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Abstract

Forced vibrations of a one degree-of-freedom impact Duffing oscillator are considered in this paper. The nonsmooth

unfolding transformation and the Van der Pol method are used together for vibration analysis and the forced vibrations in

the region of the resonance family are treated in detail. In this resonance family, the system exhibits subharmonic

vibrations. The stability and bifurcations of the periodic motions are also considered.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction and problem formulation

Many efforts have been made to study the vibrations of impact systems due to the importance of this
problem in engineering. Evidently, the book of Kobrinskii [1] was the first instance in which the theory of
impact systems was treated. Holmes [2,3] showed analytically the importance of the Smale horseshoe in the
formation of chaotic vibrations of impact systems. Thompson [4] analysed numerically the sequence of the
period doubling bifurcations in impact oscillators. Experimental data of beam vibrations, impacting on a stop,
are presented in the paper [5]. Moreover, a bilinear oscillator, which models the vibrations of this beam, is
considered in this paper. Shaw and Holmes [6] studied the stability of the periodic motions of an impact
system. Shaw [7] studied the dynamics of a one-degree-of-freedom oscillator with two-sided stops. The
dynamics of the oscillator with zero stiffness are considered in the paper [8]. The three degree-of-freedom
impacting system is investigated in Ref. [9]. The Hopf–Hopf bifurcation is analysed in detail. Xie [10] and Wen
[11] investigated codimension two bifurcations corresponding to the double eigenvalue of �1. Nordmark [12]
examined grazing bifurcations in vibro-impact systems. Nonideal dynamical systems with impact dampers are
considered in Ref. [13]. Direct numerical simulations are used to study the system behaviour. Pilipchuk [14]
suggested the use of saw-tooth time transformations to study impact systems. A detailed review of impact
system dynamics is presented in Refs. [15,16], and the theory of impact systems is treated in the books [17,18].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In this paper the Duffing oscillator, which impacts on stops during vibration, is considered. Nonsmooth
unfolding transformations [19–23] are used to study the dynamics of this oscillator. These transformations are
used jointly with the Van der Pol method and the resonance vibrations in this oscillator are studied in detail.

Basically the methods of lacing of linear solutions and the method of direct numerical integration are used
to study impact systems. Both these methods need numerical computations, and therefore it is hard to detect
qualitative behaviour of the system. Nonsmooth unfolding transformations in combination with the Van der
Pol method, as suggested in this paper, allow one to obtain analytical solutions in the asymptotic limit, which
match with the results from direct numerical integration. Moreover, it is possible to detect analytically the
qualitative behaviour of the system.

2. Equations of motions and application of nonsmooth unfolding transformation

The impact Duffing oscillator is presented in the following form [15]:

m€s1 þ b_s1 þ gs1 þ as31 ¼ H1 cosðOtÞ; (1a)

_s1ðtþ 0Þ ¼ �_s1ðt� 0Þ; s1 ¼ D, (1b)

where gs1+as1
3 is a nonlinear restoring force; H1 cos(Ot) is periodic force which acts on the mass and D is a

value of the clearance. The dynamical system (1) contains both the ODE (1a) and the impact condition (1b).
System (1) is of relatively simple form and it is stressed, that this system has complex bifurcation behaviour,

which is analysed only numerically [4,8]. The system of Eq. (1) describes vibrations hammers; machines, in
which impacting motions are the basis of manufacturing [1]. The choice of system (1) for analysis is explained
by the following.
1.
 The bifurcation behaviour can be analysed analytically by means of a nonsmooth unfolding
transformation.
2.
 All the stages and the advantages of nonsmooth unfolding transformations are presented clearly for
impacting system (1).
3.
 As this one degree-of-freedom dynamical system is successfully treated analytically in this paper, in future it
is hoped that this method can be applied for analysis of dynamical systems with two and more degrees-of-
freedom.

The nonsmooth unfolding transformation [19–22] has the following form:

s1ðtÞ ¼ D� zðtÞsignðzðtÞÞ. (2)

Zhuravlev [19] suggested the form of transformations which can be used to analyse impact systems with
arbitrary restitution coefficients of 0oro1. Unfortunately, such transformations are not used to analyse the
dynamics of impact systems.

