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Abstract

In the present study, the nonlinear response of a shallow suspended cable with multiple internal resonances to the

primary resonance excitation is investigated. The method of multiple scales is applied directly to the nonlinear equations of

motion and associated boundary conditions to obtain the modulation equations and approximate solutions of the cable.

Frequency–response curves and force–response curves are used to study the equilibrium solution and its stability. The

effects of the excitation amplitude on the frequency–response curves of the cable are also analyzed. Moreover, the chaotic

dynamics of the shallow suspended cable is investigated by means of numerical simulations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Cable structures, which have importance in many engineering applications such as voltage transmission
lines, stay cables and mooring cables, have been investigated for a long time. Many studies have been
performed on large amplitude vibrations of cable structures, and many different methods to investigate the
nonlinear dynamics have been applied. An interesting literature review of work on the nonlinear dynamics of
cables to the harmonic excitations can be found in the related papers by Rega [1].

In distributed-parameter systems, the nonlinearities of the structure may activate nonlinear modal
interaction due to the presence of internal resonances among different modes [2]. Depending on the values of
the elasto-geometric parameter, different internal resonances may be activated. In the past decades, there has
been considerable interest in the study of nonlinear dynamics of cable structures to the harmonic excitations
with one-to-one internal resonances [3,4], two-to-one internal resonances [5–10] and multiple internal
resonances [11–14]. As a result of these internal resonances, cables may exhibit very rich complex nonlinear
dynamics. Moreover, long cables inherent to low damping may be prone to large amplitude vibration.
Therefore, many studies have investigated the vibration mitigation of the cables [15–18]. However, some
nonlinear interaction phenomena due to the internal resonances may be observed in controlled cables [17,18].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Recently, many studies have been performed on the nonlinear interaction and large amplitude vibration of a
suspended cable with a three-to-one internal resonance. Lacarbonara and Rega [19] have shown that three-to-
one internal resonances might be activated between the symmetric in-plane modes. Applying different
methods, the present authors [20–22] investigated the nonlinear response of the suspended cable with the
three-to-one internal resonance. Moreover, numerical simulations were used to illustrate the chaotic dynamics
of the cable. However, these studies focused only on the in-plane nonlinear response of the cable. Therefore,
some inherent prosperities such as the overall flexibility are ignored. In fact, the one-to-one internal
resonances between in-plane and out-of-plane modes are always presented for the shallow suspended cable
[19]. Therefore, the non-planar response of the cable is desired in order to capture the more accurate dynamic
characteristics and reflect the overall flexibility.

In this paper we extend our previous work [20,21] to consider the out-of-plane motion of a shallow
suspended cable. The three-to-one internal resonance between the third and the first symmetric in-plane modes
(oin

3 � 3oin
1 ) and the one-to-one internal resonance between the third symmetric in-plane mode and the third

symmetric out-of-plane mode (oin
3 � oout

3 ) are taken into account. The case of the primary resonance of the
first symmetric mode (O � oin

1 ) is also considered. The method of multiple scales is applied to obtain the
second-order uniform asymptotic solutions of the cable. Moreover, the equilibrium solutions and dynamic
solutions of the modulation equations are investigated.

2. Equations of motions

In this study, our attention is focused on a shallow suspended cable with span l and sag b. A Cartesian
coordinate system Oxyz is chosen, with the origin O placed at the left support of the cable. The static and
dynamic configurations of the cable are shown in Fig. 1. Neglecting the bending, torsional and shear rigidities,
and assuming that the suspended cable stretches in a quasi-static manner [6], the non-dimensional equation
governing the in-plane and out-of-plane motion of the cable can be written as [12,23]

€vþ 2cv _v� v00 � aðv00 þ y00Þ

Z 1

0

y0v0 þ
1

2
ðv0

2
þ w0

2
Þ

� �
dx ¼ F ðxÞ cosðOtÞ, (1)

