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Abstract

Active vibration isolation and underwater sound radiation of structures are presented to investigate issues relevant to

vibration control and far-field sound radiation of underwater structures. Finite element method (FEM) and boundary

element method (BEM) are combined to model fluid–structure coupled systems. In the modeling of fluid–structure

interaction, mode truncation and inertial coupling between fluid and structures are applied to sufficiently reduce model

order. Moreover, the added mass matrix of fluid is modified to increase the accuracy of computation of natural frequencies

of the coupled system. The modeling approach is presented especially for constructing time-domain models, which are

inherently more suitable for exploring active control strategies than frequency-domain models for complicated and

especially nonlinear systems. Adaptive control with two different weight updating algorithms is discussed. One is based on

the local vibration and the other on the summed vibration. In the simulation example, a model of two degrees of freedom

connected to a rigidly baffled plate with stiffeners is used to demonstrate the difference between active isolation of

vibration and the suppression of far-field sound radiation, and it is demonstrated that suppression of summed vibration

can result in smaller sound radiation than the suppression of local vibration only.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Structure-borne sound has been deeply investigated. Analyses on structural vibration and the relevant
sound radiation in light or heavy fluid medium occurred as early as in the 1950s [1–4], but the research about
active control of structural sound radiation started in the late 1980s [5–8], which is mainly attributed to the
development of high-speed computation technologies and the impetus of industrial applications. Compared
with the research of sound radiation in air, there is little work about underwater sound radiation control [9]. In
the analysis of structural sound radiation, finite element method (FEM) and FEM/boundary element method
(BEM) are widely used to deal with fluid–structure interaction, and especially FEM/BEM is the preferable
method due to its advantage in reducing the degrees of freedom (DOFs) of coupled systems [10–13]. For
steady-state sound radiation problems, fluid–structure interaction is usually treated in the frequency domain
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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with consideration of fluid compressibility and accordingly the wave equation is replaced by the Helmholtz
differential equation. However, the transient fluid–structure interaction such as structural responses to
underwater explosion should be described with time-domain methods, in which doubly asymptotic
approximations are the well-known techniques and used as well in the prediction of structural sound
radiation [14,15]. So far, all the work about active vibration isolation has only considered how to
effectively control structural vibration whereas fluid–structure interaction as well as the resulting
sound radiation has not yet been involved. In order to investigate active vibration isolation and the
related underwater structural sound radiation in the time domain, a lower order model with
accurate description of dynamics at the low–medium frequencies is then necessary to numerical simulation.
In this paper, an approximate description of fluid–structure interaction is given by neglecting the
compressibility of fluid. As a result, the wave equation is degraded to the Laplace equation. In the modeling,
lumped parameter method and the FEM are combined to derive structural vibration models, and the BEM is
used to describe wave motion in the fluid. Normal accelerations at the interfaces of fluid and structures are
regarded as known variables. Hence, only inertial coupling between fluid and structures is considered, which
reduces the DOFs of the coupled system. Moreover, the added mass matrix of the fluid is modified in order to
guarantee the accuracy of computed natural frequencies as well as the low-frequency characteristics of the
coupled system.

In Section 2, motion equation of the fluid–structure coupled system is established. A reduced modal model
of the flexible structure is obtained by FEM and synthesized with the boundary element model of the fluid to
derive the coupled system model. In Section 3, active control strategies are discussed, and especially, two
different adaptive algorithms are given for the adaptive control of the far-field sound radiation. Section 4 gives
an example to demonstrate the validity of the modeling approach. Based on this model, active vibration
isolation and the relevant far-field sound radiation are simulated in Section 5 with 2-DOF vibration model
mounted on a rigidly baffled plate with stiffeners and relations between active vibration isolation and the
sound radiation are illustrated. Finally, in Section 6, concluding remarks are given.
2. Mathematical description

Consider the fluid–structure coupled system shown in Fig. 1. As illustrated, S1 is the vibration source, S2 is
the flexible structure that radiates sound into the surrounding fluid and coupled with the fluid on its outer
surface. S1 and S2 are coupled through springs, dampers and actuators.