This is initial research devoted to the application of nonsmooth unfolding transformations to the analysis of
impact dynamics and, therefore, the value of restitution coefficient r ¼ 1 is considered. The arbitrary value of r

will be considered in future work.
The method of linear solution piecing is used often to analyse impact oscillators [6]. It is impossible to

obtain observable analytical solutions by this method. The method of nonsmooth unfolding transformations
collectively with the asymptotic method, allows one to obtain analytical solutions. We stress that this
nonlinear transformation satisfies the impact condition (1b). Therefore, after applying this transformation to
the equation there is no further need to use the impact condition (1b). This is the essential advantage of this
method.

Due to transformation (2), the variable z(t) replaces the impact condition (1b). Therefore, the dynamical
system (1) with respect to the variable z(t) has the following form:

m€zþ b_zþ ðgþ 3aD2Þz� ðgDþ D3aÞsignðzÞ þ az3 � 3Daz2 signðzÞ ¼ �signðzÞH cosðOtÞ. (3)

Thus, the impact condition (1b) can be rejected.
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The dimensionless variables and parameters are introduced as

s ¼
z

zn
; t ¼ pt; p2 ¼

g
m
;

D
zn
¼ �d; �w ¼

bffiffiffiffiffiffi
gm
p ; �Z ¼ z2

n

a
g
; �H ¼

H1

gzn
, (4)

where e51. Then the dynamical system (3) has the following form:

€sþ �w_sþ s� �d signðsÞ þ �Zs3 þOð�2Þ ¼ �� signðsÞH cosðOtÞ. (5)

Instead of solving Eq. (1a) with the restriction (1b), the weakly nonlinear oscillator (5) is obtained. This is the
major advantage of a nonsmooth unfolding transformation. This system can be analysed by asymptotic
methods.
3. Periodic motions analysis by Van der Pol method

The dynamics of system (5) are considered in the region of the following resonances:

O ¼ 2mþ �s, (6)

where m ¼ 1,2,y and s is a detuning parameter. We stress that Eq. (6) describes the family of resonances. The
following Van der Pol transformation is applied to system (5):

ðs; _sÞ ¼ a cos
Ot� y
2m

� �
;�

O
2m

sin
Ot� y
2m

� �� �
. (7)

As a result, nonautonomous dynamical system of the first order are derived. The average procedure is applied
to this system. Then a new autonomous dynamical system is obtained:

a0 ¼ Faða; yÞ ¼ �
wa

2
þ

4mHð�1Þm

pð4m2 � 1Þ
sin y;

y0 ¼ Fyða; yÞ ¼
4md
pa
�

3Zm

4
a2 þ sþ

4mHð�1Þm

pað4m2 � 1Þ
cos y; (8)

where a0 ¼ da=dT1; T1 ¼ �t.
The dynamical system of Eq. (8) has fixed points which are denoted by a*y*. Small motions (Da,Dy) close to

these fixed points are analysed in order to study the stability of the overall system. These motions are described
by the following:

Da0 ¼ �
w
2
Daþ

4Hmð�1Þm

pð4m2 � 1Þ
cos yn Dy;

Dy0 ¼ �
4md
pa2

n

þ
3Zm

2
an þ

4mHð�1Þm

pa2
n
ð4m2 � 1Þ

cos yn

� �
Da�

4mHð�1Þm

pað4m2 � 1Þ
sin yn Dy. (9)

Characteristic exponents li of Eq. (9) are determined as the roots of the following quadratic equation:

l2 � l trþ det ¼ 0, (10)

where tr ¼ �ðw=2Þ � ðð4mHð�1ÞmÞ=ðpað4m2 � 1ÞÞÞsin y;

det ¼
w2mHð�1Þm

pað4m2 � 1Þ
sin yþ

4mHð�1Þm

p 4m2 � 1ð Þ

4md
pa2
þ

3Zm

2
aþ

4mHð�1Þm

pa2ð4m2 � 1Þ
cos y

� �
cos y.
3.1. Analysis of the system vibrations without damping

The case without damping w ¼ 0 is considered. The fixed points of Eq. (8) are analysed. Then the variable
y of the fixed points satisfies the equation: sin y ¼ 0. Two types of solutions exist in Eq. (8), which have the
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following form:

sa ¼
3Zm

4
a2 �

4m

pa
dþ

Hð�1Þm

4m2 � 1

� �
;

sb ¼
3Zm

4
a2 �

4m

pa
d�

Hð�1Þm

4m2 � 1

� �
. (11)