€wþ 2cw _w� w00 � aw00
Z 1

0

y0v0 þ
1

2
ðv0

2
þ w0

2
Þ

� �
dx ¼ 0, (2)

where yðxÞ ¼ 4fxð1� xÞ is the initial parabolic shape of the cable; f ¼ b=l is the sag-to-span ratio; a ¼
EA=H ¼ 8bEA=ðmgl2Þ is the non-dimensional stiffness parameter [19]; m the mass per unit length; E the
Young modulus; A the area of the cross section; g the gravitational acceleration; cv and cw are the non-
dimensional viscous damping coefficients; v and w denote the non-dimensional in-plane and out-of-plane
displacements, respectively; the overdot and prime indicate the derivatives with respect to the non-dimensional
time t and coordinate x; and F ðxÞ and O are the spatial distribution and the non-dimensional frequency of the
harmonic excitation, respectively. Moreover, the boundary conditions are given by

vðx; tÞ ¼ wðx; tÞ ¼ 0 at x ¼ 0 and x ¼ 1. (3)
Fig. 1. The static and dynamic configurations of a shallow suspended cable.
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3. Perturbation analysis

In this study, the method of multiple scales [24] is applied directly to determine the second-order uniform
expansion of the nonlinear response of the cables. Following the standard details of the multiple scales
method, we introduce the new independent time variables:

Ti ¼ �
it ði ¼ 0; 1; 2; . . .Þ, (4)

where � is a small non-dimensional bookkeeping parameter. Then, we have the differential operators

d

dt
¼ D0 þ �D1 þ �

2D2 þ � � � ;
d2

dt2
¼ D2

0 þ 2�D0D1 þ �
2ðD2

1 þ 2D0D2Þ þ � � � , (5)

where Dn ¼ q=qTn. Moreover, in order to balance the nonlinearities, damping and resonances, we rescale the
cv, cw and F as �2cv, �2cw and �2F . Because the resonant terms appear at the third order, we can seek uniform
expansions of non-dimensional displacements in the following forms:

vðx; tÞ ¼
X3
i¼1

�iviðx;T0;T2Þ þ � � � , (6)

wðx; tÞ ¼
X3
i¼1

�iwiðx;T0;T2Þ þ � � � . (7)

Substituting Eqs. (6) and (7) into Eqs. (1) and (2) and equating the coefficients of like power of � on the left-
side and the right- side of the equation, the following differential equations can be obtained.

Order �:

D2
0v1 � v001 � ay00

Z 1

0

v01y0 dx ¼ 0, (8)

D2
0w1 � w001 ¼ 0. (9)

Order �2:

D2
0v2 � v002 � ay00

Z 1

0

v02y
0 dx ¼ av001

Z 1

0

y0v01 dxþ
1

2
ay00

Z 1

0

ðv01v01 þ w01w01Þdx, (10)

D2
0w2 � w002 ¼ aw001

Z 1

0

y0v01 dx. (11)

Order �3:

D2
0v3 � v003 � ay00

Z 1

0

v03y0 dx ¼ �D0D2v1 � 2cvD0v1 þ av001

Z 1

0

y0v02 dxþ av002

Z 1

0

y0v01dx

þ ay00
Z 1

0

ðv01v02 þ w01w02Þdxþ
1

2
av001

Z 1

0

ðv01v
0
1 þ w01w

0
1Þdxþ F cosOT0, (12)

D2
0w3 � w003 ¼ �D0D2w1 � 2cwD0w1 þ aw001

Z 1

0

y0v02 dxþ aw002

Z 1

0

y0v01 dxþ
1

2
aw001

Z 1

0

ðv01v
0
1 þ w01w

0
1Þdx, (13)

where Di ¼ q=qTi. The boundary conditions are given by

viðx;T0;T2Þ ¼ 0; wiðx;T0;T2Þ ¼ 0 at x ¼ 0 and x ¼ 1 for i ¼ 1; 2; 3. (14)

