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Abstract

A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to

a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled

periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole

structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite

periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic

systems. In each case, total responses are found by considering just one periodic element. An already-known method of

reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the

dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated

in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate.

Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories

validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but

to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A periodic structure (PS) is well known as comprising a number of identical structural components joined
together repetitively in identical ways to form the whole structure. Each repeated component constitutes a
‘periodic element’ which itself may be composed of sub-elements which can be identical or different from one
another. A general theory of free harmonic wave propagation in linear multi-coupled PSs was first published
by the author in the early 1970s [1–3] and has been widely used since then. More recently others have
incorporated it into particular finite element studies of both free and forced high-frequency vibration along
rails and other structural waveguides. This paper draws together, extends and explains some of the methods
used in these particular forced vibration studies and presents a general theory of the forced vibration of one-
dimensional (1D) PSs. It therefore constitutes a sequel to the author’s early paper.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

D dynamic stiffness matrix of a periodic
element

DLL, DLR, DRR, DLi, etc. sub-matrices of D
DNel

dynamic stiffness of a line of Nel periodic
elements

Em diagonal matrix of all em’s
+Em, �Em diagonal matrix of the em’s for positive-

or negative-going waves
F column vector of all coupling forces

acting on a periodic element
Fext vector of external forces applied at a

junction
F0ext vector of externally applied forces at

junction 0
FL, FR coupling force vectors on the left- or

right-hand ends of an element
Fi vector of forces acting at the internal

coordinates of the element
FLext(gen) column vector of the generalised forces

on the sub-modes generated by the
externally applied forces

FLgen, FRgen generalised coupling forces acting on
the left- and right-hand ends of an
element in the reduced analysis

+FL(LHend),
+FL(RHend) forces at the left- or

right-hand end due to a positive-
going wave reflected from a left-hand
end

�FL(LHend),
�FL(RHend) forces at the left- or right-

hand end due to a negative-going wave
reflected from a right-hand end

FLsub,j vector of generalised coupling forces of
wave j of the reduced system

J total number of participating waves in
the original system

Jred total number of participating waves in a
reduced analysis

nc number of coupling coordinates between
an adjacent pair of periodic elements

ncw number of complex waves contributing
to the reduced analysis

ni number of internal coordinates within a
periodic element

nnew complex propagation constant of a wave
found from the reduced analysis

nred number of sub-modes used in the re-
duced analysis

nw number of complex waves used in the
reduced analysis

NFR, NFL number of periodic elements between
the excitation point and the right- or left-
hand end of the finite system

Nk number of a selected element within a
finite array of periodic elements

Nst number of finite elements in each stack
q column vector of initial set of all initial

coordinates of a periodic element
qi column vector of the internal displace-

ment coordinates of the element
qL, qR column vectors of displacement coordi-

nates on the left- and right-hand ends of
an element

qL,j displacement coordinate vector at junc-
tion j of the periodic array

�qL,j total displacement vector of all negative-
going waves at junction j of a left-hand
semi-infinite system

+qR,j displacement vector due to all positive-
going waves at junction j of a right-hand
semi-infinite system

qL0
; qR0

column vectors of displacements at the
left- and right-hand ends of an internally
loaded element

qLsub, qRsub column vectors of all the sub-mode
generalised complex displacements at the
left- and right-hand ends of an element

+qL(LHend),
+qR(RHend) displacement vectors at

the extreme left- and right-hand ends of a
finite system due to all positive-going
waves from the left-hand end

�qL(LHend),
�qR(RHend) displacement vectors at

the extreme left- and right-hand ends of
a finite system due to all negative-going
waves from the right-hand end

a receptance matrix of a periodic element
0a complete receptance matrix of the intern-

ally loaded periodic element
aNel

overall receptance matrix relating the q’s
and F’s at the two ends of a finite system
of Nel periodic elements

aNsemi receptance matrix relating the displace-
ments qR at junction N to the forces
applied at the left-hand end of a semi-
infinite system

m complex propagation constant
hj normalised eigenvector of coupling co-

ordinates qL for wave j

hnew,j column matrix of the qLsub contributions
to new wave j in the reduced analysis

