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Abstract

Friction-induced vibration occurs in many contexts: vehicle brake squeal in particular remains surprisingly
unpredictable and poorly understood. Testing theory against measurements has been hindered by the difficulty in
obtaining repeatable results suggesting that the phenomenon is sensitive to small changes in parameters. This paper
explores highly idealised cases as a starting point to understanding sensitivity. Using a stability criterion based on the roots
of the characteristic equations of the system, the sensitivity of predictions to parameter changes is studied, focussing on a
single-mode model. The effects of contact stiffness, non-proportional damping and a velocity-dependent coefficient of
friction are considered. It is found that each physical effect can significantly alter predictions; each physical effect can lead
to extreme sensitivity; and high sensitivity can sometimes occur when modal amplitudes are small such that they might
normally be considered insignificant. With a large body of literature focussing on reduced-order models this study provides
an important warning when interpreting their results.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Friction-induced vibration due to a sliding contact between two systems is a phenomenon that arises across
a diverse range of scales and contexts, including musical instruments, machine tool vibration, railway wheel
noise, earthquakes and vehicle brake squeal. The literature on brake squeal has moved from very simple
lumped parameter models to ever more sophisticated finite element models, but testing theory against
measurements has always proved difficult. This research has been summarised by North [1], Ibrahim and
Rivin [2], Kinkaid et al. [3] and Ouyang et al. [4]. A recurring theme is the difficulty in obtaining repeatable
experimental results that correlate with theoretical models: to date, there is no validated predictive model of
friction-induced vibration. This difficulty in validating theoretical models suggests that friction-coupled
systems are highly sensitive to parameter changes beyond an experimenter’s control. The study of sensitivity in
such systems has now begun to attract some attention (e.g. Guan et al. [5] and Huang et al. [6]).

This research follows and extends a theoretical model developed by Duffour and Woodhouse [7,8] which
allows for direct testing against experimental data. The model, summarised in the next section, is based on a
linear transfer function analysis of two subsystems coupled by a sliding point contact. The predicted system
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stability depends on the values of the complex zeros of two characteristic equations. Although a simplified
analysis, it is general enough for the theory to be directly applicable to results from a test rig. Obtaining
repeatable results is still difficult, so this research focusses on exploring the reasons for the sporadic nature of
squeal. Initial results show that even measurement uncertainty is sometimes enough to significantly affect
predictions, and that the sensitivity of predictions is highly dependent on the system parameters (see Butlin
and Woodhouse [9]).

Despite the simple problem formulation, understanding the reasons for the effects of parameter changes
remains a serious challenge as predictions are an intricate function of these parameters. This is a result of the
familiar trade-off when modelling any system between realism and acuity, and is reflected in the development
of the literature. Added to this is the difficulty in knowing what is important to include in the model.

Much of the literature is dominated by numerical analysis as this is often the only way that the behaviour of
a given model can be explored. While such analysis is valuable, the model complexity can make it difficult to
understand underlying reasons for results. It is therefore logical to explore the behaviour of those models that
can be studied analytically—the substantial literature dedicated to analytical reduced-order models supports
the uncontroversial nature of this approach. Simplified models can be analysed in detail and with reasonable
transparency, helping to understand the effect of parameters and model choices on predictions and to identify
potential limitations of models: it is precisely because simplified models can be studied analytically that they
are of interest. A thorough understanding of them allows meaningful conclusions to be drawn from simple
models and highlights circumstances under which larger scale models may give misleading results. Sensitivity
is a particularly pertinent issue that may underly the difficulty in obtaining repeatable results and provides
insight into the reliability of predictions. Care should be taken in drawing conclusions where high sensitivity to
either parameter changes or modelling details occurs. This paper describes some key results from a systematic
analysis of reduced-order models that can be studied analytically taking into account a range of physical
effects often found in the literature, such as contact stiffness or a velocity-dependent coefficient of friction.

The complexity of a model can be subdivided under two headings: the number of natural modes that the
system is modelled with, and the range of physical effects that are taken into account. Most studies take a
model of some degree of complexity and are based on a fixed set of assumptions, which may be relaxed
progressively so that the complexity steadily increases. However, a clear presentation of the various effects of
different types of models has not been found in the literature, so the aim of this article is to clarify some of the
most basic routes to instability and causes of high sensitivity.

A number of independent issues are raised:

e What range of behaviours is predicted by simplified models?

e Under what conditions can these models give highly sensitive predictions?

e Over what bandwidth (if any) do these models give a useful approximation to more complex systems?

e What is the convergence behaviour of predictions as more modes are included in the system model?

® Are there phenomena which are fundamentally absent from the simplified models, which only appear in
more complex systems?

This paper mainly addresses the first two of these points by describing a systematic exploration of highly
idealised cases. Only a few modes are included in the model and the effects of including different physical
elements are compared. Of particular interest are conditions that result in high sensitivity, which may begin to
explain the sporadic nature of friction-induced vibration. With much of the literature focussing on reduced-
order models (recent examples include Hoffmann et al. [10], Kinkaid [11], von Wagner [12] and Emira [13])
this work on sensitivity provides greater insight into the interpretation of results from such models. It should
be noted that although the work will be described in the language of brake squeal, the theory applies to any
sliding point contact system (e.g. certain types of machine tool vibration).