Because all the modes that are not directly or indirectly excited will die out after a long time due to the
damping effect [24], the first and third symmetric in-plane modes and the out-of-plane solution are assumed to
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include in the first-order solution in order to account for the three-to-one and one-to-one internal resonances:

v1 ¼ A1ðT2Þf1ðxÞe
ioin

1
T0 þ A3ðT2Þf3ðxÞe

ioin
3

T0 þ cc, (15)

w1 ¼ B3ðT2Þj3ðxÞe
ioout

3
T0 þ cc, (16)

where fiðxÞ and oin
i are the ith symmetric in-plane mode and the corresponding frequency, j3ðxÞ and oout

3 are
the third symmetric out-of-plane mode and the corresponding frequency (see Appendix A), cc stands for the
complex conjugate of the preceding terms, and A1ðT2Þ, A3ðT2Þ and B3ðT2Þ are the complex-valued functions of
T2. Substituting Eqs. (15) and (16) into Eqs. (10) and (11), we can obtain

D2
0v2 � v002 � ay00

Z 1

0

v02y
0 dx ¼ P1A2

1e
2ioin

1
T0 þP2A

2
3e

2ioin
3

T0 þP3A1A3e
iðoin

3
þoin

1
ÞT0

þP4A3Ā1e
iðoin

3
�oin

1
ÞT0 þP5A1Ā1 þP6A3Ā3 þP7B

2
3e

2ioout
3

T0 þP8B3B̄3 þ cc,

(17)

D2
0w2 � w002 ¼ P9A1B3e

iðoin
1
þoout

3
ÞT0 þP10A3B3e

iðoin
3
þoout

3
ÞT0 þP11B3Ā1e

iðoout
3
�oin

1
ÞT0

þP12B3Ā3e
iðoout

3
�oin

3
ÞT0 þ cc, (18)

where Pi ði ¼ 1; . . . ; 6Þ are defined in Ref. [20], and

P7 ¼ P8 ¼
1

2
ay00

Z 1

0

j03j
0
3 dx; P9 ¼ P10 ¼ aj003

Z 1

0

y01f
0
1 dx; P11 ¼ P12 ¼ aj003

Z 1

0

y01f
0
3 dx. (19)

Then the solutions of Eqs. (17) and (18) can be written as follows:

v2 ¼ A2
1e

2ioin
1

T0C1ðxÞ þ A2
3e

2ioin
3

T0C2ðxÞ þ A3A1e
iðoin

1
þoin

3
ÞT0C3ðxÞ þ A3Ā1e

iðoin
3
�oin

1
ÞT0C4ðxÞ

þ A1Ā1C5ðxÞ þ A3Ā3C6ðxÞ þ B2
3e

2ioout
3

T0C7ðxÞ þ B3B̄3C8ðxÞ þ cc, (20)

w2 ¼ A1B3e
iðoin

1
þoout

3
ÞT0C9ðxÞ þ A3B3e

iðoin
3
þoout

3
ÞT0C10ðxÞ þ B3Ā1e

iðoout
3
�oin

1
ÞT0C11ðxÞ

þ B3Ā3e
iðoout

3
�oin

3
ÞT0C12ðxÞ þ cc, (21)

where the second-order shape functionsCiðxÞ ði ¼ 1; . . . ; 12Þ are the solutions of the following boundary-value
problem:

C001 þ ay00
Z 1

0

C01y
0 dxþ 4ðoin

1 Þ
2C1 ¼ �P1; C002 þ ay00

Z 1

0

C02y0 dxþ 4ðoin
3 Þ

2C2 ¼ �P2, (22)

C003 þ ay00
Z 1

0

C03y
0 dxþ ðoin

1 þ oin
3 Þ

2C3 ¼ �P3; C004 þ ay00
Z 1

0

C04y
0 dxþ ðoin

1 � oin
3 Þ

2C4 ¼ �P4, (23)

