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Abstract

The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and

promotes the interests of the scientific and industrial aeroacoustics community on a European scale and European

aeronautics activities internationally. In this context, ‘‘aeroacoustics’’ encompasses all aerospace acoustics and related

areas. Each year the committee highlights some of the research and development projects in Europe.

This paper is a report on highlights of aeroacoustics research in Europe in 2007, compiled from information provided to

the ASC of the CEAS.

During 2007, numerous research programmes were funded by the European Union. Some of the contributions

submitted to the editor summarize selected findings from these programmes, while other articles cover issues supported by

national associations. Furthermore, a concise summary of the workshop on ‘‘Experimental and Numerical Analysis and

Prediction of Combustion Noise’’ held in Lisbon in September, is included in this report. Enquiries concerning all

contributions should be addressed to the authors who are given at the end of each subsection.

r 2008 Elsevier Ltd. All rights reserved.
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1. CEAS-ASC workshop

The workshop on ‘‘Experimental and Numerical Analysis and Prediction of Combustion Noise’’ was held
on 27–28 September 2007 at the Congress Center of Instituto Superior Técnico. It was the 11th Workshop
sponsored by the Aeroacoustics Committee of CEAS and the first to be sponsored as well by the
Aeroacoustics Committee of AIAA. The organizers were Wolfgang Schröder from RWTH Aachen and Luis
Campos from IST, who will act as Guest Editors of a special issue of International Journal of Aeroacoustics
dedicated to the workshop.

The subject of ‘‘Combustion Noise’’ has gained increasing importance recently, as progress in other areas of
sound reduction makes this type of sound source more relevant. The interest in the subject was demonstrated
by the 90 attendants and presentation of 29 papers over two days. Each day started with an invited review, viz.
‘‘Flame Dynamics and Combustion Noise’’ by Sebastien Candel and co-workers from Ecole Centrale de Paris
on the first day, and on the second ‘‘Large Eddy Simulation of Combustion Noise’’ by Heinz Pitsch and
co-workers from Stanford University.

There is a strong resurgence of interest in ‘‘entropy noise’’, following a long hiatus since the pioneering work
of Marble, Candel, Howe and others in the seventies and eighties. The traditional subjects of combustion
instability and acoustic-combustion coupling have if anything gained in importance due to the application in
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jet and rocket engines and industrial burners. The progress in Computational Fluid Dynamics (CFD) and
Computational Aeroacoustics (CAA) in evident as in other areas. The stage has been reached where it is
already possible to combine detailed chemistry analysis with flow and acoustic computations. This may be a
major trend for the future.

Written by Luis Campos: luis.campos@ist.utl.pt, IST, Portugal.

2. European-funded projects

2.1. SILENCE(R)

SIgnificantly Lower community Exposure to aircraft NoiSE (SILENCE(R)) has been the largest European
Commission research project dedicated to aircraft noise reduction. It was budgeted at 112 million euros, and
brought together 51 partners. Research spanned several main areas, including engine and airframe source
noise, nacelle technologies and active control.

Combined with innovative low-noise operational procedures studied in parallel, the project has achieved an
impressive 5 dB noise reduction. This meets the medium-term objective of the European Commission’s PCRD
R&D Framework Programs, and marks a significant advance towards ACARE’s research goal of a 10 dB
reduction in aircraft noise by 2020.

SILENCE(R) has met its goal of validating large-scale noise reduction solutions concerning the engine
(aeroacoustic design, active technologies), nacelle (aeroacoustic design, innovative acoustic treatment, active
noise control), and airframe (aeroacoustic design). More than 35 prototypes were tested as part of the
SILENCE(R) program, along with studies of improved operational procedures to reduce aircraft noise.

2.1.1. Engine source noise

The research on engine noise spanned the fan, compressor, turbine and jet noise. A low-noise compressor
was designed using CFD by modifying the inlet guide vanes and the first stator of an existing large-scale
compressor model. With the new design, the sound power level of the first rotor blade passing frequency tone
was significantly reduced under the appropriate operating conditions. This reduction was achieved without
compromising the aerodynamic and mechanical characteristics of the compressor.

Low-noise fan designs were developed for both high bypass ratio (HBR) and ultra-high bypass ratio
(UHBR) engine concepts, by capitalizing on computational aeroacoustic multidisciplinary design optimiza-
tion techniques. Advanced designs for the HBR engines have undergone large-scale tests at the AneCom
Aerotest Facility.

Researchers also tested the acoustic and aerodynamic performance of alternative exhaust nozzle shapes
designed to reduce jet noise, using Onera and QinetiQ facilities, as well as an Airbus A320 flying test bed. After
down selecting from the numerous designs tested on model scale, the Squid nozzle design was build on full
scale and tested in-flight as well as on an acoustic ground based outdoor test bed (see Fig. 1).

2.1.2. Nacelle technologies

Research focussed on both the nacelle geometry and acoustic liners
One design possibility for a low-noise nacelle was a negatively scarfed inlet (NSI), a concept that is intended

to change the directional pattern of the radiated engine noise, so that more noise will be directed upward, and
less noise downward. After extensive wind-tunnel testing on scale models at Onera, flight tests were made with
an NSI mounted on one of the engines of an Airbus A320 at Moron (Spain) and Tarbes (France) (see Fig. 2).