The case m ¼ 2l; l ¼ 1,2,y is considered for which the solutions (11) have the following form:

sa ¼
3Zl

2
a2 �

8l

pa
dþ

H

16l2 � 1

� �
; (12a)

sb ¼
3Zl

2
a2 �

8l

pa
d�

H

16l2 � 1

� �
. (12b)

The frequency response of system (5) is described by Eq. (12). Let us consider two cases:

I: d�
H

16l2 � 1
40;

II: d�
H

16l2 � 1
o0. (13)

In case I, the frequency response according to resonance (6), with m ¼ 2l, is shown qualitatively in Fig. 1,
and in case II, the frequency response is presented in Fig. 2. The branches of the frequency responses, which
are characterized by Eqs. (12a) and (12b), are denoted by a and b in Figs. 1 and 2.

Note that the backlash is denoted by d in system (5). Therefore, the difference in the system behaviour, as
presented in Figs. 1 and 2, shows the crucial influence of backlash on the steady vibrations.

The stability of the fixed points (Figs. 1 and 2) is studied and stability of the equilibria of branches a is
determined by the characteristic exponents l, which satisfy the following equation:

l2 ¼ �
8lH

pð16 l2 � 1Þ

dsa

da
, (14)
a

σ

a

b

aa

ab

a

b

a*

s2

s1

�* �*

Fig. 1. Frequency response for case I of the inequalities (13).
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Fig. 2. Frequency response for case II of the inequalities (13).
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where dsa/da is determined for the branches of the frequency response. Then the stability condition of the
equilibria of the branches a has the following form:

dsa

da
40.

The characteristic exponents for the stability determination of the equilibria, which belong to the branches b,
are obtained from the equation:

l2 ¼
8lH

p 16l2 � 1
� � dsb

da
. (15)

Then the stability condition of the fixed points, which belongs to branches b, have the following form:

dsb

da
o0.

The stable fixed points and unstable fixed points are shown in Figs. 1 and 2 by solid and dotted lines,
respectively.

Four saddle-node bifurcation points S1, S2, S3, S4 are shown in Figs. 1 and 2. The coordinates of these
points on the bifurcation diagrams are as follows:

S1ðsn; anÞ; S2ðsn; anÞ; S3ðs1; a1Þ; S4ðs2; a2Þ; (16)

sn ¼ 6l

ffiffiffiffiffi
3Z
p2

3

r
d�

H

16l2 � 1

� �2=3

; an ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3Zp
d�

H

16l2 � 1

� �
3

s
;

sn ¼ 6l

ffiffiffiffiffi
3Z
p2

3

r
dþ

H

16l2 � 1

� �2=3

; an ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3Zp
dþ

H

16l2 � 1

� �
3

s
; s2 ¼ sn; a2 ¼ an;

s1 ¼ 6l

ffiffiffiffiffi
3Z
p2

3

r
H

16l2 � 1
� d

� �2=3

; a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3Zp
H

16l2 � 1
� d

� �
3

s
.
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Note, that the coordinates of the bifurcation points satisfy the following inequalities:

snosn; anoan. (17)

The coordinates of the intersections of the frequency responses with y-axis (Figs. 1 and 2) are determined as

aa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

3pZ
dþ

H

16l2 � 1

� �
3

s
;

ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

3pZ
d�

H

16l2 � 1

� �
3

s
;

aa ¼ aa;

ab ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

3pZ
H

16l2 � 1
� d

� �
3

s
. (18)

Note that these coordinates satisfy the following inequality:

aa4ab. (19)

Now the case m ¼ 2l�1 is treated. This case will be considered in less detail than the previous one. Two
groups of solutions, which are denoted by c and d, are observed. These fixed points are determined from the
equations:

sc ¼
3Zð2l � 1Þ

4
a2 �

4ð2l � 1Þ

pa
d�

H

4ð2l � 1Þ2 � 1

� �
; (20a)

sd ¼
3Zð2l � 1Þ

4
a2 �

4ð2l � 1Þ

pa
dþ

H

4ð2l � 1Þ2 � 1

� �
. (20b)

Two cases are considered:

III: d�
H

4ð2l � 1Þ2 � 1
40;

IV: d�
H

4ð2l � 1Þ2 � 1
o0; (21)

If Eqs. (20) and (11) are compared then the following conclusion can be made. The behaviour of branches c

(20a) and branches b (Figs. 1 and 2) are qualitatively the same. Moreover, the behaviour of branches d and the
curves a are qualitatively the same too.