The analysis presented within this paper is in the context of further theoretical studies of the other questions
raised, and a thorough comparison of model predictions with experimental results (see Butlin [14]). While in
many cases it is possible to identify minimal reduced-order models that give good approximations to a larger
model, under certain conditions of high sensitivity the convergence behaviour is non-trivial. In addition, there
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is compelling experimental evidence that including a combination of the physical effects considered within this
paper is essential to predicting observed instabilities.

2. Theoretical framework
2.1. Basic model

The system to be analysed is sketched in Fig. 1. A “disc’ is driven at constant velocity, V', and a ‘brake’ is
pushed against it with a dynamically varying normal force, N, composed of a steady equilibrium pre-load, N,
plus a small fluctuating component, N’, such that N = Ny + N’. Similarly, the force tangential to the sliding
direction due to friction, F, can be expressed as a steady equilibrium force, Fy, plus a fluctuating component,
F’, such that F = Fy + F’. With a Coulomb friction law the normal and tangential forces are related by
F = pyN where p is the coefficient of friction. The normal and tangential displacements from equilibrium of
the disc are denoted u; and vy, respectively, and u, and v, for the brake. The normal and tangential
displacements from equilibrium of the point of contact are denoted u3 and vs. The springs of stiffness k, and k,
represent the linearised contact stiffness in the normal and tangential directions, respectively. Any damping
that may result from the contact has been ignored.

The dynamics of the disc and brake can be described in terms of transfer functions:

ur | Gii(w) Gp(o) |[N 1
v | | Ga(w) Gun(w) [F’ ] ’ (1)
up | Hy(w) Hp()|[N 5
v | | Hu(w) Hpn(w) [F/]’ 2)

where Gj;(w) are the transfer functions representing the disc’s response and H ;(w) represent the equivalent set
of responses for the brake. These transfer functions can be determined using standard vibration measurement
techniques. Note that this paper follows the convention of the vibration literature by using transfer functions
defined as the Fourier transform of an impulse response, rather than the Laplace transform. For readers more
familiar with the Laplace formalism the complex w-plane used here should be rotated anticlockwise by 90° to
correspond to the complex s-plane as s = iw.

The stability of the coupled system can be determined from the transfer functions of the system: all the poles
of the transfer functions from any possible input to any output must be stable to predict overall stability.
There are several possible inputs: surface roughness r = u; + u3, normal force perturbations P, and tangential
force perturbations Q. The outputs of the system can be considered as variations in the normal force, N', or
the relative tangential displacement of the disc and brake, v; + v;. Physically, normal and tangential force
perturbations could be the result of any kind of external disturbance, for example random fluctuations in the
coefficient of friction as the disc rotates would cause tangential perturbations.

(a) brake (b) brake

disc disc

V] k,
v
V()\ 1 2 Vo\ L~y

uy us l
F

Fig. 1. Two linear subsystems coupled by a single point sliding contact, with definition of variables for (a) displacements and (b) forces.
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Assuming a constant coefficient of friction the transfer function from surface roughness, r, to changes in the
normal force, N’, can be readily shown to be
N’ 1
ro Gu+ G+ Hu+pgHp+ 1/k,

(€)

Considering the transfer functions from the other possible inputs to all the outputs results in no additional
poles which could be unstable. Therefore the steady sliding solution of this system will be asymptotically stable
if and only if all zeros of the characteristic function D(w) lie in the upper half-plane, where

D =Gy + uyGia+ Hiy + woHi + 1k, 4)

as derived by Duffour and Woodhouse [7]. The corresponding condition for stability in the Laplace formalism
would require all the zeros to lie in the left half-plane.

2.2. Model extension

If a coefficient of friction that varies with sliding velocity is included, the relationship between F and N can
be linearised such that

F = [y — iwe(v; 4 v3)]N (5)

and only first-order terms are kept on expansion. The factor iw converts the displacements v; and v3 into
velocities and ¢ is the linearised gradient of the friction-velocity function. More generally, if ¢ is allowed to
become complex and frequency dependent then Eq. (5) could describe any linearised relationship between F
and N, for example a friction law based on contact temperature or asperity deformation history.

Overall system stability must be determined by considering the poles of all the possible transfer functions.
Changes in the tangential force, F’, are related to changes in the normal force, N’, by

F' = uyN' —iweNo(vy + v3), (6)

where only first-order terms have been kept. If P and Q represent external perturbations to the normal and
tangential force, respectively, then the inputs and outputs can be expressed by the matrix equation:

G+ Hu+1/k, G+ Hyp, N + P
Gy + Hy Gp+Hp+1/k || F+0

up + us

v + 3

: ()