The noise benefit of extending the acoustic liner over the intake lip was demonstrated on a static test of a
Rolls-Royce Trent prototype and in flight on the A320 on a CFM56 engine inlet.

Research on nacelle acoustic liners included the development and assessment of zero-splice inlet liners.
Large-scale research on zero-splice inlet liners has been conducted on the Trent engine.

To reduce turbine and combustor noise, the project expended considerable effort on the investigation of
innovative absorbent materials and concepts capable of resisting the high temperatures of the engine core
exhaust flow. Several full-scale prototypes were manufactured and tested, using ‘‘hot stream’’ solutions in the
primary nozzle and the engine centerbody.
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Fig. 2. Negatively scarfed inlet.

Fig. 1. Squid nozzle on A320/CFM56.
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2.1.3. Airframe source noise

The extensive airframe noise tests for SILENCE(R) focused on technologies to reduce landing gear noise
and noise generated by high-lift devices. Flight tests were carried out on an Airbus A340 with landing gear
fitted with low-noise fairings.

For future applications, more comprehensive changes to the landing gear configuration may be needed to
reduce noise. Full-scale experiments have been carried out on these concepts in a wind tunnel at DNW.

2.1.4. Active control

Several active and adaptive technologies are under investigation. These technologies are based
on either anti-noise cancellation techniques or self-adapting technologies to provide maximum noise
reduction depending on flight conditions. Examples include active stator technology and active
control of buzz-saw tones, for which large-scale tests were carried out successfully at the RACE and
ANECOM anechoic fan noise facilities. The most promising results were generated by the active stator
technology (see Fig. 3).

Written by Eugène Kors: eugene.kors@snecma.fr, Snecma, France.
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Fig. 3. Active stator.
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2.2. SEFA

Sound engineering for aircraft (SEFA) was the first project to use Sound Engineering to define optimum
aircraft community noise ‘‘shapes’’ (characteristics to design target sounds). Sound design metrics were
derived by the subjective assessment of overflying aircraft noise events within extensive psychometric listening
tests in 8 different laboratories. The Paired Comparison Test and Semantic Differential Test methods have
been shown to be acceptable to describe the human perception of current aircraft sounds. From these
extensive tests, the following lessons have been learned:
�
 Differentiation and scaling of aircraft sounds are very difficult for a typical listener. One of the reasons is
that full overflying events are continuously changing over a period of typically 40 s.

�
 The importance, as a disturbing feature, of any particular sound characteristics (e.g., fan tones) is largely

dependent on the entire sound composition of an overflying event, i.e., on a number of other tonal and
broadband components.

�
 Characterising target sound generally has been shown to have more dimensions than anticipated at the

beginning of SEFA.

Due to the fact that the derived target sounds were specific to the aircraft type, it was not possible
to define general aircraft design guidelines within SEFA. However, guidelines taking into account
airframe design, engine design and flight procedures have been derived according to aircraft-specific
features. Therefore, SEFA has provided valuable information on how the noise annoyance of aircraft can be
reduced, not only by lowering noise levels, but also by improving the characteristics of aircraft noise
signatures.

Written by Roger Drobietz: Roger.Drobietz@eads.net, EADS-IW, Germany.

2.3. PROBAND

Fan broadband noise is a major aircraft noise challenge now, and will be even more important in the future.
Novel low-noise engine architectures, such as ultra-high-bypass-ratio engines and lower-speed fans, can help
address jet noise and fan tone noise, but previous EC-funded programmes have shown they are unlikely to
reduce significantly fan broadband noise without improved understanding of the source mechanisms. The
advances in numerical methods, which have revolutionised tone noise prediction, have yet to make an
equivalent impact on broadband noise prediction. Improvement of Fan Broadband Noise Prediction
(PROBAND) addresses these issues by providing industry with an improved understanding of the broadband
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Fig. 4. Broadband noise source maps on fan stage stator (left) and rotor (right).
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noise source mechanisms, with validated broadband noise prediction methods, and with low fan broadband
noise concepts.

PROBAND exploits the noise technology and methodology acquired in EC-funded projects and national
programmes, to develop methods for the design of a fan system of sufficiently low broadband noise to meet
the EU noise level targets.

The project is subdivided into three technical workpackages (WPs). In WP2, single source studies and model
development take place. Selected major results of WP2 can be found in Refs. [1–4]. WP3 consists of laboratory
scale fan rig tests using novel measurement techniques supported by cutting edge CFD prediction approaches.
First experimental results are published in Ref. [5]. In WP4, the developed methods will be validated and their
application will be demonstrated on an industrial Fan-OGV rig test. One experimental method was already
published [6]. Fig. 4 depicts an analysis result applying this novel in-duct beamforming technique on a fan inlet
sound field.