Suppose S1 is described with a lumped parameter model, S2 with a finite element model and the fluid with a
boundary element model. The vibration equations of S1 and S2 are given as follows:
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Fig. 1. Active vibration isolation and sound radiation of underwater structures.
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where ðxT
1i; x
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T is the displacement vector of S1, ðx
T
2i;x

T
2f Þ

T the displacement vector of S2, x1i and x2i the
displacements of uncoupled nodes of S1 and S2, respectively, while x1f and x2f are the displacements of coupled
nodes of S1 and S2 at those positions where springs, dampers and actuators are mounted, F1i and F2i are
excitation forces acting on the uncoupled nodes of S1 and S2, respectively, F1f and F2f are forces acting on the
coupled nodes of S1 and S2, respectively, {p} is the pressure acting on the outer surface of S2, T is the matrix
converting fluid pressure to the nodal loads on S2, the matrices on the left-hand sides of Eqs. (1) and (2) are the
mass matrices, the damping matrices and the stiffness matrices, respectively, and assumed to be independent
of frequency. The relation between F1f and F2f is given by

F 2f ¼ �F1f ¼ K12ðx1f � x2f Þ þD12ð _x1f � _x2f Þ þ Fc, (3)

where K12 and D12 are the coupling matrices that relates displacements and velocities of S1 and S2,
respectively, Fc is the control force vector. In order to reduce the order of the coupled system, we can express
the displacement of S2 by the responses of low-order vibration modes (in vacuo), therefore,
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where N is the number of retained modes, which is far less than the dof of S2, zk the kth modal coordinate, fk

the kth mode shape, F the matrix formed by the N mode shapes. Assume F2i ¼ O, in light of Eqs. (1)–(4), one
can have
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Eq. (5) gives the coupled vibration of structures and fluid, in which the pressure p of the fluid should be
described by the wave equation.

Suppose S2 is submerged in an infinite body of fluid, then the sound pressure p induced by the vibration of
S2 is described by the following wave equation:

r2p ¼
1

c2
q2p
qt2

, (6.1)

qp=qn ¼ �raðtÞ on the boundary, (6.2)

where r2 is the Laplacian operator, c the sound speed in the fluid, r the fluid density, n the normal to the
surface of S2, and a(t) the acceleration projected to the normal. The counterpart of Eq. (6) in the frequency
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domain is the Helmholtz differential equation, which is not considered here in order to discuss the problem
with time-domain methods.

To investigate active vibration isolation involving fluid–structure interaction in the time domain, Eq. (6)
should be simplified so that a reduced discrete model can be derived. As usually conducted, Eq. (6) is
degraded to the Laplace equation by neglecting the compressibility of fluid, i.e. the sound speed c in Eq. (6) is
taken as infinity. In this circumstance, the influence of fluid on the dynamic behavior of structures is equal to
adding inertial mass to the surface of S2, which will be seen in Eq. (9). This way of simplification can
substantially reduce the DOFs while the accuracy of the coupled model is retained at low frequencies. In fact,
the BEM can be used to solve the Laplace equation, and the resulting fluid elements are only those on the
surface of S2. According to the Helmholtz integral equation and the supposition that the sound speed is
infinite, the pressure at an arbitrary point within the fluid domain can be given by the integration on the
boundary G (Fig. 1), i.e.
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where p(P) is the pressure at P, n the normal to G, g(Q, P) the Green’s function, r(Q, P) the distance from Q to
P, as shown in Fig. 1. If P is also located on G, one can obtain from Eq. (7) the matrix relation between the
pressure {p} and the acceleration f €x2g at all nodes on the boundary G:

Hfpg ¼ G
€x2f
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( )
¼ GFf €Zg. (8)

In light of Eq. (8), Eq. (5) can be rewritten as
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where the mass matrix has been changed and no pressure load appears on the right-hand side.
In Eq. (9), all matrices are independent of frequency, which implies Eq. (9) is suitable for analyzing

fluid–structure interaction in the time domain. The right-hand side of Eq. (9) represents the load vector acting
on the coupled system, of which the disturbance force F1i excites S2 and thus generates sound in the far field
while the control force Fc suppresses vibration of S2 and thus reduces the radiated sound in the far field. From
Eqs. (8) and (9), we can discuss different control strategies and obtain the variation of sound pressure in the
far field before and after active vibration isolation.