Substituting Eq. (6) into the second line gives

v1 403 = (Ga1 + Hy))(N' + P)
+ (G2 + Hy + 1/k)lug(N' + P) + Q — iweNo(v1 + v3)]- (8)
Rearranging this leads to an expression for the relative tangential displacement, v + vs, in terms of N and the
inputs P and Q. Using the same method, the transfer function from the surface roughness, r = u; + u3, to
changes in the normal force, N', can be derived. The relative tangential displacement can then be written in
terms of all the inputs as
Go + Hyy + (G + Ho + l/k’)r
E\(w)
Gy + Hoy + (G + Hn + 1/ky)
1 +iweNo(Gxn + Han + 1/k))
Gn + Hyn +1/k
1 +iweNo(Gn + Hy + 1/k;) =
All of these functions have numerators consisting of linear combinations of stable transfer functions. Thus

unstable poles can only arise from the zeros of the denominators. There are two distinct denominators and
therefore two characteristic functions of this system. The first of these, E;(w), was derived by Duffour and

v+ 3=

)
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Woodhouse [8]:
Ei = D +iweNo[(Giy + Hi1 + 1/k,)(Ga + Hy + 1/k;) — (G2 + H12)*. (10)

The system will be unstable if the function E;(w) has at least one zero with a negative imaginary part. Overall
stability is determined by also considering the zeros of the second distinct denominator:

Exw) =14+1weNo(Gn + Hyp + 1/k)). (11)

This characteristic function has a more immediately intuitive interpretation than E;(w). It can be written as a
standard negative feedback loop where the system transfer function is (G2, + Hy + 1/k;) and the feedback
gain is (iweNy). Classical feedback theory results can then be applied directly, for example stability could be
determined using the Nyquist stability criterion. It can also be seen how increasing ¢/Ny will at some point lead
to instability: this is formalised by the Nyquist criterion but can be argued intuitively as increasing the negative
damping until the overall damping of the system is negative.

It can now be said that this system will be unstable if and only if all the zeros of both E(w) and E>(w) lie in
the upper half-plane. The relationship between these zeros and the system parameters will now be explored for
highly idealised cases.

3. Single-mode analysis

Each term of D(w) in Eq. (4) can be written as a sum of modal contributions using a standard expression
(e.g. Skudrzyk [15]). Thus D(w) can be written explicitly:
994 + 1og D9 hORY) + whPhY) 1

D = PR
+ 2w — w?  ky

all j(disc)

- 12
o} + 200 — o all j(brake) w; (12
where w; and {; are the natural frequency and damping factor of the jth mode, respectively, of either the disc
or the brake (if the uncoupled modes of both subsystems are sorted by ascending frequency, then the jth mode
could correspond to either the disc or the brake). Modal amplitudes that correspond to the disc subsystem are
denoted ¢, and those for the brake /. As there is no mathematical distinction between the modal sums of the
disc and the brake they can be combined. For convenience we define the modal coefficient a% to represent the
relevant product of modal amplitudes of either subsystem for the jth mode. To simplify the notation further

we define a; = a(lif + uoa({g, such that we can rewrite D(w) more simply:

4 1
It is a common assumption that a given system can be approximated by a finite set of modes spanning the
bandwidth of interest. Resonances far enough outside this bandwidth are considered as having an insignificant
effect. Consequently models that include just a few neighbouring modes would be expected to work reasonably
well in a narrow bandwidth surrounding these modes. Taken to the extreme, a single-mode model might be
expected to approximate the system in the locality of its natural frequency. This paper is mainly concerned with
the analysis of precisely such a single-degree-of-freedom system. It should be kept in mind that the intention is to
locally approximate a multi-degree-of-freedom system. The focus is on the sensitivity of solutions and to provide
a clear presentation of the model behaviour when different physical effects are included.

The transfer function for a single-mode model can be described by the natural frequency w;, modal
coefficient a;, and damping factor {;:

aj

G(w) = (14)

o + 2l jo1w — w?’
There are two poles, symmetric about the imaginary axis of the complex w-domain, and so the transfer
function can also be written:

c —c

G(w) = —+ (15)
0—0 o+ o]
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where * denotes the complex conjugate, ¢; = —a;/2w; and is purely real if a; is real, and @&, =

W) <\/ 1-8+ iCl) ~ w1(1 +1{;). The approximate expression applies if damping is light, {; < 1.

Thus a single-mode model can be represented by two simple poles, one at negative frequency and one
positive. If the negative frequency pole is discarded by considering it as a ‘distant’ mode, as is often done (e.g.
Skudrzyk [15]), then the analysis simplifies considerably. All other ‘distant’ modes are neglected in such a local
model so it would seem a reasonable approximation. However, discarding the symmetry has deeper
implications as will be seen later in this section.

3.1. Effect of individual parameters

If contact stiffness, non-proportional damping, and the velocity-dependence of friction are all neglected (i.e.
k, — 00, ay is real and ¢ = 0) then the characteristic equation can be written as

a
D(w)=Hi + poHin = !

=0. 16
o? + 21 o0 — 0? (16)

Recall that the modal coefficient a; is a combination of driving point and cross-terms, such that
a = a(lll) + ,uoa(llz). Clearly Eq. (16) has no non-trivial solutions and thus cannot result in an unstable response.
This has led previous authors (e.g. Blok [16]) to conclude that a necessary condition for the onset of squeal for
such a simple system is a velocity-dependent coefficient of friction. While it is true that this can lead to squeal,

there are other possible routes to instability.