Written by Lars Enghardt,lars.enghardt@dlr.de, DLR, Germany.
3. Airframe noise

3.1. Trailing-edge noise research

From Ffowcs-Williams and Hall [7] it is known that the noise generation mechanism of trailing-edge (TE)
scattering noise, i.e. an edge-enhanced conversion of turbulence into sound, is directly related to the geometric
discontinuity at the TE. It is concluded that a ‘‘smoothed’’ TE boundary condition, by flow-permeable edge-
modifications, will reduce TE noise radiation efficiency. In search of applicable retrofit solutions for existing
airframe components the principal noise reduction capability of comb-type edge-modifications was proven at
different two-dimensional test airfoils (Re ¼ 1.1–7.9 Mio). Fig. 5 shows the noise reduction potential
(2–10 dB) of several TE modifications. Basic design rules and scaling laws for a low-noise TE design were
derived [8]. A major finding was that comb design optimization is mainly determined by design details of the
comb-device (i.e. material flexibility and dimensions), rather than the incident flow. Extensive reference
measurements at different solid TE geometries provided a database for validating various available TE noise
prediction approaches. Fig. 6 compares measured data (0.4-m chord NACA0012-like airfoil with a 0.15-mm
TE thickness) with the results of (1) a semi-empirical TE noise prediction according to Brooks, Pope and
Marcolini (BPM) [9,10], with neglected TE bluntness, and (2) a CAA simulation, based on a stochastic
approach (RPM) [11], as implemented in DLR’s PIANO code, for a 0.2-m chord infinitely thin flat plate
(Re ¼ 550,000, absolute levels calibrated with the measurement data).

Written by Michaela Herr, michaela.herr@dlr.de, DLR, Germany.
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3.2. Numerical synthesis of airframe noise for aircraft sound engineering

As part of the SEFA project (see Section 2.2), the airframe noise of civil transport aircraft has been
numerically evaluated and compared with measurements taken in some European airports, in order to
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separate the airframe noise from other noise components of a typical aircraft [12]. Priority was given to
airframe noise because it sets a lower limit below which reduction of engine noise has no significant effect on
the overall flyover noise level. Figs. 7 and 8 show the landing path of a typical civil aircraft and its numerically
produced sound pressure levels. The generated sounds have been used for psychometric tests, where the real
conditions are reproduced in laboratory without the need for expensive measurement campaigns. These
sounds are easily modified for changing aircraft geometry and operation conditions.

Written by G. Scarselli, scarsell@unina.it, University of Naples ‘‘Federico II’’, Italy.



ARTICLE IN PRESS
H.H. Brouwer, S.W. Rienstra / Journal of Sound and Vibration 318 (2008) 625–654 633
4. Fan and jet noise

4.1. Simulation of sound emission by turbulent flows

Promising results from Detached Eddy Simulation (DES) were obtained for the simulation of sound
emission by turbulent flows. DES is a hybrid RANS-LES method positioned between conventional RANS
and LES methods in terms of computational costs and predictive accuracy, particularly suitable to include
geometric modifications. DES was applied to the prediction of jet-mixing noise from serrated ‘‘chevron’’
nozzles. A short-cowl (staggered) and a long-cowl (internal mixing) nozzle have been studied in the European
CoJeN research project [13] and the German national program FREQUENZ [14], respectively. The effect of
serrations on the flow field behind the long-cowl nozzle is shown using isosurfaces of the l2 vortex core
criterion in Fig. 9 (left), from which the serrations are seen to force an earlier development of three-
dimensional turbulence. Fig. 9 (right) shows the far-field directivities of the serrated nozzle in comparison with
the baseline nozzle. The predictions for the baseline case agree with the experimental data to within 2 dB and
the serrations yield a noise reduction in all directions.

Written by Ulf Michel, Łukasz Panek, Dandy Eschricht, Jianping Yan, Charles Mockett, Frank Thiele,

frank.thiele@cfd.tu-berlin.de, TU Berlin, Germany.

4.2. LES simulation of chevron nozzle acoustics

Implicit Large Eddy Simulations (LES) of the flow and acoustic field around chevroned nozzles have been
compared with NASA Glenn measurements [15] for nozzles with around 61 (SMC1) and 181 (SMC6) chevron
penetration. Turbulent statistics of sufficient quality gave reasonable far field sound predictions using the
Ffowcs Williams-Hawking approach. Fig. 10 gives flow field isosurfaces for the SMC1 geometry. Fig. 11 gives
the far field sound level for the SMC0 (no chevron) and SMC1 and SMC6 geometries with the unstructured
FLUXp CFD code.

Written by P. Tucker, H. Xia, S. Eastwood, Whittle Laboratory, pgt23@cam.ac.uk, hx222@cam.ac.uk,

se282@cam.ac.uk, The University of Cambridge, UK.

4.3. 3D simulations of installation effects on turbofan engine AftFan noise

Several experimental and numerical studies were recently conducted at ONERA, aiming at characterizing
the shielding effect provided by an empennage wing, on the aft fan noise of a coaxial engine. The numerical
studies were done by the sAbrinA solver (Refs. [16,17]), performing both aerodynamics (CFD) and
baseline (DES)
serrated 2 (DES)
experiment

150
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Fig. 9. Left: comparison between flow field structures of the baseline (above) and serrated (below) nozzle. Right: predicted overall sound

pressure levels in the far field for the long-cowl nozzle with and without serrations in comparison to measurements for the baseline case.
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aeroacoustics (CAA) calculations. 3D aft fan noise propagation and radiation was simulated for a coaxial
engine, installed over an empennage airfoil and being affected by realistic ‘‘take-off’’ thermodynamic
conditions (viz. a highly heterogeneous jet mean flow). Fig. 12 presents the near-field CAA results [18]
obtained for an acoustic mode (with azimuthal and radial orders of 2) at 0.5 BPF in the upstream region of the
secondary exhaust. It turns out that the airfoil acts as an efficient shield, as only a fraction of the sound
emitted in the downward direction is diffracted by the airfoil and propagates towards the ground.