In Eq. (9), TH�1G represents the added fluid mass matrix. For low-frequency vibrations, this matrix can
accurately reflect the inertial effect of fluid, but for high-frequency vibrations, TH�1G overestimates the added
inertia of fluid. Therefore, it is necessary to modify TH�1G to accurately analyze motion of the coupled
system. Here, we only give a modification method for a baffled finite plate, as shown in Fig. 2.

First, compute singular value decomposition of TH�1G, i.e.

TH�1G ¼ USVT, (10)
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Fig. 2. Rigidly baffled finite plate and active vibration isolation.
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where U, V, S are, respectively, the unitary matrices and the singular value matrix. Next, find one accurate wet
natural frequency of the plate by solving the coupled finite element model and the boundary element model
that is constructed in the frequency domain from the Helmholtz integral equation with g(Q, P) ¼ exp(�jor/c)/
4pr. Accuracy of the wet frequency can be guaranteed because the sound speed has been taken into account.
Then, multiply S with a weighting matrix W whose elements are �ðkÞa �ðkÞ ¼ 0:1þ kd; 0pkpNs;

���
Nsd ¼ 0:9:g, Ns is the number of singular values, a is a constant determined from the wet natural frequency.
Finally, give the modified added fluid mass matrix ~M ¼ USWVT with W ¼ diagð½1; . . . ; 0:1a�Þ. Therefore,
motion equations of the fluid–plate coupled system with modified mass matrix can be given as follows:
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To compute the induced sound pressure in the far field, the sound speed c should be a finite value. For the
baffled plate in Fig. 2, the instantaneous pressure at a far-field point p(x, y, z) can be given by the Rayleigh
integration:

pðx; y; z; tÞ ¼
r
2p

Z
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2
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q
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where (x0, y0, 0) is an arbitrary point located on the plate (x, y, z) is a point located in the semi-infinite space,
as shown in Fig. 2, a(x0, y0, t) is the acceleration of (x0, y0, 0) at the time t, G stands for the surface of the plate.

3. Active vibration isolation

3.1. Velocity feedback

In Fig. 2, vibration of the coupled system is induced by the vibration source. Hence, the natural vibration of
the coupled system will be excited when the excitation force is nonstationary. To suppress the natural
vibration of the coupled system, vibration velocity of the plate can be measured and used as a feedback signal
to generate counter forces acting on the plate. Suppose the feedback velocity is _x2f , the control forces can be
given as

F c ¼ �L _x2f ¼ �LFf
_Z, (13)
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where L is the gain matrix. Substituting Eq. (13) into Eq. (11), one can have
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According to the damping matrix in Eq. (14), velocity feedback can increase the damping ratio of S2 [16,17].
As a result, vibration of the plate and its sound radiation can be suppressed.
3.2. Adaptive control

When structures are excited by harmonic excitations, there will be harmonic components in the radiated
sound. In active vibration/sound control, adaptive algorithms are frequently used to cancel these harmonic
components although there are many other control methods. In this section, adaptive vibration cancellation
and its role in sound suppression are discussed. Since the behavior of the coupled fluid–plate system under
adaptive control is the focus of this section, only the adaptive control algorithm—LMS is adopted here.

According to Eqs. (13) and (14), vibration of S2 is controlled by feedback of the measured velocity _x2f .
Similarly, the adaptive control of vibration of S2 can also be realized by the measured velocity _x2f . However,
for the simplicity of discussion, the measured acceleration instead of velocity will be used in the adaptive
suppression of sound radiation of S2. Suppose the discrete form of Eq. (11) and the observed acceleration €x2f

are expressed by

jðx1ðtkÞ; _x1ðtkÞ; x1ðtkþ1Þ; _x1ðtkþ1Þ;ZðtkÞ; _ZðtkÞ;Zðtkþ1Þ; _Zðtkþ1ÞÞ ¼ B1F 1iðtkÞ þ B2F cðtkÞ