C005 þ ay00
Z 1

0

C05y0 dx ¼ �P5; C006 þ ay00
Z 1

0

C06y0 dx ¼ �P6, (24)

C007 þ ay00
Z 1

0

C07y0 dxþ 4ðoout
3 Þ

2
¼ �P7; C008 þ ay00

Z 1

0

C08y0 dx ¼ �P8, (25)

C009 þ ðo
in
1 þ oout

3 Þ
2C9 ¼ �P9; C0010 þ ðo

in
3 þ oout

3 Þ
2C10 ¼ �P10, (26)

C0011 þ ðo
in
1 � oout

3 Þ
2C11 ¼ �P11; C0012 þ ðo

in
3 � oout

3 Þ
2C12 ¼ �P12, (27)
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with all of the functions satisfying the boundary conditions:CiðxÞjx¼0;x¼1 ¼ 0. Substituting Eqs. (15), (16), (20)
and (21) into the third-order equations (12) and (13), we can obtain

D2
0v3 � v003 � ay00

Z 1

0

y0v03 dx ¼ � ioin
1 ðD2A1 þ 2cvA1Þe

ioin
1

T0f1 � ioin
1 ðD2A3 þ 2cvA3Þe

ioin
3

T0f3

þ w1ðxÞA
2
1Ā1e

ioin
1

T0 þ w2ðxÞA1A3Ā3e
ioin

1
T0 þ w3ðxÞA3Ā1Ā1e

iðoin
3
�2oin

1
ÞT0

þ w4ðxÞA3A1Ā1e
ioin

3
T0 þ w5ðxÞA

2
3Ā3e

ioin
3

T0 þ w6ðxÞA
3
1e

3ioin
1

T0

þ w7ðxÞA1B3B̄3e
ioin

1
T0 þ w8ðxÞA3B3B̄3e

ioin
3

T0 þ w9ðxÞB
2
3Ā3e

ið2oout
3
�oin

3
ÞT0

þ
F

2
eiOT0 þ ccþNST, (28)

D2
0w3 � w003 ¼ � ioout

3 ðD2B3 þ 2cwB3Þe
ioout

3
T0j3 þ w10ðxÞB

2
3B̄3e

ioout
3

T0 þ w11ðxÞA3B3Ā3e
ioout

3
T0

þ w12ðxÞB3Ā1A1e
ioout

3
T0 þ w13ðxÞĀ

2

3B3e
iðoout

3
�2oin

3
ÞT0 þ ccþNST, (29)

where NST stands for the terms that do not produce secular effects, wiðxÞ ði ¼ 1; . . . ; 6Þ are defined in Ref. [20],
and wiðxÞ ði ¼ 7; . . . ; 13Þ are defined in Appendix B.

Because we only focus on the three-to-one and one-to-one resonances and the primary resonance, the
detuning parameters s1, s2 and s3 are introduced to describe the nearness of the internal and primary
resonances, defined as

oin
3 ¼ 3oin

1 þ �
2s1; oout

3 ¼ oin
3 þ �

2s2 and O ¼ oin
1 þ �

2s3. (30)

Because the homogeneous problems governing v3 and w3 admit non-trivial solutions, the corresponding non-
homogeneous problem has a solution only if the solvability conditions are satisfied. In this case, the right-hand
sides of Eqs. (28) and (29) need to be orthogonal to every solution of the adjoint problem [2]. Therefore, we
can obtain the following solvability conditions:

2ioin
1 ðA

0
1 þ m1A1Þ ¼ G11A2

1Ā1 þ G12A1A3Ā3 þ G13A3Ā
2

1e
is1T2 þ G14A1B3B̄3 þ

f 1

2
eis3T2 , (31)

2ioin
3 ðA

0
3 þ m2A3Þ ¼ G21A3A1Ā1 þ G22A2

3Ā3 þ G23A3
1e
�is1T2 þ G24A3B3B̄3 þ G25B2

3Ā3e
2is2T2 , (32)