H matrix of all the fj’s
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HLred, HRred, Hred real parts of the reduced
original H matrix

Hnew matrix of all ynew,j’s
Hfree, Ufree sub-matrices of H and U correspond-

ing to the free displacements and external
forces at the loading location

Hpres,Upres sub-matrices of H and U correspond-
ing to the prescribed displacements and
external forces at the loading location

/j normalised eigenvector of the coupling
forces corresponding to wave j

U matrix of all the fj’s
/new,j coupling force vector corresponding to

ynew,j
Unew matrix of all the fnew,j’s

Upres sub-matrix of U corresponding to the
prescribed forces at the loading location

cj complex magnitude of wave yj

cnew, j complex magnitude of new wave ynew,j
W column vector of all cj’s in original

system
Wnew column vector of all cnew,j’s in the

reduced analysis
+Wnew complex magnitudes of the nred positive-

going waves of the reduced set
+Winf

�Winf vectors of wave magnitudes to the
right or left of the single exciting force on
an infinite periodic system

+Wrefl,
�Wrefl vector of positive- or negative-
going reflected wave magnitudes
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The general theory is concerned with the free harmonic wave motion which can propagate in the whole
system, rather than with motion expressed in terms of free normal modes. At any frequency a number of
distinctly different waves can exist, some of which propagate with no attenuation if the structure is undamped,
while others decay as they travel. The total number of such waves which can exist is twice the number of
coupling coordinates linking the adjacent pairs of periodic elements. Each wave is characterised by a unique
complex propagation constant, its real part being the ‘attenuation constant’ or ‘decay index’ quantifying the
exponential decay (or growth) rate of the decaying (or growing) wave as it traverses a single element. Its
imaginary part has been called the ‘phase constant’ and represents the phase difference between the motions of
the wave at the two ends of an element. If the structure is undamped, the propagation constants may be purely
imaginary and correspond to waves which propagate energy, unlike the evanescent decaying waves. They are
not necessarily (nor often) purely spatially sinusoidal but actually consist of wave groups which have both
positive- and negative-going sinusoidal components of different wave speed. This feature is particularly
significant if the structure is excited by distributed non-uniform pressure fluctuations.

In general, external harmonic forces acting on the structure excite all the possible free waves, and the total
generated structural motion can be expressed as the sum of their contributions. The forced vibration theory of
this paper presents a matrix method by which this total contribution can be determined when point harmonic
forces act on the structure. It starts from the free-wave propagation theory which yields the characteristic wave
displacements and their propagation constants. These are the eigenvectors and eigenvalues of an equation
derived from the dynamic stiffness matrix of a single periodic element. (An alternative method utilises the
transfer matrix rather than the dynamic stiffness matrix.) From this, one finds the complex magnitude of each
wave excited in the structure by an arbitrary set of external forces at a single periodic junction. The sum of
their contributions yields the total response at the point of excitation. The known propagation constants for
each contributing wave are then used to find the response at any other point in the whole structure. General
equations are first derived for semi-infinite systems excited at one end. This particular system is seen as the key
to handling both doubly infinite and finite periodic systems excited at any periodic junction or within a
periodic element.

Different ways have been used in the past to determine the waves, their propagation constants and the
forced responses but they lack the generality of the method presented here. Early work concentrated on the
free and forced vibrations of periodic beam and plate configurations [4,5] and utilised closed-form solutions of
the Euler–Bernoulli or sandwich-beam flexural wave equations. Excitations by single-point, multi-point
harmonic forces or distributed harmonic and random pressure fields were considered. With the early
computational facilities the calculations were often very tedious so approximate methods were developed to
deal with beam and plate responses to distributed pressure field excitation. A Rayleigh–Ritz approach was first
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used, pairs or series of complex approximate modes being combined to represent the flexural motion [6,7]. The
so-called ‘space-harmonic method’ [7,8] was very convenient for studying responses to random pressure field
excitation. A later method for point-excited uniform periodic beams and stiffened plates [9,10] made use of the
closed-form response function for an infinite, uninterrupted continuous structure under a single-point load.