€x2f ðtkÞ ¼ WðZðtkÞ; _ZðtkÞ;F1iðtkÞ;F cðtkÞÞ, (15)

where tk is the discrete time, B1, B2 are the load matrices. The adaptive control algorithm can be given as
follows:

(1) Weight updating:

w1ðtkþ1Þ ¼ w1ðtkÞ � m sinð2pftkÞ €x2f ðtkÞ,

w2ðtkþ1Þ ¼ w2ðtkÞ � m cosð2pftkÞ €x2f ðtkÞ, (16)

where w1(tk), w2(tk) are weights, m is a constant, f is the frequency of the disturbance force.
(2) Control forces:

FcðtkÞ ¼ w1ðtkÞ sinð2pftkÞ þ w2ðtkÞ cosð2pftkÞ. (17)

The control forces are so constructed to reduce the acceleration €x2f .
3.3. Sound radiation control

Eqs. (13) and (17) imply that sound radiation of the plate is not controlled directly because the control
forces are constructed to minimize the measured vibration of the plate, but not the radiated sound in the far
field. The drawback of this indirect control is that sound pressure in the far field may not be suppressed as
much as the vibration of the plate. Hence, in order to suppress sound pressure sufficiently, p(x, y, z) should be
minimized directly. However, sound pressure in the far field cannot be measured for a practical control system.
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From Eq. (12), sound pressure in the near field can be given approximately by

pðx; y; z; tÞ �
r
2p

Z
G

aðx0; y0; tÞ

r
dG. (18)

Therefore, the near field sound pressure is approximately equal to the weighted integration of acceleration
of the plate, which implies that distributed acceleration summation is suitable for the measurement of the near
field sound pressure, and minimizing the integration of acceleration may have the same effect as minimizing
the near field sound pressure. Hence, the updating of weights in Eq. (16) can be rewritten as

w1ðtkþ1Þ ¼ w1ðtkÞ � m sinð2pftkÞ
X

i;j

€x2ði; j; tkÞ;

w2ðtkþ1Þ ¼ w2ðtkÞ � m cosð2pftkÞ
X

i;j

€x2ði; j; tkÞ; (19)

where €x2ði; j; tkÞ is the acceleration of the node (i, j) of the plate. It should be noted that the distance r in Eq.
(18) has been treated as a constant in forming Eq. (19).
4. An example on FE/BE modeling

Consider a plate with cross-stiffeners on one side and a vibration model of two DOFs, as shown in Fig. 3.
The 2-DOF model and the plate are connected at one cross-point (there are totally nine possible cross-points).
The plate is simply supported and rigidly baffled. The flat side of the plate is coupled with the fluid.
Dimensions and physical properties of the stiffened plate and the fluid are given in Table 1. Moreover,
parameters of the 2-DOF vibration model are given as follows: m1 ¼ m2 ¼ 1 kg, k1 ¼ 24,674N/m,
k2 ¼ 3948N/m, d1 ¼ 15.71N s/m, and d2 ¼ 31.4N s/m.

The plate is modeled with 256 shell elements and the stiffeners are modeled with beam elements. The 2-DOF
model is connected at the cross-point 9 to the finite element model of the stiffened plate (Fig. 3). For the
stiffened plate, the first 30 dry modes (without fluid) are derived and used to form a coupled model according
to Eq. (5) or Eq. (11). The first six mode shapes of the stiffened plate are shown in Fig. 4 and the first 14
natural frequencies are listed in Table 2.

The fluid at the fluid–plate interface is modeled with boundary elements (BEs), which are in coincidence
with the finite elements (FEs) of the plate. Having obtained the FE and BE models, the motion equations of
1

4

7

2 3 m1

k1

k2

d1

d2

m2

5 6

98

Fig. 3. Finite element model of the plate with cross-stiffeners (left) and the 2-dof vibration model (right).

Table 1

Dimensions and physical properties

Dimension (m) Density (kg/m3) Young’s modulus (N/m2) Poisson’s ratio Sound velocity (m/s)

Plate 0.8� 0.8� 0.003 7850 2.1� 1011 0.3 –

Stiffener 0.8� 0.018� 0.003 7850 2.1� 1011 0.3 –

Fluid – 1000 – – 1500
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Fig. 4. The first six mode shapes of the stiffened plate.