2ioout
3 ðB

0
3 þ m3B3Þ ¼ G31B2

3B̄3 þ G32A3Ā3B3 þ G33A1B3Ā1 þ G34A2
2B̄3e

�2is2T2 , (33)

where the coefficients are defined in Appendix C, and the prime indicates the derivative with respect to T2. For
the case of the primary resonance, we can introduce the following polar transformations:

Aj ¼
1
2aje

ibj ; j ¼ 1; 3 and B3 ¼
1
2b3e

ic3 , (34)

where aj, bj, b3 and c3 are the undetermined real functions of T2, and can be determined by imposing the
solvability conditions. Substituting Eq. (34) into Eqs. (31)–(33), and separating the real and imaginary parts,
we can obtain the following polar form of the modulation equations:

8oin
1 a01 ¼ �8o

in
1 m1a1 þ G13a2

1a3 sin g1 þ 4f 1 sin g2, (35)

8oin
3 a03 ¼ �8o

in
3 m2a3 � G23a3

1 sin g1 þ G25b3
2a3 sin g3, (36)

8oout
3 b03 ¼ �8o

out
3 m3b3 � G34a2

3b3 sin g3, (37)

8oin
1 a1b

0
1 ¼ �G11a3

1 � G12a1a2
3 � G13a2

1a3 cos g1 � G14a1b2
3 � 4f 1 cos g2, (38)

8oin
3 a3b

0
3 ¼ �G21a2

1a3 � G22a3
3 � G23a3

1 cos g1 � G24a3b
2
3 � G25a3b

2
3 cos g3, (39)

8oout
3 b3c

0
3 ¼ �G31b3

3 � G32b3a
2
3 � G33b3a

2
1 � G34b3a

2
3 cos g3, (40)
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where g1 ¼ b3 � 3b1 þ s1T2, g2 ¼ s3T2 � b1, g3 ¼ 2ðc3 � b3Þ þ 2s2T2. Therefore, we can obtain the following
second-order expansion of the displacements for the case of the primary resonance of the first symmetric
mode:

vðx; tÞ ¼ �a1 cosðOt� g2Þf1 þ �a3 cosð3Otþ g1 � 3g2Þf3 þ
1
2
�2fa2

1½cos 2ðOt� 2g2ÞC1 þC5�

þ a2
3½cos 2ð3Otþ g1 � 3g2ÞC2 þC6� þ b2

3½cosð6Otþ 2g1 � 6g2 þ g3ÞC7 þC8�

þ a1a3½cosð4Otþ g1 � 4g2ÞC3 þ cosð2Otþ g1 � 2g2ÞC4�g þ � � � , (41)

wðx; tÞ ¼ �b3 cosð3Otþ g1 � 3g2 þ 0:5g3Þj3 þ
1
2
�2fa1b3½cosð4Otþ g1 � 4g2 þ 0:5g3ÞC9

þ cosð2Otþ g1 � 2g2 þ 0:5g3ÞC11� þ a3b3½cosð6Otþ 2g1 � 6g2 þ 0:5g3ÞC10

þ cosð0:5g3ÞC12�g þ � � � . (42)
4. Numerical results and discussions

This section contains details of the numerical solutions of the modulation equations for the chosen external
and multiple internal resonances combination. In our calculations, to represent the conditions currently found
in civil engineering, we choose the following non-dimensional parameter values: a ¼ 198:5 and f ¼ 0:042, with
the associated value of the Irvine parameter, l2 ¼ 22:563. For this cable, oin