The finite element method (FEM) has been used since 1974 in the study of periodic beams, regularly
stiffened plates and stiffened cylindrical shells [11–14]. In Refs. [11,12], the basic periodic element was
subdivided into standard FEs, with the individual element displacements being expressed in terms of real
polynomial functions. In Refs. [13,14] the hierarchical FEM was used, the displacements of the whole periodic
element being expressed in terms of real orthogonal polynomial functions. In all of these studies (and in many
others) FEM was being used as a tool in PS analysis, allowing increasingly complicated periodic structural
problems to be handled.

Latterly, the reverse process has taken place with PS theory being used to assist in FE calculations [15–23].
This has been required in studies of high-frequency wave propagation and sound radiation from 1D uniform
rails, bars and thin-walled stiffeners, all on periodic supports. At low frequencies, exact closed-form methods
are adequate, with the motion of each periodic element being represented by the exact solution of the
appropriate (approximate) wave equation. However, when the rail or stiffener has a complicated cross section
and the frequency is high, these equations are no longer appropriate as the motion can involve coupled
flexural, torsional and longitudinal wave motion, together with that of cross-sectional distortions. Such waves
are best analysed by FEM with numerous small elements, but if the standard computational methods are used,
enormous matrices and computer times are required due to the sheer number of elements in the lengths of rail
which have to be considered.

The forced vibration theory of this paper is readily applied as a remedy to this problem by reducing it to the
analysis of a single ‘slice’ of elements across the rail section. Extending the author’s previous free vibration
theory [1] in a systematic way, it is based on the following concepts. A system of harmonic forces acting at one
position on the PS generates free waves which travel outwards from the source in both directions. The wave
amplitudes can be related to the applied force vector through the wave eigenvectors and propagation
constants. If the PS extends indefinitely in both directions from these forces, only the outward-going waves are
generated and these combine to produce the total motion. When the structure is finite, they are reflected back
from the ultimate boundaries and the whole set of outgoing and reflected waves combine in proportions which
satisfy all the boundary conditions of the structure. Viewed like this, the response calculation involves a wave

motion study, rather than one of normal modes. It can yield the harmonic structural response both at the
forcing point and at any other point remote from the source.

This paper shows how this can be accomplished by a series of matrix operations and should be regarded as a
sequel to the author’s free-wave theory of 1973 [1]. it applies fundamentally to general 1D PSs which are not
necessarily being analysed by FEMs. However, by drawing together and expanding on concepts already used
by other authors, it does lay the foundation for combining PS theory with the FE analysis of forced wave
motion in uniform bars, beams and structural sections. Its use is illustrated and the detailed theory validated in
some FE computations of forced in-plane vibrations of infinite and finite flat plates.

Studies of wave propagation in transport vehicle rails have already used the combined periodic-structure/
finite-element analysis, usually with an emphasis on the actual rail dynamics. This paper focuses principally on
the basic forced vibration theory, developing it in a systematic and coherent manner and carefully linking it
with the former free-wave theory.

2. The matrix theory of forced harmonic vibration of multi-coupled periodic structures

2.1. The general approach

Fig. 1a illustrates several multi-coupled periodic elements joined together end-to-end. Let Nel denote the
number of periodic elements in the whole length of the structure. Each element is connected to its neighbour
on either side through nc coupling coordinates and forces. The nature of these coordinates depends on the
deflection forms allowed within the elements, different forms having been used by different investigators over
the years. The analysis of this paper applies to any of these.
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Fig. 1. (a) Diagram illustrating several multi-coupled periodic elements joined together end-to-end. (b) A single periodic element and the

coupling coordinates and forces at its ends.
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The whole object of this forced vibration theory is to determine the dynamic stiffness and receptance
matrices relating the displacements at one location in the whole PS to the externally applied forces at another
location. These locations may be separated by many elements, and this can lead to very long calculations when
traditional methods are used. The methods of PS analysis reduce the calculation dramatically because these
matrices can be found by analysing just one periodic element. It starts from the dynamic stiffness matrix of the
single periodic element, but it is not the purpose of this paper to discuss ways in which this matrix can be
derived.