Written by S. Redonnet, G. Desquesnes & E. Manoha, stephane.redonnet@onera.fr, ONERA, France.

4.4. Noise reduction by impinging microjets

The effects of fluidic control on the aeroacoustic characteristics of a Mach 0.9 high-Reynolds axisymmetric
jet are investigated experimentally [19]. The air-microjet system comprised up to 36 impacting microjets
directed towards the jet centerline (Fig. 13), and was designed to modify various microjet parameters.
A significant noise reduction was obtained for the entire range of noise emission angle y (Fig. 14). The
dependency was studied of the reduction with respect to the outgoing mass flux per microjet, the number of
microjets and their layout in the azimuth of the main jet. The global noise reduction varied from 0 to 1.8 dB,
showing some non-monotonic behavior caused by the change from subsonic to supersonic regimes of the
microjets. In small numbers, the microjets act independently. This was confirmed by aerodynamic studies by
Stereoscopic Particle Image Velocimetry. These studies [19,20] indicate a strong correlation between the
maximum level of turbulence just behind the nozzle exit and the high-frequency noise, which was previously
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Fig. 13. Air-microjet system in the anechoic wind tunnel of Ecole Centrale de Lyon.
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Fig. 14. Acoustic directivity measured for three configurations.

Fig. 12. 3D numerical simulation of the acoustic installation effects to noise from a coaxial exhaust, installed over an empennage airfoil,

with respect to a particular aft fan noise content (mode (2, 2) at 1/2 BPF) and a given jet mean flow (take-off flight). The acoustic shielding

due to the airfoil is highlighted by the acoustic attenuation (resp. reinforcement) on the lower (resp. upper) side of the profile.
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shown to potentially outweigh the acoustic benefits obtained for lower frequencies. The maximum level of
turbulence measured at the longitudinal position corresponding to half the potential core length was shown to
be also highly correlated to the jet noise reduction.

Written by Th. Castelain and Daniel Juvé, thomas.castelain@ec-lyon.fr, Ecole Centrale, Lyon, France.

4.5. Jet noise simulation using a hybrid method

Jet noise of several nozzle configurations and operating points have been computed by means of a
hybrid method, combining a CFD/LES aerodynamic computation and an acoustic integral formulation
(Ffowcs-Williams and Hawkings) for the far field radiation. Influence of temperature and micro-jets have been
investigated on a single stream nozzle and computations on realistic industrial configurations have also
been performed. A hybrid mesh approach had been chosen, combining the simplicity of unstructured
elements for complex geometries and the precision of hexahedrons for the jet development. This approach
produced realistic jet flows although the potential cores were too short and the far field sound pressure
levels were overestimated compared to measurements. These discrepancies could be due to the under-
resolution of the mesh. Parameter effects such as temperature and micro-jets, show a qualitatively correct
behavior (see Fig. 15).

Theoretical work on the quadrupole volume integral demonstrated the feasibility of noise prediction using
volume integral methods, see Figs. 16 and 17 [21,22].
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5. Techniques and methods in aeroacoustics

5.1. Aero-acoustic modeling of subsonic confined flows using an active bi-port formulation

The transmission characteristics (4-pole parameters) of two expansion chambers placed behind each other
are determined using a time-domain two-load technique with a plane pulse excitation, using a Linearized Euler
model [23] (Fig. 18). Based on the four pole parameters the noise generating mechanisms (active part) are
determined using compressible Large Eddy Simulations (LES) [24,25] (Fig. 19). Since hydrodynamic pressure
oscillations (pseudo-sound) are present behind the expansion chambers, an aerodynamic/acoustic splitting
technique [26,27] is used to separate the aerodynamic and the acoustic fluctuating field.
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5.2. Application of hybrid methods to high frequency aeroacoustics

In hybrid methods for calculation of aerodynamic sound generation, computation of the flow is decoupled
from computation of the sound propagation. These methods are especially suitable for high Reynolds, low
Mach number flows. Although hybrid methods have proved their efficiency only for low frequencies
(Helmholtz numbers), an innovative procedure is proposed [28] to compute the noise for the whole frequency
spectrum from the same CFD computation. The procedure is tested for an infinite span airfoil placed in a
turbulent round jet (Fig. 20). The chord based Reynolds number is 36,000 and the Mach number is 0.04. The
unsteady, three-dimensional incompressible flow around the airfoil is first computed with the LES module of
CFD solver Fluent. In a second step, the unsteady pressure data along the airfoil surface were used through
the Sysnoise solver implementing Curle’s analogy to obtain the radiated sound. The found predictions exhibit
a very similar slope of the spectrum (compared to experiments), with, however, an overall under-prediction of
about 4–6 dB in the meaningful frequency range (100–800Hz), see Fig. 21.

Written by J. Christophe and J. Anthoine, anthoine@vki.ac.be, VKI, Belgium.