1 ¼ 5:2389, oin
3 ¼ 15:7334 and

oout
3 ¼ 5p. Clearly, the three-to-one internal resonance between the third and the first symmetric modes is

nearly perfectly tuned (s1 ¼ 0:016). It should be pointed out that the one-to-one internal resonance between
the first symmetric and the first anti-symmetric in-plane mode and the two-to-one internal resonance between
the first symmetric in-plane mode and the first symmetric out-of-plane mode can be activated in this case.
However, these internal resonances have been investigated in previous studies [3,4,10]. Furthermore, the main
objective of this study is to investigate the three-to-three-to-one internal resonances of the suspended cable.
Therefore, these internal resonance are not considered in this study. Moreover, the corresponding second-
order shape functions Ci are shown in Fig. 2. It can be observed from Fig. 2 that the second-order functions
exhibit, as expected, a symmetric character. Also we consider the fixed damping coefficients: m1 ¼ 0:003,
m2 ¼ 0:001 and m3 ¼ 0:001.

The equilibrium solution of the modulation equations corresponds to the periodic motion of the cable, and
it can be determined by setting a0i ¼ g01 ¼ g02 ¼ b03 ¼ c03 ¼ 0 ði ¼ 1; 3Þ in the modulation equations and solving
the nonlinear system by the Newton–Raphson method. To determine the stability of the equilibrium solution,
we firstly introduce the following transformation:

A1 ¼
1
2
ðp1 � iq1Þe

is3T2 ; A3 ¼
1
2
ðp2 � iq2Þe

ið3s3�s1ÞT2 and B3 ¼
1
2
ðp3 � iq3Þe

ið3s3�s1�s2ÞT2 (43)
Fig. 2. The second-order shape functions CiðxÞ when l2 ¼ 22:563.
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Fig. 3. Frequency–response curves of the cable with f 1 ¼ 0:005 when O � oin
1 .
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to obtain the Cartesian form of the modulation equations. Then the stability of the solution is ascertained by
examining the eigenvalues of the Jacobian matrix. After one solution is determined, the continuation method
[25] can be used to trace the solution branch.

Fig. 3 illustrates the amplitudes of the first and third symmetric in-plane mode and the third symmetric out-
of-plane mode of the taut cable as functions of the detuning parameter s3 in the neighborhood of the primary
resonance of the first symmetric in-plane mode with f 1 ¼ 0:005, where the solid and dashed lines indicate the
stable and unstable solution, respectively, and SN, PF and HB represent the saddle-node, pitchfork and Hopf
bifurcation points, respectively. As expected, the results shown in Fig. 3 exhibit a softening behavior for the
frequency–response curves of the first symmetric in-plane mode. Also, the pure in-plane motion solution
branches, a1a0, a3a0 and b3 ¼ 0, are found. Globally, these branches are similar to the ones calculated by
Zhao and Wang [20]. However, due to the presence of the third symmetric out-of-plane mode in this case, the
frequency–response curves of the in-plane modes reveal some difference.

As the detuning parameter s3 decreases from �0:702 at SN1, the amplitude of the unstable in-plane solution
increases. When s3 is decreased beyond �0:907, the non-planar solution branch emerges as a result of a
pitchfork bifurcation at PF1, resulting in reduction of the amplitudes of the in-plane solutions with respect to
the one of the pure in-plane solutions. Following this non-planar solution branch, the real part of one pair of
complex conjugate eigenvalues of Jacobian matrix decreases as s3 decreases, as shown in Fig. 4a, and the
unstable solution undergoes a Hopf bifurcation at HB1 (s3 � �1:329), with the eigenvalues crossing the
imaginary axis transversely (see Fig. 4a), resulting in a periodic solution with period 2p=jbj, where b is
the purely imaginary eigenvalue. However, the unstable solution branch does not gain its stability at HB1
(Fig. 4a). To obtain the periodic solution of the modulation equations, which corresponds to the quasi-
periodic motion of the cable, the shooting method [25] is applied to solve the Cartesian form of the
modulation equations, and the periodic solution’s stability can be ascertained by the Floquet theory [25]. The
periodic solution branches originating from HB1 are shown in Fig. 4b, where the amplitudes indicate the
maximum and minimum values of p1, which occur on the limit cycle, and the open circles denote the unstable
periodic solutions. It can be observed from Fig. 4b that the periodic solution starting from HB1 is unstable.
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Fig. 4. Eigenvalues of the Jacobian matrix (a) and the periodic solutions branches of the modulation equations (b) when s3 � �1:329.