The first stage of the theory is to reduce the size of the element dynamic stiffness matrix to the minimum
required and then to find all the propagation constants of the wave motions which can occur in the whole PS.
The displacement eigenvectors corresponding to each of these must be found (i.e. the characteristic complex
modes of displacement of a single element) and their force eigenvectors (i.e. the forces acting on that element
to produce these displacements). The basic free-wave theory of Mead [1] is used for this but the data it yields
needs to be assembled in appropriate matrix forms for the forced vibration analysis. Further matrices are
required which relate the displacements and forces of a particular wave at one location to those of that wave at
another location. This is a very simple relationship for just one wave but a single matrix equation is required to
express it when all the possible waves are simultaneously present.

Since data from the free-wave theory is essential to the forced wave theory, it is considered in some detail
before being used in the later sections. First of all, these establish matrix equations for the response anywhere
in a semi-infinite periodic system excited by an arbitrary set of harmonic forces acting at its finite end. These
equations are then used to deal with a ‘doubly’ infinite system with externally applied forces acting at a single
junction between two elements. Considered next are forces which act actually within a single element, and this
is followed by an analysis of the finite system with forces acting anywhere within it.
2.2. The dynamic stiffness of the periodic element

The deflections of a single periodic element are represented (as in Ref. [1]) by the column vector of
generalised coordinates q ¼ bqL qi qRc

T. qL are the nc coupling coordinates which link the element to its
left-hand neighbour; qR are the coupling coordinates linking it to the right (see Fig. 1b). qi are ni interior
coordinates which are not indicated on the figure. Corresponding to q is the vector of generalised forces
F ¼ (FL Fi FR)

T.
q and F are related through the element dynamic stiffness matrix D such that F ¼ Dq. In expanded

partitioned form (as in Ref. [1]) this is

FL

Fi

FR

8><
>:

9>=
>; ¼

DLL DLi DLR

DiL Dii DiR

DRL DRi DRR

2
64

3
75

qL

qi

qR

8><
>:

9>=
>; (1)
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When a free-wave propagates through the whole system, no external forces act on the periodic elements
apart from the coupling forces. This motion is therefore governed by Eq. (1) without all the terms and sub-
matrices associated with Fi and qi so the relevant equation for the free-wave motion has the simpler minimum
form

FL

FR

( )
¼

DLL DLR

DRL DRR

" #
qL

qR

( )
(2)

The complete matrix equation Eq. (1) is only used in this paper when the system response to external
force(s) acting within a single periodic element is considered. When they only act at the junction of two
elements, the simpler form of Eq. (2) is sufficient.

2.3. The relationship between the propagation constants and the element dynamic stiffness matrix

Consider an arbitrary reference element and its nodal displacements and forces as in Fig. 1b. Denote the
displacement coordinates on its left-hand and right-hand sides by the column matrices qL and qR, respectively,
and the forces acting at these coordinates by FL and FR. The corresponding coordinate and force vectors are

q ¼
qL

qR

( )
and F ¼

FL

FR

( )
(3a,b)

Consider the wave which propagates through the whole system with propagation constant m. Making use of
the Floquet relationships between the displacements and forces at the ends of the element (as in Ref. [1]), one
derives the well-known quadratic eigenvalue equation for em in the form

½DRL þ ½DLL þDRR�e
m þDLR e2m�qL ¼ 0 (4)

In the process one finds the following important relationship between qL and FL:

FL ¼ ½DLL þDRR em�qL (5)

Eq. (4) yields 2nc different eigenvalues in reciprocal pairs, so the corresponding values of m occur in positive
and negative pairs. The equation can be reduced to the linear eigenvalue equation in em

DRL DRR

0 I

� �
� em

DRL DRR

0 I

� �� �
qL

qR

( )
¼

0

0

� �
(6)

in which I is the identity matrix. Thompson [19] showed that this equation can be further reduced when the
exterior coordinates of the periodic element fall into the Class A and Class B categories of Ref. [3]. This is
always true for periodic elements which are length-wise symmetrical.