Now the stability of the fixed points is considered. The stability of the fixed points which belong to branch c

is described by the characteristic exponents l1,2:

l2 ¼
4ð2l � 1ÞH

p½4ð2l � 1Þ2 � 1�

dsc

da
(22)

and the stability of the fixed points, which belong to branch d, is described by the characteristic exponents:

l2 ¼ �
4ð2l � 1ÞH

p½4ð2l � 1Þ2 � 1�

dsd

da
. (23)

The frequency response of the vibrations (Figs. 1 and 2) for m ¼ 2l is qualitatively the same as the frequency
response for m ¼ 2l�1.

Using the approach suggested in this paper, it is impossible to obtain asymptotic behaviour of the backbone
curves. The analysis of Eq. (5) by the Van der Pol method is true for s ¼ O(1), but the asymptotic behaviour of
the backbone curves is fulfilled for greater values of s.
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3.2. Vibrations of the system with dissipation

The stationary vibrations of the system with dissipation are determined by the fixed points of system (8).
These fixed points satisfy the system of two nonlinear algebraic equations:

4Hmð�1Þm

pð4m2 � 1Þ
sin y ¼

wa

2
;

4Hmð�1Þm

pð4m2 � 1Þ
cos y ¼

3Zm

4
a3 � sa�

4md
p

. (24)

Two groups of the fixed points are obtained from Eq. (24):

s ¼
3Zm

4
a2 �

4md
pa
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m2H2

p2ð4m2 � 1Þ2a2
�

w2

4

s
. (25)

Note that the general coordinate of system (1a) and the variables of system (8) are connected such that:

s1 ¼ D� zna cos
O
2m

t�
y
2m

� �				
				. (26)

If a change of variable of the form a-�a is applied, then the solutions of system (1a) are unchanged.
Eq. (26) shows that system (1) behaviour in the resonance family (6) is subharmonic.
Now, the backbone curve for free vibrations, which is described by Eq. (25), with w ¼ H ¼ 0, is considered.

The equation of the backbone curve is the following:

s ¼
3Zm

4
a2 �

4md
pa

. (27)

The saddle-node bifurcation of free vibrations is observed at

~ab ¼ �2

ffiffiffiffiffiffiffiffi
d

3pZ
3

s
(28)

The backbone curves are shown in Figs. 3 and 4 by the chain lines.
Now the forced vibrations at H 6¼0; w 6¼0 are analysed. The results of the analysis are shown on the

frequency response. As follows from Eq. (25), forced vibrations take place if the inequality satisfies the
following:

jajoa0; a0 ¼
8mH

pð4m2 � 1Þw
. (29)

Now, two types of frequency response, which differ by qualitative branch arrangement, are considered.
Fig. 3 shows the first type of the frequency response, which satisfies the following inequality:

�a04 ~ab. (30)

Fig. 4 shows the second type of the frequency response. In this case, the following inequality is true:

~ab4� a0. (31)

From this it is seen that the stability of the fixed points of system (8) can be analysed. The evolution of small
perturbations close to the fixed points in time is described by system (9). The characteristic exponents of this
system are determined by Eq. (10). Differentiating the system of two nonlinear algebraic equations for the
fixed points of Eq. (8) with respect to s, the following equations are derived:

qFa

qa

da

ds
þ

qFa

qy
dy
ds
¼ 0;

qFy

qa

da

ds
þ

qFy

qy
dy
ds
þ

qF y

qs
¼ 0, (32)
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a0

a

σ

−a0

ab

A1

B

A2

Fig. 3. Frequency response of the forced vibrations for case (30).

a

σ

a0

−a0

ab
~

A1

B

A2

Fig. 4. Frequency response of the forced vibrations for case (31).
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where ðqF y=qsÞ ¼ 1. The parameter det, which is determined by the formulas (10), satisfies the following
equation:

det ¼
qFy

qy
qFa

qa
�

qF a

qy
qFy

qa
¼

ds
da

qF a

qy
, (33)

where ðqFa=qyÞ ¼ a ~f ; ~f ¼ ð3Zm=4Þa2 � ð4md=paÞ � s. Note that the derivative ds/da is determined along the
branches of the frequency response (Figs. 3 and 4). Thus the characteristic exponents of the variational
equation (10) can be presented in the following form:

2l1;2 ¼ �w�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 4a ~f

ds
da

r
. (34)
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Finally the analysis of the characteristic exponents (34) of equations can be carried out. Note that the
backbone curves (Figs. 3 and 4) separate the plane (s,a) on the three regions A1, A2, B. In the regions A1, A2,
the following inequality is true:

~f40. (35)

Moreover, in region B the following inequality is satisfied:

~fo0. (36)

Note that the sign of ds/da can be determined by the qualitative arrangement of the frequency response
branches. The stability of the fixed points can be determined using the analysis presented above and using
Eq. (34). The branches of the stable and unstable fixed points are shown in Figs. 3 and 4 by solid and dotted
lines, respectively.
Fig. 5. Backbone curves of free vibrations. (a) and (b) are calculated from Eqs. (12a) and (12b), respectively.
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The fixed points of the modulation equation (8) considered above correspond to the periodic vibrations of
Eq. (26). Moreover, the stable and unstable fixed points correspond to the stable and unstable periodic
vibrations, respectively.

Thus, due to cooperative use of the nonsmooth unfolding transformations and the Van der Pol method, the
motions of impact system (1) have been studied analytically.
4. Numerical analysis of vibrations

The frequency responses which have been considered qualitatively in the previous section are now analysed
numerically for particular values of system parameters. The following values of system (5) parameters are
Fig. 6. Frequency response of the forced vibrations. (a) �a 2 ½1:5; 4� and (b) �a 2 ½�3:5;�1�.



ARTICLE IN PRESS

Fig. 7. Frequency response of forced vibrations for parameters Z ¼ 0; H ¼ 2; d ¼ 1; � ¼ 0:1; w ¼ 0:1; m ¼ 1.

K.V. Avramov, O.V. Borysiuk / Journal of Sound and Vibration 318 (2008) 1197–1209 1207
considered:

� ¼ 0:1; d ¼ 1; Z ¼ 2; H ¼ 2; w ¼ 0:1; l ¼ 1; m ¼ 2 (37)

At first the frequency response of the free vibrations is considered. Parameters (37) correspond to case I of
Eq. (13). Therefore, the coordinates of the characteristic points of the frequency response (Fig. 1) are the
following:

aa ¼ 0:98717; ab ¼ 0:90273; sn ¼ 4:62029; sn ¼ 5:551; an ¼ �0:7164; an ¼ �0:7835.

Fig. 5 shows the backbone curves of free vibrations. Figs. 5a and b are calculated by Eqs. (12a) and (12b),
respectively.

The following parameters are obtained to calculate the forced vibrations:

~ab ¼ �0:7515; a0 ¼ 6:7906.

These values of parameters correspond to the inequality of Eq. (31). Fig. 6 shows the frequency response of the
forced vibrations.

Direct numerical integrations of oscillator (5) with the parameters:

Z ¼ 0; H ¼ 2; d ¼ 1; � ¼ 0:1; w ¼ 0:1; m ¼ 1;

were carried out in order to confirm the method. Fig. 7 shows the frequency response and the results of the
direct numerical simulations, which are presented by dots in the figure. As examples, the waveforms of the
vibrations are shown in Fig. 8.

5. Concluding remarks

The method suggested in this paper can be divided into the following phases.
(1)
 applying nonsmooth unfolding transformations, which allows to exclude the impact condition;

(2)
 applying an asymptotic, or another approximate method, to study the new dynamical system;

(3)
 analysis of the obtained results.
Note that different methods of nonlinear dynamics can be used to study Eq. (3). For example, the harmonic
balance method or the Melnikov technique can also be applied.
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Fig. 8. Waveform of vibrations at (a) �s ¼ 0:7559 and (b) �s ¼ 1:5559.
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The novelty of the results obtained in this paper is the following:
�
 the nonsmooth unfolding transformations and the Van der Pol method are used together to analyse the
impact system;

�
 the results of the dynamical behaviour analysis are also proposed as new information.
Application of nonsmooth unfolding transformations jointly with the Van der Pol method allows analytical
periodic solutions to be obtained and their stability and bifurcations to be analysed. This is the advantage of
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the method. However, it is not yet clear how to apply this method to systems with several degrees of freedom
and this will be the topic of future work.
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