Fig. 5. The periodic solution branches of the modulation equations (a) and the corresponding Floquet multipliers in the complex plane (b)

when s3 � 0:246.
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Referring to Fig. 3, when s3o0:791, the modulation equations have another in-plane motion solution. This
unstable solution gains its stability via a subcritical pitchfork bifurcation at PK3, and loses its stability when
another subcritical pitchfork bifurcation occurs at PK2. As the result of these bifurcations, unstable non-
planar solutions can be observed between PK2 and PK3. Due to the one-to-one internal resonance, the non-
planar solution branches, a1a0, a3a0 and b3a0, can also be activated. This fact is clearly illustrated in Fig. 3.
As s3 increases from a small value, the unstable non-planar solution gains stability via a Hopf bifurcation at
HB2 (s3 � 0:306), and then the solution experiences a saddle-node bifurcation at SN2 (s3 � 0:501), resulting
in a jump to the in-plane solution.

On continuing the periodic solutions emerging from HB2 in Fig. 3, Fig. 5a shows the periodic solutions of
the modulation equations as s3 varies, where the filled circles denote the stable periodic solutions and TR
denotes the torus bifurcation point. It can observed from Fig. 5a that the Hopf bifurcation (HB2) is
supercritical due to the fact that the periodic solution starting from HB2 is stable. Starting from s3 ¼ 0:306,
the limit cycle grows from a zero amplitude to some finite size as s3 increases. The period-1 (P-1) solution
is stable over the detuning interval s3 2 ð0:245; 0:306Þ, and loses its stability when a bifurcation occurs at
Point B. To determine the bifurcation type, Fig. 5b shows the Floquet multipliers of the periodic solution as
the detuning parameter s3 decreases from 0.306. It is interesting to note that one complex conjugate pair of
Floquet multipliers crosses the unit circle away from the real axis. This indicates the occurrence of the torus
bifurcation. Therefore, the non-planar solution of the modulation equations should become quasi-periodic in
this case. To demonstrate the existence of a quasi-periodic solution, the modulation equations are numerically
integrated by employing the Runge–Kutta method. Fig. 6a shows the steady-state time history of the
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Fig. 6. The quasi-periodic solution of the modulation equation with s3 ¼ 0:244. (a) The time history; (b) the power spectrum.

Fig. 7. The Poincaré section of the quasi-periodic solution.
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modulation equations at s3 ¼ 0:244. It is observed that the amplitude of time history varies with a particular
period. In order to identify the nonlinear frequency components in this time history, the time history is
analyzed by the fast Fourier transform (FFT). Fig. 6b shows the power spectrum of the time history of the
modulation equations. As shown in Fig. 6b, two fundamental frequency components (o1 ¼ 1:143;o2 ¼ 0:075)
are found. Both of these indicate the quasi-periodic character of the solution. Fig. 7 shows the Poincaré section
of this quasi-periodic solution in a 3-D space. This Poincaré section shows a closed curve in the 3-D space,
indicating the quasi-periodic character of the solution again. Clearly, the 2-D projection of the Poincaré
section is very difficult to clarify the topology of the quasi-periodic attractor. By reducing the detuning
parameters3 further, the quasi-periodic solution undergoes destruction of the torus, resulting in chaos, and a
representative chaotic attractor is shown in Fig. 8. It is shown that the trajectories tend to fill up a specific
section of the phase plane (Fig. 8a); the spectrum consists of a distributed spectrum (Fig. 8b), confirming the
chaotic nature of this attractor. However, the stable chaotic attractor only exists in a very narrow region, and
as s3 decreases further, it encounters a boundary crisis. This crisis, due to the attractor colliding with an
unstable orbit within its basin of attraction, gives rise to a stable in-plane equilibrium solution, as shown in
Fig. 9.