3.1.1. Contact stiffness
If the contact stiffness, &, is considered to be finite then the characteristic equation becomes

ay + 1
ot + 2l o0 —w?  ky

D(w) = =0, (17)

where a; can be either positive or negative since it includes the modal coefficients of H,, which can be of
arbitrary sign. Eq. (17) can be written as
ark, + o} 4+ 2il 010 — 0 =0 (18)

with solutions:

0. = i1 £ \Jak, + 03(1 = ), (19)

which can either be purely imaginary or a complex pair. If the solution is a complex pair then the system must
be stable as the imaginary part is positive, but if it is purely imaginary then the stability depends on the system
parameters. If unstable, this implies that the impulse response would grow purely exponentially until it is
limited by nonlinearity. Within this linearised model there is no ‘frequency of squeal’, but the effect may relate
to the initiation of ‘judder’ or ‘groan’ (e.g. Jacobson [17]) or ‘sprag-slip’ (Spurr [18]).

Of particular interest here is not directly the conditions for stability but the sensitivity of the prediction. The
partial derivatives of the solution with respect to each of the system parameters are as follows:

dw. . 201(1 = )

— = 1(1 F > (20)
o, 2\Jarky + (1~ 8)

Ow. k,

Pa T 2 =

I )

ow, . =203,
b0 _ 2
a, o1 + (22)

2k, + w31 - 8
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Ow, a
oy T 1 2 @3
n 2\/a1kn +ol(1-0)
A singularity occurs in each of these derivatives at the bifurcation point when
2 1— 2
a = — %1) . (24)

One implication of Eq. (24) is that if the contact stiffness is high compared with the equivalent modal stiffness
then the system is sensitive to small amplitude modes, a significant point if this result remains true for
multiple-mode systems.

The sensitivity of the roots can be plotted as a surface as two parameters vary: we choose to illustrate results
for variation of the natural frequency, w;, and the modal coefficient, @;. The damping factor has been held
constant at { = 0.03 throughout this section and, when included, the contact stiffness has been chosen to be
k, = 10. This set of choices is somewhat arbitrary but is one which facilitates comparison with results of
Duffour and Woodhouse [7] and illustrates a range of qualitative behaviour. Fig. 2 shows the magnitude of the
derivative of one of the roots with respect to (a) the natural frequency w; (Eq. (20)), (b) the modal coefficient
a; (Eq. (21)), (c) the damping factor {; (Eq. (22)), and (d) the contact stiffness k,, (Eq. (23)). The solid line in
each represents the bifurcation condition from Eq. (24). Apart from Fig. 2 (c) it can be seen that this shows up

Fig. 2. Sensitivity of characteristic root with respect to (a) w;, (b) a;, (¢) {; and (d) k, for a single-mode model that includes contact
stiffness. Solid curve shows bifurcation condition of Eq. (24).
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as a singular ridge in each of the plots (note that the maximum amplitude has been limited in order to make
the figures clearer). On closer inspection it is seen to be true, though less clear, in Fig. 2 (c): in this case the
singularity is very close to a zero so there is almost a pole-zero cancellation and the ridge is nearly invisible. If
the damping had been greater then the singular ridge would have been more obvious.

It is convenient to define a combined measure of sensitivity to more than one parameter, for example the
following definition provides a measure of sensitivity with respect to the natural frequency, w;, and modal

coefficient, ay:
ow.
Vo] = \/'wl -
awl

The factor in front of each partial derivative serves to normalise them such that each term represents the
derivative with respect to a fractional change in one parameter.

Fig. 3 shows the variation of this combined measure of sensitivity—the singular ridge is still clearly visible
though the rest of the surface has changed. There are a number of other possible related measures for
sensitivity, including differentiating the imaginary part of the roots or their phase, quantities that are
sometimes defined as ‘squeal propensity’ (e.g. Cao et al. [19]). The method used here is based on absolute root
displacement (as in Eq. (25)) to consider sensitivity in its purest sense. These results show that in this case the
root is only sensitive to parameter changes when they are close to the bifurcation condition in Eq. (24) and
then, as is intuitively plausible, it is sensitive to amy parameter changing. The introduction of contact
compliance into the model has added both a mechanism for instability and a region in the parameter space
which leads to high sensitivity.

The expression for sensitivity is valid for the whole parameter space, both near to and far from bifurcations.
The bifurcation of roots is a special case that is often discussed in connection with stability, and for simple
models it is frequently true that they also represent the boundary between stable and unstable predictions. For
more complicated systems where bifurcation conditions are non-trivial they do not correspond so directly to
stability, though they still give rise to high sensitivity.

As discussed above, a simpler analysis is possible if just the positive frequency pole of the mode is
considered. This leads to the characteristic equation:

2 2

0o " (25)

6a1

+ ’al

w—wl<,/1—c%+icl>—k,,2‘2=o. (26)

1

Fig. 3. Sensitivity of characteristic root with respect to proportional changes in natural frequency, w;, and modal coefficient, a;.
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The solution to this equation converges on the quadratic solution of Eq. (19) if damping is assumed to be light
and w| > +/a1k,. Under these conditions, the positive frequency solution tends to:

w. ~ (1 +i0)) + ko~ . 27)
20)1

It is expected that only predicted zeros in the region of the positive frequency pole will give good
approximations to the global prediction. Therefore it is no surprise that Eq. (27) only approximates the full
single-mode analysis when the solution is a long way from the imaginary axis, as the uncoupled poles of a
single mode are symmetric about this axis. Since in this case bifurcations, and high sensitivity due to the square
root, only occur when the solutions lie on the imaginary axis, the approximation is not useful for predicting
the region of high sensitivity here.