Table 2

Undamped natural frequencies and eigenvalues of the coupled system

No. Frequencies of dry modes

(Hz)

Frequencies of wet modes (Hz) Eigenvalues (damping

ratio ¼ 10%)

– Stiffened plate Based on the Laplace equation and

modified

Based on the Helmholtz

equation

�1.276.8i

�3.8735.8i

1 61.2 17.3 17.3 �0.7717.3i

2 167.4 67.9 67.6 �4.2767.9i

3 167.4 67.9 67.6 �4.2767.9i

4 232.5 107.8 107.4 �7.67107.6i

5 329.3 151.5 151.4 �10.57151.4i

6 329.3 160.0 159.5 �11.77160.0i

7 353.1 182.2 181.8 �14.17181.6i

8 353.1 182.2 181.8 �14.17181.6i

9 378.5 215.4 216.6 �18.37214.6i

10 380.3 227.2 228.6 �19.97226.4i

11 385.6 230.2 231.6 �20.27229.4i

12 385.6 230.2 231.6 �20.27229.4i

13 409.8 238.6 239.8 �20.87237.7i

14 411.6 240.5 241.5 �20.57239.6i

Z. Zhang et al. / Journal of Sound and Vibration 318 (2008) 725–736732
the coupled system can be obtained according to Eq. (9). To modify the added mass matrix and guarantee to
some extent the accuracy of frequencies of the coupled system, singular values are weighted by
diagð½1; . . . ; 0:1a�Þ with a ¼ 1.3, which is determined from the 14th wet frequency of the stiffened plate. The
wet frequencies are accurately computed from the Helmholtz equation, which are also listed in Table 2 for the
purpose of comparison. Eigenvalues of the coupled system are given as well in Table 2, in which damping
ratios of all modes of the plate are assumed to be 10%. In terms of the computed results, the modified wet
frequencies are in good consistency with the exact ones.

As can be seen from the table, the inertial effect of the fluid has substantially reduced high-order frequencies
of the stiffened plate. Hence, active isolation should be based on the coupled fluid–structure system.
5. Simulation on active isolation

5.1. Random disturbance

Suppose m1 is excited by a random force, in this circumstance, responses of the stiffened plate are also
random. To reduce vibration of the plate and its sound radiation, active isolation is expected to suppress
natural modes of the plate. Therefore, velocity feedback is used and the control force is exerted on m2 and the
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Fig. 5. Frequency responses at three cross-points: (a) At the cross-point 5. (b) At the cross-point 8 (c). At the cross-point 9.
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Fig. 7. Acceleration responses at the cross-point 9 and sound pressure at (0, 0, 200m): (a) Acceleration. (b) Sound pressure. (c) Spectra of
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plate simultaneously. Frequency response function between the excitation force and acceleration of the mount
position of m2 can be computed according to Eq. (14). Fig. 5 depicts frequency responses between the
excitation force and accelerations of three cross-points. As can be seen, different modes are observed at
different cross-points. Only symmetric modes can be observed at the cross-point 5. More modes are excited
and observed at the cross-point 9, which can also be verified by simply examining mode shapes in Fig. 4. With
active isolation, observed natural modes are suppressed and peaks of the frequency responses are
correspondingly reduced substantially, as shown in the figure.
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Sound pressure in the far field is related to the surface vibration of the plate, but the attenuation of sound
pressure is not the same as that of vibration [18]. Figs. 6 and 7 have shown the time histories of acceleration
and sound pressure. The responses are induced by a chirp force acting on m1, frequency of which varies from
10 to 250Hz within 5 s. According to the transient responses, it is demonstrated that active isolation can
reduce acceleration responses as well as the far-field sound pressure, but there may be little similarity in
envelops of acceleration and sound pressure. Moreover, spectra in Figs. 6 and 7 indicate that the far-field
sound pressure is irrelative to unsymmetric modes. Especially, the 2–5th plate modes have no contribution to
the far-field sound pressure. For weakly controllable modes, peak suppression is correspondingly small under
the same feedback gain. This implies that sound pressure control is related to locations where the control force
acts. Therefore, suppressing acceleration is not the same as sound pressure control.
5.2. Harmonic disturbance