In order to investigate the effects of excitation amplitudes on the frequency–response curves of the taut
cable, we present the results for relatively high amplitudes, i.e., f 1 ¼ 0:0095. The frequency–response curves of
the cable for the case of the primary resonance of the first symmetric mode with f 1 ¼ 0:0095 are shown in
Fig. 10. As the excitation amplitude increases, the amplitude of nonlinear response of the taut cable increases,
resulting in multimode interactions and strengthening of nonlinearity . And a wider region of stable
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Fig. 8. The chaotic solution of the modulation equation with s3 ¼ 0:243. (a) The phase plane; (b) the power spectrum.

Fig. 9. The time history of the modulation equations at s3 ¼ 0:2425 after a crisis occurs.
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non-planar solution is observed. However, compared with Fig. 3, the frequency–response curves in Fig. 10 do
not exhibit any significant difference, even though the excitation amplitude is increased nearly by 100%.

Fig. 11 shows the amplitude of the equilibrium solution as functions of the excitation amplitude f 1 for the
negative detuning s3 ¼ �1:5. There are two pitchfork bifurcation in the curves, and two non-planar solution
branches emerge from these two bifurcations. Decreasing from f 1 � 0:106 at PK1, a newborn non-planar
solution is observed, and gains its stability via a saddle-node bifurcation at SN3, then loses its stability when a
Hopf bifurcation occurs at HB1. Moreover, starting from f 1 � 0:138 at PK2, a stable non-planar solution
branch is also found. As is clear from the force–response curves in Fig. 11, two Hopf bifurcations at HB2 and
HB3 can be noticed in the in-planar solution branch. These bifurcations also confirm the results obtained by
Zhao and Wang [20].
5. Conclusions

In this paper, we investigated the nonlinear response of a shallow suspended cable with three-to-one and
one-to-one internal resonances for the case of the primary resonance of the first symmetric in-plane mode. The
method of multiple scales is used to obtain the modulation equations governing the amplitude and phase of
the nonlinear response.

The Newton–Raphson method and a continuation method were applied to determine the frequency–
response and force–response curves. These curves showed that the one-to-one internal resonance may result in
a non-planar solution via a pitchfork bifurcation. Also, an isolated non-planar solution branch is observed in
the frequency–response curves, and the stable non-planar solution may encounter a Hopf bifurcation.
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Fig. 10. Frequency–response curves of the cable with f 1 ¼ 0:0095.

Fig. 11. Force–response curves of the cable with s3 ¼ �1:5.
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The shooting method and numerical simulations were used to investigate the dynamic solution of the
modulation equations. The results showed that the chaotic attractor may appear in the phase plane as a
consequence of the quasi-periodic solution undergoing the destruction of the torus. Then this attractor was
destroyed through a crisis, resulting in an in-plane solution.
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Appendix A

The symmetric in-plane modes are given by

fiðxÞ ¼ ci½1� tanð1
2
oin

i Þ sino
in
i x� cosoin

i x�; i ¼ 1; 2; 3; . . . , (A.1)

where ci are chosen so that the modes satisfy the orthonormality condition. And the frequencies are
determined by
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i � tan
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ðoin
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3
¼ 0, (A.2)

where l2 ¼ EA=mglð8b=lÞ3. The symmetric out-of-plane modes and frequencies are given by

jiðxÞ ¼
ffiffiffi
2
p

sinð2i � 1Þpx; oout
i ¼ ð2i � 1Þp; i ¼ 1; 2; 3; . . . . (A.3)

Appendix B

The expressions of wiðxÞ ði ¼ 7; . . . ; 13Þ are

w7ðxÞ ¼ af001
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The coefficients of the modulation equations are
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