3.1.2. Non-proportional damping

There is no physical reason to assume that the damping matrix of a general system is proportional, i.e.
simultaneously diagonalisable with the mass and stiffness matrices. Proportional damping is commonly
assumed for mathematical convenience as it simplifies system analysis enormously by making it possible to
find a set of decoupled equations that lead to the natural modes of a system. Usually this approximation is
adequate for describing the system behaviour but it is not known how significant the introduction of non-
proportional damping may be with regard to predicting the stability of sliding-coupled systems.

A detailed analysis of single-mode systems with non-proportional damping has revealed that it is not
particularly significant if contact stiffness is also included in the model. Without contact stiffness, the
introduction of non-proportional damping changes the order of the characteristic polynomial and therefore
changes the number of solutions—the solutions are then extremely sensitive when the degree of non-
proportional damping is small. This points towards the importance of including contact stiffness for a robust
model.

3.1.3. Velocity-dependent coefficient of friction

A much studied model for frictional instability is based on an assumption that the coefficient of friction is
velocity-dependent. In this case two characteristic functions determine the stability of the system: E;(w) and
E>(w) from Egs. (10) and (11), respectively. Contact stiffness is at first neglected. It turns out that the
characteristic equation from E;(w) then has no solutions.

The second characteristic equation becomes

. an

E =1 N =0, 28
2(w) = 1 +iweNo L}f + 2l 010 — »? 28)

which can also be written as
* —i(2{ ;o1 + eNgan)o — ot =0, (29)

which has solutions:
: eNoa 2 N3a2

w:=1<C]w1— ; 22) i\/w%(l—C%)—wlClﬁNoazz—%- (30)

This result differs from the previous case. In Section 3.1.1 it was seen that when only contact stiffness was
included only purely imaginary predictions could be unstable (see Eq. (19)). The solution above (Eq. (30))
can give unstable poles that are not purely imaginary and could therefore lie in the vicinity of the uncoupled
mode. This can occur when the square root term is close to w;, for example if damping is light and the
product eNgay, is small. This implies that the local model may be particularly applicable in this case, both for
stable and unstable solutions. In a similar way to Eq. (19) this solution bifurcates when the determinant equals
Zero:

oG D

eNo (31)

ar»n =
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Fig. 4. Sensitivity of characteristic root when including one mode and a velocity-dependent coefficient of friction in the model.

A driving point modal coefficient can only be positive, so for cases where {; <1 only one of these conditions is
possible, remembering that N is negative. Fig. 4 shows the variation in sensitivity as the modal coefficient and
natural frequency vary with eéNyg = —0.5 (chosen arbitrarily). The condition for bifurcation, and high
sensitivity due to the square root, given by Eq. (31) can be seen as a ridge. This condition suggests that if N is
large, then the system becomes more sensitive to small amplitude modes; or as the normal pre-load is
increased, low amplitude modes become significant. If this is true of multiple-mode systems this could be of
value in understanding the sporadic nature and contact-force dependence of brake squeal.

An analysis of this case neglecting negative frequency poles does not yield a good approximation near the
bifurcation point suggesting that this method is not particularly helpful when analysing sensitivity. If the
negative frequency pole is regarded as a distant mode it may be hinting that neglecting other modes could
adversely affect predictions.

Friction is an extremely complicated phenomenon to model, depending on many physical properties of the
sliding contact in question. Including a velocity-dependent coefficient of friction in the model only scratches
the surface of the level of complexity that has been uncovered in the friction modelling literature. However, as
Duffour and Woodhouse [8] discuss, if the value of the velocity dependence, ¢, is allowed to become complex
then it can be used to describe any system linearised about a particular operating point, whatever internal state
variables it may involve.

The simplest possible case that gives a real-valued impulse response is to assume that ¢ is constant over all
positive frequencies and the conjugate of that constant over all negative frequencies. Interestingly this does not
affect the condition for high sensitivity given in Eq. (31). This reduces the maximum sensitivity: a singularity
can no longer occur for any parameter combination as the modal coefficient, a|, and natural frequency, w1,
are both purely real. Note that a constant but complex value of ¢ does not guarantee causality (see Bracewell
[21]) and in reality it is likely to be a more complicated function of frequency, but this constant approximation
can be considered to be valid over small frequency ranges and useful for local models with few modes.

3.2. Effect of combining model parameters

If both contact stiffness and a state-dependent coefficient of friction are included in the model then the
characteristic functions E;(w) and E,(w) are each cubic.

The general solution can be written as a series of substitutions in a fairly compact form which contain nested
roots of polynomials of the coefficients of the original equation. It is therefore possible to obtain bifurcation
conditions that themselves bifurcate. Parameters that describe such points in the parameter space are strong
candidates for extreme prediction sensitivity. However, the solution is a long-winded expression that sheds
little light on the effect of changing parameters, or when bifurcations and high sensitivity occur. It is more
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Fig. 5. Sensitivity of characteristic root when including one mode, contact stiffness and a velocity-dependent coefficient of friction in the
model: numerical estimate of the maximum root sensitivity for each characteristic function: (a) E;(w) and (b) E>(w).

insightful to observe the behaviour of the solutions numerically as parameters change, rather than proceed
with analytic study.