When m1 is excited by a harmonic force, forced vibrations will occur in the stiffened plate and it will radiate
sound to the far field. As a result, sound pressure in the far field will oscillate at a single frequency. In this
section, adaptive vibration isolation based on Eqs. (16) and (19), is simulated to reveal the relation between
vibration control and the sound suppression. In the simulation, the 2-DOF model is mounted, respectively, at
the cross-points 5 and 9. Active isolation is then adjusted according to the principle that the local acceleration
response or the summed acceleration response is minimized. Let m1 be excited by a force of 150Hz, the
acceleration responses and sound pressure with/without adaptive control are then simulated and given,
respectively, in Fig. 8. In Fig. 8(a), the forced acceleration responses are in fact composed of the transient and
the steady-state responses, from which we can see that the acceleration at the cross-point 5 is well suppressed
after the adaptive isolation while sound pressure in the far field is not reduced as much as the acceleration
response, as shown in Fig. 8(b). This indicates the minimization of local accelerations may not result in
sufficient attenuation of the far-field sound pressure. In Fig. 8(c), the summed acceleration is substantially
reduced after the adaptive isolation and the far-field sound pressure shown in Fig. 8(d) is also sufficiently
attenuated, which implies the isolation based on summed acceleration minimization has almost the same result
as the direct sound pressure control.

The distribution of sound pressure in the near field is of much interest. Let the 2-DOF model be mounted at
the cross-point 9 and excited by a force of 40Hz. Active isolation is then started to minimize the summed
acceleration according to Eq. (19). The controlled sound pressure measured at (0, 0, 1), (0, 1, 1), (1, 0, 1),
(0,�1, 1), (�1, 0, 1), (1, 1, 1), (1,�1, 1), (�1,�1, 1), (�1, 1, 1), and (�0.5,�0.5, 1) is shown in Fig. 9(a), from
which we can see that the sound pressure enters a stable stage after almost 0.8 s adaptation. Fig. 9(b) gives the
distribution of sound pressure without active vibration isolation (AVI off), and the distribution of sound
pressure under active vibration isolation (AVI on) is given in Fig. 9(c). The sound pressure surfaces are
generated, respectively, by interpolation of the ten measured pressure values. The contours of sound pressure
on the 1m� 1m area are also shown in Figs. 9(b) and (c), from which we can see that the center of the
pressure contour under AVI deviates apparently from the geometric center (0, 0, 1) and the sound pressure
becomes lower around (0.2, 0.2, 1) where the 2-DOF model is mounted. Therefore, the effect of active isolation
on the distribution of pressure is evident.
6. Conclusions

Active vibration isolation and the relevant underwater sound radiation of structures have been discussed. In
this paper, FEM/BEM is adopted to deal with the interaction between fluid and structures and to establish
motion equations of the coupled system. During the modeling, modal truncation and the inertia coupling of
structures and the fluid are considered to derive a model of sufficiently small number of DOFs. A procedure
has been presented to modify the added mass matrix of the fluid to guarantee accuracy of the dynamic
characteristics of the model at low frequencies. This model is constructed particularly for investigating
problems of vibration and sound control in the time domain because of its flexibility in dealing with nonlinear
control.
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The interaction between fluid and structures has changed the natural frequencies and active control should
be based on the coupled system. Vibration control and sound radiation of a stiffened plate, to which a 2-DOF
vibration model is connected, has been simulated. The results have demonstrated that suppression of summed
vibration can result in smaller sound radiation than the suppression of local vibration only. Suppression of
summed vibration has almost the same role as the direct control of sound pressure. However, distributed
measurement of vibration is needed in this circumstance. Vibration reduction does not definitely lead to
attenuation of sound radiation, which is attributed to the fact that sound pressure in the far field is affected
only by certain vibration modes. Therefore, active vibration isolation is not the same as sound radiation
control unless special control methods are considered.
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