5.3. CAA prediction of broadband trailing-edge and jet noise

Significant progress has been made in the modeling of trailing-edge as well as jet noise sources as part of a
fast aeroacoustic prediction model for broadband noise (DLR’s CAA code PIANO). The simulation of
trailing-edge noise is based on vortex sound sources, computed from synthetic turbulence based on the
Random-Particle Mesh method (RPM), [11]. Fig. 6 (Section 3.1) shows a one-third octave spectrum compared
with measurements [8]. The spectrum is predicted very accurately up to Strouhal numbers of 0.17,
corresponding to the spectral resolution of the CAA mesh. For the prediction of jet noise, the noise source of
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Fig. 20. Instantaneous flow field around the airfoil, coherent structures visualized with the second invariant of the velocity gradient tensor

Q ¼ 30,000 colored by dynamic pressure.
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Tam & Auriault [29] is realized with the RPM method in the time-domain [30]. This source models broadband
fine-scale turbulence noise in the frequency domain. In the RPM time domain realization of the respective
forcing of the linear or non-linear Euler equations not only the fine scale turbulence related sound is predicted
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Fig. 22. CAA Simulation of jet noise based on stochastic sound sources.
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but also large scale turbulence noise due to the excitation of instability waves in the jet. Fig. 22 shows a
snapshot of the pressure field from jet computations. Large scale sound waves are predominantly radiated
under an angle of approx. 1601 from the upstream jet axis, whereas fine-scale turbulence noise is radiated more
omni-directional. Fig. 23 presents a comparison of CAA spectra at 901 and 1601 receiver position with the
universal f- and g-noise spectra derived by Tam et al. [31] from large experimental data sets. The CAA spectra
show a very close agreement with the corresponding universal spectra.
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5.4. Direct aeroacoustic simulations of a supersonic jet with the STE-DG method

The Space-Time-Expansion Discontinuous Galerkin (STE-DG) method by Gassner et al. [32,33], has been
applied to the simulation of supersonic jet noise. Both the flow field and the propagation of the acoustic waves
into the far field are contained in one single computation, which is non-trivial due to the multi-scale problem
of aeroacoustics. Because of the small dimensions of the nozzle, a DNS simulation of the jet (Ma ¼ 1.4,
Re ¼ 150,000) is possible with grid cell sizes near the Kolmogorov length. The implementation of the method
is of arbitrary order in space and time. As DG cells are able to represent polynomial information inside
one single element, relatively coarse grids can be used. Due to its locality, the DG method is able to achieve
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Fig. 24. 2D simulation of a jet, including the mach discs, vortices and the acoustic waves.
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high-order of accuracy on unstructured grids. Fig. 24 shows the zoom into a 2D simulation of the jet,
including the mach discs, vortices and the acoustic waves.
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5.5. A 3D numerical method for studying poroelastic liners with mean flow

The finite element (FE) method is used to study noise attenuation by poroelastic materials
exposed to grazing flow. The acoustic propagation in the liner and in the fluid domain are respectively
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Fig. 25. (a) Pressure field. (b) Pressure and intensity field in a cross section. (c) Zoom on intensity field.
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governed by Biot’s model and Galbrun’s equation. Galbrun’s equation is a reformulation of the
Linearized Euler’s Equations written in terms of the Lagrangian perturbation of Eulerian variables.
With this Lagrangian representation, an exact expression for the energy flux and acoustic intensity
can be found and can supply a good tool for studying absorbing material with sheared mean flow
(see Fig. 25).

Here, the coupling between Galbrun’s and Biot’s equation is realized with mixed pressure-displacement FE.
On the one hand, mixed formulation is used in Galbrun’s equation to avoid numerical locking [34]. And on the
other hand, in poroelastic media, the description of both phases involves the displacement of the solid phase
and the pressure in the fluid phase [35]. The method has been validated with analytical results, for more details
see Ref. [36].
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5.6. Computation of aeroacoustic phenomena in subsonic and transonic ducted flows

Strong interactions between shock oscillations, internal aerodynamic noise and acoustic duct modes,
often observed in confined flows, are usually undesirable in view of vibrations and fatigue of structures.
In order to compute this kind of phenomena, a numerical solver called Simulation of Aeroacoustics
in Fluids And Resonance and Interactions (SAFARI) has been developed. Compressible Navier–Stokes
equations are solved using high-order finite difference schemes [38]. A transonic flow passing a
sudden expansion in a duct is studied [39]. Strong coupling between the self-sustained oscillations of the
normal shock and the longitudinal acoustic modes is captured as in the experiments. An instantaneous
snapshot of the density gradient modulus is represented in Fig. 26. For lower pressure ratios, the flow
is entirely supersonic with oblique shocks. For higher pressure ratios, the flow is asymmetric and exhibits
shock cells.
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5.7. Phased array deconvolution using CLEAN-SC