Fig. 5(a) shows a numerical estimate of the maximum sensitivity of the roots of Ej(w) (as defined in
Eq. (25)) while varying the natural frequency, w;, and the modal coefficient, @, (with a;; held constant and
ay = a%z/an). In this case k, = 10 as before and ¢Ny = —0.5. The numerical algorithms used have been
validated by comparing results with the simpler cases of the previous section that could also be treated
analytically. The critical parameter combinations that result in bifurcations are visible as ridges and it can be
seen that they are more complicated than the cases studied so far. The solid line shows the bifurcation
condition for the case when only contact stiffness was considered superimposed on the combined analysis. It
can be seen that there is some correlation for low values of w; but the independent case diverges for higher
values. This is not surprising as a,, varies with a?,, amplifying the effect of the velocity-dependent coefficient
of friction (as the term involving ¢ is multiplied by ay,).

Fig. 5(b) shows a similar plot for the maximum sensitivity of the roots of E»(w). Superimposed is the critical
line from the case when only ¢ was included in the model. It can be seen that one of the ridges is predicted to an
extent but that the second ridge is not accounted for.
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4. Extension to include multiple modes

A similar analysis can be carried out on two and three mode systems, although very quickly the order of the
polynomials increase with the model complexity. This can be seen in Table 1 which shows the order of the
characteristic polynomials £ and E; (defined in Egs. (10) and (11)) for different cases. The items of the table
that are dashed out correspond to cases where there are no solutions.

Clear analytic results are only obtainable from linear or quadratic equations, so only a few more cases could
be explored in this manner. For E(w): the two-mode case without contact stiffness or velocity-dependent
coefficient of friction (with or without negative frequency poles), the two-mode case considering the contact
stiffness but discarding the negative frequency poles, and the simplest three-mode case discarding negative-
frequency poles. For E»(w): the non-proportionally damped one-mode case with ¢ and the two-mode case with
only e.

Each of these cases has been analysed but a full description is not given here: only a few highlighted
examples will be discussed to illustrate the kind of effects observed. The two-mode system that includes
negative frequency poles has a quadratic characteristic equation, the solutions of which are highly sensitive at
the two bifurcation conditions. If damping is light, these are:

a) = —dy, (32)
2
—aH
a &= (33)
w3

If the sensitivity is plotted as a function of the modal coefficient, @,, and natural frequency, w,, two
corresponding ridges can be identified. This shows that the interaction of the two modes can also give rise to
high sensitivity. This case is particularly interesting as high sensitivity can occur when one modal amplitude is
much smaller than the other and if they are well separated in frequency. This shows that it can be dangerous to
regard small amplitude modes as insignificant.

Table 1
Effect of number of modes included and model complexity upon order of the characteristic polynomials, E; and E;

No. of modes Model Polynomial order
With —ve freq poles Non-prop. damping Without —ve freq poles
Ei(w) E>(w) Ei(w) E>(w) E(w) E>(w)
1 No kor e — — 12b — — —
Only k 2 - 2? - 1@ -
Only ¢ - 2% 3be 2% - 12
k and ¢ 3be 3be 3be 3be 2° 28
2 No k or ¢ 22 - 3be - 12 -
Only k 4° - 4° - 2? -
Only ¢ 6 4° 7° 4° 3¢ 28
kand ¢ 9° 5° 9® 5° 5 3¢
3 No k or ¢ 4° - 5° - 24 -
Only k 6 - 6 - 3¢ -
Only ¢ 10 6 11° 6 5 3¢
k and & 13° 7° 13° 7° 7 4°
N No k or ¢ 2N =2 - 2N —1° - N-1 -
G(f N>1) Only k 2N - 2N - N -
Only ¢ 4N -2 2N 4N —1° 2N 2N -1 N
k and & 4N +1° 2N +1° 4N +1° 2N +1° 2N +1 N+1

#Useful analytic solutions can be derived.
®0dd degree polynomial that has one root on imaginary axis.
€Analytic solutions possible but shed little light.
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An important issue is whether the critical lines indicating conditions for high sensitivity and bifurcation
derived for the simplest cases can be applied to more complex systems by superposition. This has been shown
to be true to a very limited extent in Section 3.2 when the single-mode case was made more complicated.
Numerical analysis is required to study the two-mode case that includes contact stiffness, as the characteristic
equation becomes a quartic. Results indicate that the critical conditions from the independent cases (given by
Eqgs. (24), (32) and (33)) are robust for the parameter space considered, and superposition quite accurately
predicts high sensitivity for this more complicated case. However, when a velocity-dependent coefficient of
friction is also included in the model then this technique breaks down and ridges of high sensitivity do not
clearly correlate with those of the simpler cases. This remains true for the other more complicated cases
studied.