2.4. Displacements and forces at different points in a periodic system

A general free harmonic motion in the array of Nel elements consists of all the waves thus determined.
Associated with the jth eigenvalue mj is a particular eigenvector of qL which, in a suitably normalised form, will
be denoted by hj. Corresponding to this is the normalised force vector /j related to hj through Eq. (5) by

/j ¼ ½DLL �DLRemj�hj (7)

Let the generalised ‘wave’ coordinate of wave vector hj at the left-hand side of the element be cj. The
corresponding actual displacements and forces along this side due to this one wave are hjcj and /jcj,
respectively. The total displacement and force vectors on the left-hand side of the element due to all J waves in
the total motion are

qL ¼
XJ

j¼1

hjcj ; FL ¼
XJ

j¼1

/jcj (8a,b)
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For the most accurate calculations J must be taken to be 2nc, every possible positive and negative
participating wave being included. If it is known in advance that only a few identifiable waves contribute
significantly to the total response, these series may be truncated to include only those waves.

Along the left-hand side of the next element in the system to the right, the amplitude of each of these terms is
multiplied by emj . Continuity and equilibrium at the junction of elements 1 and 2 require the displacements and
forces along the right-hand side of element 1 to be given by

qR;1 ¼ qL;2 ¼
XJ

j¼1

emj hjcj and FR;1 ¼ �FL;2 ¼
XJ

j¼1

emj /jcj (9a,b)

Note the negative sign in front of FL,2. It now follows that the displacements and forces along the right-hand
side of element Nk in the whole periodic array are given by

qR;Nk
¼
XJ

j¼1

eNkmj hjcj and FR;Nk
¼
XJ

j¼1

eNkmj /jcj (10a,b)

All of these summations (Eqs. (9a,b) and (10a,b)) can be expressed in the following matrix forms:

qL;1 ¼
XJ

j¼1

hjcj ¼

y1;1 y2;1
y1;2 y2;2

� � �
yJ;1

yJ;2

..

. . .
. ..

.

y1;j y2;j � � � yJ ;j

2
666664

3
777775

c1

c2

..

.

cJ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ HW (11)

FL;1 ¼
XJ

j¼1

/jcj ¼

f1;1 f2;1

f1;2 f2;2
� � �

fJ;1

fJ;2

..

. . .
. ..

.

f1;J f2;J � � � fJ ;J

2
6666664

3
7777775

c1

c2

..

.

cJ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ ½U�fWg (12)

qR;Nk
¼ �

XJ

j¼1

hje
Nkmjcj ¼

y1;1 y2;1
y1;2 y2;2

� � �
yJ ;1

yJ ;2

..

. . .
. ..

.

y1;j y2;j � � � yJ;j

2
666664

3
777775

eNkm1 0

0 eNkmz
� � �

0

0

..

. . .
. ..

.

0 0 � � � eNkmJ

2
666664

3
777775

c1

c2

..

.

cJ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ HENkmW (13)

FR;Nk
¼ �

XJ

j¼1

/je
Nkmjcj ¼ �

f1;1 f2;1

f1;2 f2;2
� � �

fJ;1

fJ;2

..

. . .
. ..

.

f1;j f2;j � � � fJ ;j

2
6666664

3
7777775

eNkm1 0

0 eNkmz
� � �

0

0

..

. . .
. ..

.

0 0 � � � eNkmJ

2
666664

3
777775

c1

c2

..

.

cJ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ �HENkmW

(14)

where

ENkm ¼

eNkm1 0

0 eNkm1
� � �

0

0

..

. . .
. ..

.

0 0 � � � eNkmJ

2
666664

3
777775 (15)
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In these, H and U are matrices of the displacement vectors and corresponding force vectors, respectively,
both of order nc� 2nc. W is a column matrix of the 2nc values of cj. These matrix equations are fundamental to
the calculation of forced responses of both infinite and finite arrays. Notice, however, that if the two series of
Eqs. (10a,b) are truncated to include only those Jred waves which make significant response contributions, the
orders of the H and U matrices become Jred� 2nc and that of Em becomes Jred� Jred. Use of these features can
make enormous savings in subsequent computation times.
3. The response of periodic systems to applied harmonic forces

3.1. The semi-infinite system excited at the finite end

Consider the system extending indefinitely to the right and excited at the left-hand end of element 1
(junction 0) by a prescribed set of forces/moments FLext. In the first place, restrict the problem to that in which
all the displacements qL,0 are unspecified and no other displacements, externally applied forces or constraints
are specified elsewhere in the system. In the absence of any discontinuity or termination in the whole system to
the right of element 1, no reflected waves are reflected back to the source. The only admissible wave motions in
this system are positive-going, i.e. those nc waves whose m’s have negative real parts or negative purely
imaginary parts. The displacement(s) at any point in the system can be found when the c values of all of these
waves have been determined from the wave vectors h and / as found in the last section.