A new phased array deconvolution technique, developed at NLR, takes advantage of the fact that sources in
source plots are spatially coherent with their side lobes. Beam patterns of individual noise sources are
determined by analyzing the measured spatial coherence. This avoids the use of Point Spread Functions
(PSFs), which are obtained by synthesizing data of monopole point sources. Traditionally, deconvolution
methods assume that source maps are built up by PSFs, which may lead to errors when actual source patterns
are different. The new method is called CLEAN based on Source Coherence (CLEAN-SC), as it is a modified
version of the classical CLEAN method used in Astronomy. Essentially, CLEAN-SC iteratively removes the
part of the source plot which is spatially coherent with the peak source. A feature of CLEAN-SC is its ability
to extract absolute sound power levels from the source plots. The merits of CLEAN-SC were demonstrated
using array measurements of airframe noise on a scale model of the Airbus A340 (Fig. 27) in the 8� 6m2

closed test section of DNW-LLF, carried out in the EU-project AWIATOR. For details, see Ref. [40].
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5.8. Localization and tracking of aircraft with ground based 3D sound probes

Traditional acoustic far-field sound source localization measurements are based on arrays of sound pressure
transducers [41,42]. These techniques have technical and practical limitations and rely on assumptions that are
not always justified. An alternative localization and tracking method is demonstrated [43] which is based on a
pair of three-dimensional sound intensity probes. These compact and broad-banded 3D sound probes are
based on three (orthogonal) velocity sensors and a sound pressure transducer, to provide acoustic-vector
information over the entire audio range [44]. A series of three tests with increasing complexity was carried out
to demonstrate the principle: (i) anechoic room experiments to reconstruct a stationary source at different
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positions; (ii) outdoor experiments with a moving sound source (walking speed); (iii) experiments tracking a
moving helicopter (during take-off and landing), by using the blade-passage frequency of the main rotor for
detection (see Fig. 28).
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5.9. Non-destructive and in-situ acoustic testing of inhomogeneous materials

The so-called PU surface impedance method was first introduced in 2004. This free field method, based on
the measurement of both sound pressure and particle velocity at the surface, is fast, requires only small sample
sizes and no anechoic room. Applicability of the method, proven for soft-porous homogenous materials
[45–47], has been extended to include inhomogeneous aerospace materials of relatively complex geometry. It
has been shown [48] that the PU surface impedance method can be applied to determine impedance, reflection
and absorption of inhomogeneous materials in high spatial resolution, viz. on the scale of few millimeters.
Particle velocity levels of large dynamic range yield measuring local impedance distributions with high spatial
resolution. A range of local measurements on a hollow sphere of aluminum foam material could reconstruct
the overall average impedance and absorption values, obtained with a Kundts tube (see Fig. 29).

Written by Alex Koers, koers@microflown.com, Microflown Technologies, The Netherlands.
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Fig. 28. Two 3D sound probes to track sound source location; close up of 3D sound probe.

Fig. 29. Local PU surface impedance measurements on aluminum foam, close up PU match probe.
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5.10. Improved jet noise extrapolation

Ffowcs Williams & Hawkings (FWH) surfaces (‘‘sleeves’’) are often used to extrapolate the sound from jet
simulations (LES or DNS) to the acoustic far field. Downstream closure of the sleeve presents a problem with
the standard formulation (based on density): when entropy variations in a hot jet cross the FWH surface, the
standard formulation leads to an unrealistically large surface-term contribution [49]. Ideally this contribution
would be cancelled by volume terms outside the surface, but the neglect of volume terms is inherent to the
wave extrapolation process. In Ref. [50] a modified FWH formulation is developed, based on pressure, that
nearly eliminates the closure problem and formalises a heuristic proposal made by Shur et al. [49]. Fig. 30
compares the two formulations for LES of a hot subsonic jet in co-flow corresponding to the measurements of
[51], using various sleeve lengths. The benefit of the new formulation is obvious.

The computations were performed at New Technologies and Services.
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5.11. High resolution shock-capturing LES methods for CAA of compressible, turbulent flows

A recent analysis of the dissipation of kinetic energy in Godunov schemes [52] has led to the development of
new very high-order (ninth-order) accurate numerical methods, which are both shock capturing and capable
of resolving low Mach, turbulent flow features [74]. As the methods are fully compressible, and are not based
on an expansion of the Euler equations at low Mach numbers, then acoustic waves are represented accurately.
The new methods have been validated through simulation of compressible turbulent flow over a deep, open
cavity [53]. Results shown in Fig. 31 demonstrate that the frequency of the fundamental mode is captured to
within 1% accuracy, and the amplitude to within 2 dB.

Written by D. Drikakis, d.drikakis@cranfield.ac.uk, Cranfield University, UK.

5.12. Advances in emission surface algorithms

In the framework of EU project Friendcopter an aeroacoustic prediction tool was developed based on
the coupling of acoustic analogy and CFD. The work focuses on the development of a porous emission
surface algorithm for tackling the problem of high-speed impulsive (HSI) noise generated by transonic
and supersonic rotating sources. To date, the emission surface formulation has not been extensively
used because of numerical/mathematical difficulties associated with the construction of integration surface.
The most well-known approaches are the marching cubes algorithm [54] and the porous version of the



ARTICLE IN PRESS

160

150

140

130

120

110

100

90
1500 2000 2500 3000 3500 4000 4500

F (Hz)

SP
L 

(d
B

)

Exp.
LES
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Fig. 32. Emission surface at different times for a sphere of 0.5m radius centered at (0,1,0) and rotating around the z-axis with speed of