A further class of cases can be treated analytically if damping is neglected. This leads to characteristic
equations in integer powers of w?, allowing quartics to be solved easily. Hoffmann et al. [10] discuss
extensively the two-mode case with contact stiffness but without damping or a velocity-dependent coefficient
of friction. The model consists of a mass with two degrees of freedom in sliding contact with a belt via a
linearised contact stiffness, the mass being supported by two springs at arbitrary angles (see Fig. 6). It is
designed as a minimal model to study the ‘mode-coupling’ route to instability commonly thought to be a
primary mechanism that leads to squeal. The discussion is valuable in providing some intuition to the
phenomenon of friction-induced vibration, but the reduced-order models described in this article flag some
warnings. The theoretical framework of Section 2 can be applied to the particular case discussed by Hoffmann
et al., when the characteristic equation becomes
0777 + 1,0.416 | 0.223 — 11,0.416 3

+>=0. 34
0.363 — w2 1.592% — @2 4 (34)

In this case the four complex solutions are:
1/2
4
2441 2‘01 . (35)

Two bifurcation points exist for the two conditions when the terms in the square bracket go to zero. These
occur when p, = 0.75 and p, = —2.25. Note that the latter negative value corresponds to a reverse in the
direction of the steady velocity, V), and though its magnitude is somewhat implausible it does not detract
from the illustration. For each bifurcation, two purely real solutions split into one stable and one unstable
mode. Such bifurcations have also been shown to be points of high sensitivity with respect to many
parameters, so care should be taken in drawing conclusions near the thresholds of stability. Further from these
boundaries the model is more robust to parameter changes, though not necessarily to model changes (such as
additional modes). It is notable that in the presence of a small amount of damping no bifurcation is apparent
and the onset of instability can less clearly be linked to bifurcations or ‘mode-coupling’. In a subsequent paper

D(w)

w, ==+

a, = 150°
a, = 30°
k,=0.179
k, = 2.488
ky = 1.333
m =1

F\: normal force

Fp: frictional force

Fig. 6. Reduced-order model analysed by Hoffmann et al. [10] with parameter values used for case study.
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Hoffmann and Gaul [20] include damping and the results show some of the more complicated behaviour that
can arise. Further analysis will form the basis of future work—of most importance here is that reduced-order
models such as this must be treated with care.

It is of interest to conclude with a series of examples developing a three-mode model. The characteristic
function E; becomes

3 (n) (n)

ay + poa 1
E — 1 12 2
: ; w2 + 2i{,w,0 — ? * kn

L (e
iweN, - — - —
+iwelo ; 2 + 2i{, 0,0 — »? + ky Z 02 + 2i{, 0,0 — »? + k,

n=1

3 () 2
ap
— 36
(Z w2 + 2i(,w,0 — w2> (36)

n=1

Firstly the three-mode case ignoring negative frequency poles is considered without contact stiffness or a
velocity-dependent coefficient of friction. Secondly the equivalent case with negative frequency poles and
finally a closely related three-mode case that also includes contact stiffness and a velocity-dependent
coefficient of friction. These results are shown in Fig. 7(a—c). Bifurcation conditions for these cases have not
been superimposed as analytic expressions cannot be derived for (b) and (c). For each of these cases, the
properties of the second and third modes are held constant with natural frequencies of w, = 1 and w3 = 1.2,
corresponding modal coefficients a(lzl) = (131) =1 with cross-terms a(lzz) = a(132) =0, and damping factors
{, = {3 =0.01. The damping factor of the first mode is fixed at {; = 0.1 (chosen arbitrarily but with a view
to representing a more heavily damped mode of the brake subsystem). The equivalent figures for £, have not
been shown as this region of the parameter space turns out not to be of interest. In Fig. 7(a and b) the modal
coefficient a; is varied, which could represent a change in either a(lll) or a(llz). It can be seen that case (a) which
ignores negative frequency poles is a good approximation to case (b) over parts of the parameter space.
The ridge of case (a) approximates the central part of the diagonal ridge in case (b), and the sharp peak
near a; ~ 0.4 and w; ~ 1.1 is evident in both plots. Analysis using only positive frequency poles for more
realistic systems may therefore prove to be somewhat more valuable than first suspected. This is an area of
ongoing work.

Fig. 7(c) shows an example of the sensitivity variation for E; obtained for the three-mode case that includes
both contact stiffness (k, = 10) and a velocity-dependent coefficient of friction (¢Ny = —0.01). The natural

frequency of the first mode, w;, and the cross-term of the modal coefficient, a(112) are allowed to vary but with

the direct term fixed at a(lll) = 0.1. This value was deliberately chosen to be an order of magnitude smaller than
the other two modes to represent the case where a cluster of three modes is found during modal analysis,
where one of the modes is much smaller than the others (and is often considered to be insignificant). The
modal coefficients a,, for each mode are still kept consistent with the other coefficients such that ay; = a%z Jai.
(1)
1

Since a;; is small, it is still possible to compare results with the previous two cases (as a; = a(lll) + uoa(llz)).

Therefore varying ,uoa(llz) is the same as varying a; over a very similar range.

