (16) (or the nondimensional Eqs.
(22) and (24)) via iteration for the first out-of-plane mode and Eqs. (20) and (18) (or Eqs. (23) and (24)) for the
second out-of-plane mode.

The boundaries, in terms of the normalised excitation amplitude, are shown in Fig. 3. For the first out-of-
plane mode there is a single boundary, for excitation levels below this boundary the zero response of the out-
of-plane mode is stable and above it the zero response is unstable. For the second out-of-plane mode there are
two stability boundaries for mX

ffiffiffi
3
p

x (corresponding to O=o2X1þ
ffiffiffi
3
p

xÞ. At low excitation levels, the mode is
stable about zero amplitude response. Then with increasing D the lower boundary line is crossed and a
response in the second out-of-plane mode is expected. If D is increased further, so that the second boundary
level is crossed, the zero amplitude modal response becomes stable again.

3.2. Simulated stability boundaries

Simulation results were generated by using the Matlab ode45 timestepping routine applied to Eq. (5). By
inspection of Eqs. (5), it can be seen that even when one of the out-of-plane modes is unstable about zero
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amplitude no modal responses occur unless there is an external disturbance. Therefore, in the simulations the
excitation is run for 25 s, by which time the directly excited second in-plane mode response is
approximately steady state. At 25 s a disturbance, in the form of a 0.02 s, 0.1mm/s amplitude pulse, is
applied to the velocity of both of the out-of-plane modes, and the stability of the modes is assessed. This is
done for a range of excitation amplitudes with increments of 0.2mm (or D=L ¼ 1:01� 10�4). As an example,
Fig. 4 shows the modal responses when the system is excited at a frequency of O=o2 ¼ 0:97 for two
amplitudes, 2.7 and 2.9mm, which correspond to stable and unstable y1 mode responses, respectively
(y2 is stable for both cases).

Simulation of stability boundary results in which the initial conditions for the second in-plane mode
are zero are shown in Fig. 3. For each value of O=o2 excitation amplitudes (with a resolution of 0.2mm)
either side of the observed modal stability boundaries are marked, for example for O=o2 ¼ 0:97,
considering the y1 mode, 2.7mm excitation is marked as stable and 2.9mm as unstable. From this figure,
for the first out-of-plane mode it can be seen that there is good agreement between the theory and the
simulations in the region 0:98pO=o2p1. For O=o2p0:98 the agreement deteriorates. This is due to the
scaling in which it was assumed that D and m were small. There is no instability in the second out-of-plane
mode for O=o2p1 as indicated by the theory. For O=o241 there is good agreement for the upper
second mode stability boundary (with the same deterioration at larger values of D) even though
there is significant response of the first out-of-plane mode at these excitation levels. However, the
simulations do not agree well with the theory for the lower second mode and the first mode stability
boundaries for O=o2X1:01. The reason for this disagreement is that the lower stability boundary does not
correspond to the zero initial condition solution computed using the simulation. To see this, consider
the equation for the amplitude of the second mode in-plane response (with zero response in the other modes),
Eq. (20), from which

dD
dZ2a

¼
Z2a

16o4
1B

2D
64o4

1ðm
2 þ x2z2Þ � 96o2

1mW 12Z2
2a þ 27W 2

12Z4
2a

� �
(25)

There are positive real values of Z2a that satisfy dD=dZ2a ¼ 0 if mX
ffiffiffi
3
p

xz2. This indicates that there are
multiple solutions for Z2a for a given D for mX

ffiffiffi
3
p

xz2, i.e. the curve has a fold. Using Eq. (20), an example
relationship between D and Z2a is shown in Fig. 5 for the case where O=o2 ¼ 1:03. The points at which the
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out-of-plane modes become unstable according to theory are indicated on the curve. The region of the curve
represented by the dashed line is unstable. This may be shown by rewriting Eq. (19) in matrix form:

Z0v2a ¼ f ðZv2aÞ ’ f ðZ̄v2aÞ þ ðZv2a � Z̄v2aÞDf ðẐv2aÞ (26)

where Zv2a ¼ fz2ca; z2sag
T and Df ðxÞ is the Jacobian of f ðxÞ. The stability of the response is governed by the

eigenvalues of the Jacobian evaluated at the possible equilibrium points, Z̄v2a, such that f ðZ̄v2aÞ ¼ 0, i.e. along
the line governed by Eq. (20). (The instability point for the second out-of-plane mode occurs on a stable part
of the D against Z2a curve.) In the hysteretic region, where there are two stable solutions for the amplitude of
the second in-plane response, simulations with zero initial conditions are attracted to the low-amplitude
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solution. Therefore, instability in the out-of-plane modes only occurs when the excitation amplitude D
exceeds the lower saddle-node bifurcation (point A in Fig. 5), at which point the amplitude of the
second in-plane mode jumps to the larger solution curve, point B in Fig. 5. This higher solution is
beyond the instability points of the two out-of-plane modes (i.e. point B is to the right of the instability
points for both the out-of-plane modes in Fig. 5). So both modes go unstable at the jump from the lower
bifurcation point (i.e. from A to B as indicated by the arrow in Fig. 5). From Eq. (25) the saddle-node
bifurcation (point A) occurs when

Z2
2a ¼

8o2
1m

9W 12
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

xz2

m

� �2
s0

@
1
A (27)

The turning point can be calculated in terms of D using Eqs. (20) and (27) and results in good agreement
with the simulation data. To simulate the theoretical instability boundary which exists at point B in
Fig. 5, the system must oscillate at the larger Z2a amplitude solution before the out-of-plane disturbance is
applied. This was achieved in the numerical simulation by initially setting an excitation amplitude higher than
the turning point value and reducing it to the desired level after 15 s. After 25 s a pulse disturbance
was applied to the out-of-plane modes to test for modal instability about the zero response position.
The simulation results are shown in Fig. 6. It can be seen that there is excellent agreement with the theoretical
predictions.
3.3. Experimental stability boundaries

In the experimental tests it was found that a small amount of oscillation (around 1mm amplitude) of the
second out-of-plane mode was present throughout all tests. It is thought that this was due to asymmetry in the
set-up. Growth in amplitude of this mode was not observed to take place before instability of the first out-of-
plane mode. The system was allowed 400 periods of external excitation for the transient response to decay.
After the 400 periods a disturbance was introduced, in the form of a slight impulse applied horizontally to the
mid-span lead weight. The out-of-plane amplitude of oscillation was then monitored for a further 400 periods
to ascertain the stability of the mode. This procedure was repeated for increasing amplitudes of excitation to
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Fig. 6. Simulation stability points for O=o2X1 when the second in-plane response is at the higher amplitude solution.
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just beyond the instability point for a range of forcing frequencies up to O=o2 ¼ 1:04. For O=o241:04 the first
in-plane mode was excited, the stability of which is beyond the scope of our study.

Fig. 7 shows the experimental stability points, which also show very good agreement with the theoretical
boundary for O=o2p1:02. For O=o241:02 the results diverge from the theoretical stability values; as with the
simulations this is because the initial conditions of the second in-plane mode are zero and so the modal
instability only occurs after the excitation amplitude exceeds the turning point defined by Eq. (27). It can be
seen that this relationship agrees well with the experimental results for O=o241:02.

4. Discussion

There is very good agreement between the simulation and experimental observations presented in the
previous section and the new theoretical model. We have demonstrated how the out-of-plane modes can go
unstable at the theoretical stability boundaries defined by Eqs. (16) and (19) for the first out-of-plane mode
and by Eqs. (18) and (19) for the second out-of-plane mode. When O=o2X1þ

ffiffiffi
3
p

xz2 a hysteretic region exists
and there are two stable solutions for Z2a. This fold in the relationship between Z2a and D can have the effect
of raising the excitation level required for the onset of vibrations in the out-of-plane modes as the instability
can occur on the upper Z2a branch. This raised excitation level can be calculated by considering the turning
point in the relationship between Z2a and D by solving Eqs. (20) and (27). We note that in the region where the
turning point is below the theoretical stability boundaries, see Fig. 7, the D required for instability of the semi-
trivial solution is governed by the theoretical stability boundary rather than the turning point relationship and
hence the theoretical stability boundaries are conservative.