600 rad/s. The observer is located at x ¼ (3,0,0).
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k-algorithm [55]. Instead, a new approach is considered here based on the retarded time equation and
application of Taylor series expansion for obtaining the sources distribution and emission time. Indicatively,
Fig. 32 shows the results obtained with the new approach for the emission surface for a sphere rotating at
speeds ranging from Mach 0.7 to 1.5.
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5.13. Impedance modeling of acoustic panels in presence of grazing flow

The effective impedance of liners with grazing flow has been studied by CFD models for the interaction
between sound and the perforate facing sheet surface of typical acoustic panels (see an example in Fig. 33). Flow
data are then post-processed in order to extract surface impedance. Results are finally compared with measured
impedance obtained by in-situ impedance measurements of panels tested in the NLR Flow Duct Facility [56].
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5.14. Turbofan Aft noise predictions based on the Lilley’s wave model

Lilley’s equation, discretized in frequency domain by using the GFD method [57,58], has been solved to
compute the sound radiated from an aero-engine by-pass duct model, for which an analytical solution is
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available. Both axi-symmetric (2.5D) and 3D simulations have been carried out [57]. A novel PML
approach for annular buffers has been developed for the 3D simulations [57], whereas an ad-hoc edge
treatment has been employed [58]. Fig. 34 shows a comparison between the numerical and analytical sound
directivities. A favorable agreement can be observed between the analytical and the 2.5D GFD solutions,
as well as between the 2.5D and 3D GFD solutions, even though the latter one was obtained by using
a quite coarser mesh. A further step towards a more realistic simulation has been accomplished by consi-
dering the by-pass duct configuration of Fig. 35 for which the mean flow has been computed by using
FluentTM. The spinning mode (52, 1) is propagated from the bypass inlet plane through the duct and radiated
into the far-field. The acoustic frequency is such that the Helmholtz number based on the bypass inlet external
radius is 110.
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Fig. 35. Sound radiation from a realistic by-pass configuration. Dimensionless velocity field on the left, acoustic field on the right. Free-

stream Mach number 0, by-pass and jet Mach numbers 0.338, Helmholtz number 110, mode (52,1).
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5.15. Separation of combustion and jet noise of a turbofan engine with SEM method

A full-scale test on a turbofan engine has been carried out on the open-air test facility 4D of General Electric
located at Peebles (Ohio), in the framework of the European SILENCE(R) project (Section 2.1). One of the
primary objectives of the experiment managed by SNECMA was to discriminate combustion noise from the
jet noise using data measured in the near-field with an array of microphones and the so-called Spectral
Estimation Method (SEM). An illustration of the procedure of separation made with SEM [59] is shown in
Fig. 36. Comparisons between SEM spectra Cnoise, Jnoise and Onoise, respectively, due to the emission regions
of combustion noise, jet noise, and of the sum of combustion plus jet noise, and measured downstream with a
microphone named M1231, at the angular location of 1231 where the combustion noise is dominant are
presented. At low operating condition, combustion noise is dominant, and we have the spectrum measured
with M1231 and Cnoise which are in agreement (Fig. 36a). In contrast, the contribution of jet noise is weaker
compared to Cnoise, while Onoise matches well with the spectrum measured with M1231. At high operating
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condition, the dominant source is jet noise as shown in Fig. 36b. Its level is comparable with that measured
with M1231. In contrast, combustion noise is approximately 3 dB weaker than the measured spectrum and
of Onoise and Jnoise.
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6. Miscellaneous topics

6.1. Reduction of the sonic boom from a high-speed train entering a gallery

A train passing through a tunnel generates pressure waves that propagate back and forth to the portals
where they are reflected. The combination of these waves with the motion of the train generates a very
complex flow pattern where the transient pressure can affect the passenger comfort and safety and cause
damages to train parts. Several measures either on the trains or on the tunnels need to be used to alleviate the
most severe pressure effects. A 1:87 scaled-model experimental facility has been designed and used for
analyzing and comparing different configurations (train noses, tunnel entrances, airshafts, etc.). It has been
shown that replacing an abrupt entrance by a progressive one has beneficial effects on the gradient of the
compression wave. A less costly civil engineering construction would be to construct airshafts along the
tunnel. Several distributions have been tested, among which one proposed by Howe. Optimizing the geometry
and positioning of airshafts could alleviate the pressure rise in a significant way and reduce the pressure
gradient up to a factor 6 (Fig. 37). Details can be found in Anthoine et al. [60].
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6.2. Combustion noise investigations using APE-RF and different sound source formulations

Combustion noise and sound source mechanisms of an unconfined turbulent non-premixed flame is
investigated. A hybrid LES/CAA approach is employed in which a low Mach number variable density large-
eddy simulation (LES) is combined with the acoustic perturbation equations for reacting flows. In the first step
of the hybrid analysis the flamelet/progress variable [61] model is employed as combustion model followed by
the acoustic simulation. In the second step using the acoustic perturbation equations for reacting flows [62].