It can be seen in Fig. 7(c) that features of the two preceeding cases are recognisable but modified. The main
ridge bifurcates at around @, &~ —2 and w; ~ 1.1. Two peaks are visible when a;; ~ —1.5 with w; ~ 1 and
w; ~ 1.2. This suggests that sensitivity can be increased when modes are close in natural frequency, as these
correspond to the natural frequencies of the fixed modes. One more very sharp peak can be identified at
w; ~ 1.1 and a;, ~ 0.25, a feature that is evident in all three cases. Though none of the details of these features
can be predicted using the idea of superposition of critical conditions, the simpler models do seem to broadly
highlight the regions of the parameter space where high sensitivity occurs in more complicated models. The
most interesting result from this example is that high sensitivity occurs under all kinds of conditions.
Sometimes this is counter-intuitive, for example in this case when one of the modal amplitudes is significantly
smaller than the others. Also non-singular maxima can occur in the sensitivity for these more complicated
systems: it can be seen that not all of the ridges in Fig. 7(c) are truncated.
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Fig. 7. Sensitivity of characteristic root of E|(w) when including three modes under different modelling assumptions: (a) without contact
stiffness or velocity-dependent coefficient of friction and ignoring negative frequency poles, (b) without contact stiffness or velocity-
dependent coefficient of friction but including negative frequency poles and (c) with contact stiffness and a velocity-dependent coefficient
of friction and including negative frequency poles. Figure (a) is the maximum analytical sensitivity of the roots, and figures (b) and (c) use
a numerical estimate of the maximum root sensitivity.

5. Conclusions

Friction-induced vibration occurs in many contexts: vehicle brake squeal in particular remains surprisingly
unpredictable and poorly understood. A recurring theme in the literature is the difficulty in obtaining
repeatable experimental results that correlate with theoretical models, which suggests that the phenomenon is
sensitive to small changes in parameters. This paper has explored reduced-order models as a starting point to
understanding this sensitivity, and to better understand the validity of the multitude of other studies that focus
on reduced-order models (Hoffmann et al. [10], Kinkaid [11], von Wagner [12] and Emira [13]).

Firstly, a new stability criterion has been derived which extends the model previously developed by Duffour
and Woodhouse [7,8]. This accounts for all linear routes to instability within the framework of Duffour’s
single-point contact model. Secondly, this study has examined highly idealised models of friction-coupled
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systems in order to address fundamental questions of modelling details and causes of high sensitivity.
Predicting the effect of parameter changes of real systems is difficult as the characteristic polynomials are an
intricate function of these parameters: reduced-order models allow a more thorough analysis to be carried out
which provides clearer insight into this relationship. Therefore this study focussed on the behaviour of systems
with very few modes for which the effects of including a range of physical elements in the model were
considered.

Even with an extremely simple model that includes just a single natural mode of vibration of one of the
subsystems, a rich variety of possible behaviours exist and several independent modelling assumptions can
lead to the prediction of instability. It has been shown that the inclusion of contact stiffness, non-proportional
damping, or a velocity-dependent coefficient of friction can each lead to instability and/or extreme sensitivity
to parameter variations under particular conditions. Consequently all of these are very likely to play a
significant part in the overall system stability. Conversely if any of these factors are neglected in a model there
is a danger that predictions will poorly approximate real systems. Significantly, high sensitivity can occur at
the boundary of stability and when small amplitude modes are included in the model that might normally be
considered insignificant. High sensitivity can either be due to a bifurcation point or result from simple
singularities in the partial derivative of a root with respect to some parameter.

Not surprisingly the conditions derived for high sensitivity from studies that include physical effects
independently cannot in general be superimposed to provide an estimate of conditions for high sensitivity when
combining several effects. The conditions are also unlikely to correlate in a clear way to larger systems, but as the
polynomials increase in order it is clear that the number of possible conditions for high sensitivity multiply.

If non-proportional damping is included in a model in isolation then the order of the characteristic
polynomial is raised by one, such that the extra root must lie on the imaginary w-axis. However, considered
together with contact stiffness, non-proportional damping has a less significant effect as the order of the
characteristic polynomial remains unchanged. In this case the coefficients of the polynomial are only
perturbed slightly.

Analysing systems by discarding negative frequency poles significantly simplifies the characteristic
polynomial but has been found to be of limited value for sensitivity considerations of reduced-order models
as the approximate solution is often invalid when the sensitivity becomes large. Interestingly the method seems
to yield better approximations for more complicated systems (e.g. with three or more modes included).

Including a velocity-dependent coefficient of friction introduces a route to instability, which otherwise does
not exist in the single-mode case without contact stiffness or non-proportional damping. It also introduces a
highly sensitive region of the parameter space. Allowing a complex term to describe a more general state-
dependent coefficient of friction does not significantly affect sensitivity analyses and reduces the maximum
sensitivity.

This paper has revealed that even very simple systems behave in surprisingly complicated ways and that
predictions are strongly affected by physical effects that are often neglected. This highlights the importance of
carefully developing models, and points towards significant reasons for the sporadic nature of friction-induced
vibration. With a great deal of literature focussing on reduced-order models this study gives an important
warning for the interpretation of conclusions from such work. It has been clearly shown that sensitivity is highly
dependent upon the dynamics of the system. This suggests that it may be possible to design more robust friction-
coupled systems in future by including a sensitivity measure in the cost function for a design optimisation.
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