Currently the most widely used stability curve when studying 2:1 resonance is the one presented by Lilian
and Pinto da Costa [2], which is used in practical bridge design recommendations, such as those produced by
Setra [27], to provide guidance as to whether the expected cable anchorage motions would be large enough to
initiate parametrically excited vibrations. The equations of the stability boundary in both works are found
from a linear one-degree-of-freedom Mathieu-Hill-type equation. Since they reduce the study to a single
degree of freedom they calculate y1 and y2 boundaries separately, the first excited in 2:1 resonance, the second
in 1:1 resonance (due to external support excitation rather than internal resonance with the second in-plane
mode). For the y1 mode excited close to 2:1 resonance, Lilien and Pinto da Costa [2] states that the stability
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boundary is given by

D̂ ¼ 2
�s

sinðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O
2o1

� �2

� 1

" #2
þ 4x2

O
2o1

� �2vuut . (28)

An equivalent expression is given by Setra [27] which is virtually the same for O=ð2o1Þ � 1. The minimum
excitation amplitude at which parametric resonance occurs is hence D̂ ¼ 4x�s= sinðyÞ when O=ð2o1Þ ¼ 1, i.e.
m ¼ 0.

Fig. 8 shows a comparison of the y1 mode instability boundary using the analytical model presented in this
paper and the relationship proposed by Lilien and Pinto da Costa [2]. It can be seen that the minimum
excitation to cause instability of the zero-amplitude response solution in the first out-of-plane mode occurs at
O=o2 ¼ 1 from the equations proposed by Lilien and Pinto [2] and Setra [27]. In contrast, the equations
derived in this paper, Eqs. (16) and (19), which have been verified experimentally in Section 3, predict that the
minimum excitation amplitude occurs away from resonance although the minimum amplitude remains
approximately the same. In addition, the excitation amplitude to induce a response in the y1 mode is
significantly less than that predicted by Lilien and Pinto [2] and Setra [27] for frequencies above resonance.
This shifting of the minimum and the reduction in amplitude of the higher frequency sides of the stability
boundary are a direct consequence of the hardening that cables experience due to the geometric cubic
nonlinearity from concurrent vibrations in the second in-plane mode. This nonlinearity is not taken into
account in previous stability models, such as Refs. [2,27], and as a result the match with experimental data (as
shown in the previous section) will be reduced. The reduction in amplitude of the curve shows clearly that
parametric resonance can occur for much smaller anchorage motions that previously predicted [2,27] when
O=o241.

Neither Ref. [2] nor Ref. [27] give a explicit equation to calculate the y2 stability region considering the
excitation via nonlinear coupling with the second in-plane mode. However the averaging technique used here
has resulted in Eqs. (18) and (19), which match the experimental and simulation data well.
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5. Conclusions

In this paper we have presented an extended three-mode modal for the vibration of an inclined cable with
vertical harmonic support excitation at the lower end of the cable. By including the model coupling terms, and
using averaging, the three mode model has been used to explain some subtle dynamic behaviour which occurs
around the 2:1 internal resonance of the in and out-of-plane modes. In particular the effect of the hysteretic
jump on the numerical and experimental tracking of the lower stability branch for y2 solutions has been
explained in detail.

As part of this study a series of experimental tests were carried out using a scaled inclined cable with an
actuator to give vertical excitation input at the lower support. Tests were carried out to observe the onset of
oscillations in the out-of-plane modes, and these were compared with analysis and simulation from the three-
mode model. Close agreement was found between the experimental and numerical results, giving a high degree
of confidence in the extended three-mode model. This also demonstrates the importance of including the
nonlinear coupling terms when studying the stability boundaries close to the 2:1 resonance region. Currently
these coupling effects are not usually considered, but the results from this study show that the onset of
oscillations in the out-of-plane modes can occur at lower amplitudes of excitation than predicted by previous
models without coupling.
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