The flamelet/progress variable database has been extended in terms of acoustic source terms. The unsteady
heat release rate, the source describing the effect of non-isomolar combustion, and the species diffusion term
are described by two independent parameters, i.e., the mixture fraction and the progress variable. From the
findings in the present study, the analysis of the acoustic field of low Mach number reacting flows induced
by the thermoacoustic sources such as the unsteady heat release leads to a very stiff problem formulation,
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since the related sources require highly resolved regions in the source area, which restricts the possible time
step during temporal integration of the equations. The numerical bottleneck is not so restrictive when a source
term formulation based on the density distribution is used. Spectra obtained from the simulated acoustic field,
using two different source term formulations involving derivatives of the density are in good agreement with
the experimental data even in the higher frequency range (see Fig. 38).

Written by T. Ph. Bui, W. Schröder, and M. Meinke, p.bui@aia.rwth-aachen.de, RWTH Aachen University,

Germany.

6.3. Acoustically optimized approach and departure procedures

Contrary to technological noise reduction methods for aircraft, noise abatement flight procedures can be
used also for existing aircraft and thus make short- or mid-term noise reductions in the environment of
airports feasible. An optimization of flight procedures for transport aircraft was carried out, based on a
prediction method and subsequent experimental validation involving the following steps: (1) physical
description of all relevant sound sources of transport aircraft; (2) empirical prediction of noise contours during
departure and approach; (3) simulation of different approach and departure procedures to identify
acoustically optimized procedures and their effect on the airport capacity; investigation of potentially
increased work load of pilots, and (4) experimental verification of predicted noise reduction potential of noise
abatement flight procedures by means of flight tests. Promising low noise variants of low-drag-low-power
(LDLP) approach procedures were developed [63] off-line for an A319 aircraft on the basis of DLR’s models
for engine [64] and airframe [65] noise prediction. The noise impact of different flight procedures was
investigated by means of ground microphone measurements during an extensive flight test campaign with an
A319 aircraft, supplied and operated by Deutsche Lufthansa on the Baltic Airport in North-Germany.

A noise reduction potential of on average 1–3 dB was shown to exist for the approach procedures, with
higher local reductions occurring at larger distances from the airport, see Fig. 39. For departure procedures,
reductions are limited to about 1 dB. With suitable flight management systems, the new flight procedures are
not critical from a pilot0s work load point of view. For more information see the final report [66] (in German).
This German national research project was carried out by Deutsche Lufthansa, EADS-IW, Deutsche
Flugsicherung, TU Braunschweig, and DLR.

Written by W. Neise, M. Pott-Pollenske, R. König, U. Isermann, and S. Guérin, michael.pott-pollenske@

dlr.de, DLR, Germany.

6.4. Aeroacoustics and MDO

The inclusion of aeroacoustic-related objectives and constraints in a multidisciplinary design optimi-
zation (MDO) environment is one of the exciting developments for the next generation design tools.
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The optimization environment framework for innovative design in aeronautics (FRIDA), developed at the
University Roma Tre, has been recently enriched by new simulation modules, dedicated to the evaluation of
the community noise impact of commercial aircraft. Further to the classical sound-level-based approach, an
innovative technique has been developed to introduce sound-quality issues in the design. The method is based
on the measure of the difference between the acoustic emissions in specific operation conditions, and a given
target sound. This original approach has been developed within the context of the EC funded project SEFA
(Section 2.2). Additional activities, closely related to the same topic, are the development of algorithms for the
treatment of variables known only on statistical basis, and the inclusion of multi-fidelity models management
schemes, both aimed at a robust and efficient optimal design of highly innovative, environmental-friendly
configurations [67–69].

Written by Umberto Iemma and Matteo Diez, u.iemma@uniroma3.it, University Roma Tre, Italy.

6.5. Plasma actuation for noise control

A new activity was initiated at Southampton University to develop atmospheric pressure plasma actuators
to reduce aerodynamic noise. Plasma actuators do not have any mechanical moving parts, which makes them
simple and reliable. The principle of using plasma actuators for aerodynamic noise control is to alter the
airflow around an object through interaction between flow and electric fields, thus affecting the sound field
(without the need to physically change the shape of the object). The method proved to be successful in
attenuating noise radation from a cavity [70] by producing spanwise velocity variations in the shear layer
(Fig. 40). In addition, the driving signal of plasma actuators was optimized [71], and a closed-loop control
method was proposed [72] to increase power efficiency by up to 200%. The actuators are now being applied to
several bluff bodies for broadband noise control.

Written by X. Huang and X. Zhang, x.zhang1@soton.ac.uk, University of Southampton, UK.

7. Propeller noise

7.1. Spectral decomposition in noise abatement of propeller airplanes

High-resolution spectral analysis and decomposition can be a very effective tool in noise analysis and
abatement of propeller airplanes. It requires no special measuring instrumentation and can be very fast.
A software stool called spectral analysis and decomposition (SPAD) has been developed for fast analysis of
turboprop airplane noise. The basic code computes continuously short-time high-resolution spectra in which it
traces salient discrete spectral components. Next, it finds and allocates the components, caused by a specific
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cyclic processes. Finally it decomposes the found harmonic spectral components and determines the
characterizing quantities, like fundamental frequency (F1[Hz]), overall sound pressure level (Ltot [dB]), etc. An
example is shown in Fig. 41. Analyzed has been a 3min long calibrated record of the interior noise in a turbo
propeller aircraft during its take off run, full power climbing, and transition to climbing with reduced power of
the engines [73].
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