Now the externally applied force system at the left-hand end can be decomposed into a series of the force
vectors of all the induced nc waves. Each force vector in the series can only generate its own free wave, and no
other. To find the total motion in the given PS, it is necessary firstly to determine the c value for each of the
terms in the force vector series of Eq. (12), i.e. in FLext ¼ Uw. In general, of course, U is of order nc� 2nc but
when only the nc positive-going waves are excited (as in this example) this reduces to nc� nc and so is
invertible. Hence

þW ¼ þU�1FLext (16)

The + prefix has been inserted before W and U (and will also appear before other symbols) to associate
them with positive-going waves in the system extending to +N. From Eq. (13), the displacements at junctions
0 and Nk from the end are evidently

þqL;0 ¼
þHþW and þqL;Nk

¼ þHþENkmþW (17a,b)

The forces at junction Nk are

þFL;Nk
¼ �þUþENkmþW (18)

Substituting for +W into these from Eq. (16) one obtains

þqL;Nk
¼ þHþENkmþU�1FLext and

þFL;Nk
¼ �þUþENkmþU�1FLext (19a,b)

The 7 sign in both Eqs. (18) and (19b) indicate that the forces on the contiguous elements at a junction are
equal and opposite. The receptance matrices relating the applied forces at the left-hand end of the system to
the displacements at junction 0 and Nk to the right are now seen from Eq. (19a) to be

þasemi0 ¼
þHþU�1 and þasemiNk

¼ þHþENkmU�1 (20a,b)

If the semi-infinite system extends indefinitely to the left (i.e. to �N) it is analysed in exactly the same way.
The only participating waves are now those which propagate or decay away from the source in the negative
direction so the relevant W and U values are those associated with values of m having positive real parts or
positive purely imaginary parts. The external forces now act on the right-hand end of the first periodic element
and will be denoted by FRext and the displacements to be determined are those at the right-hand ends of the
elements. All the matrices and vectors for the left-hand system are related in a similar way to those of the right-
hand system. Identifying these by a negative prefix, the junction displacements, forces and receptances are
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found to be

�qR;0 ¼
�H�W and �qR;Nk

¼ �H�ENkm�W (21a,b)

�FR;N ¼ �
�U�ENkm�W (22)

�asemi0 ¼
�H�U�1 and �asemiNk

¼ �H�ENkm�U�1 (23a,b)

Now suppose the semi-infinite system is excited at its left-hand end by a prescribed set of external forces
acting at some (but not all) of the left-hand coordinate locations. The displacements at these locations may be
said to be ‘free’ or ‘unconstrained’, i.e. free to take up the values generated by the forces. At the remaining
locations the displacements are prescribed to be rigidly constrained or (perhaps) excited by inexorable motions
(displacements). The forces at the first set of locations are prescribed while at the other set the displacements
are prescribed. A simple example of this is a semi-infinite beam excited by an external harmonic moment at its
finite end where it is constrained by a simple support. At that end the beam is free to rotate under the action of
the moment but its transverse displacement is prevented inexorably by an unknown transverse force from the
support.

Clearly where the forces are prescribed, the displacements are free (unprescribed) and where the
displacements are prescribed the forces are free. The H and U matrices can be partitioned into sets
corresponding to these as follows:

H ¼
Hpres

Hfree

( )
and U ¼

Ufree

Upres

( )
(24a,b)

The order of Hpres is the same as that of Ufree and the order of Hfree is that of Upres These matrices are
related through Eq. (7) by

Ufree ¼ ½DLL þDLRE
m�Hpres and Upress ¼ ½DLL þDLRE

m�Hfree (25)

Now the prescribed coordinate displacements and forces at the finite end of this periodic system are related
to the generalised positive-going wave vector +W (which is of order nc) by

qLpres ¼ Hpres
þW and FLpres ¼ Upres

þW

In a single matrix equation, the whole set of nc prescribed quantities is

qLpres

FLpres

( )
¼

Hpres

Upres

( )
þW ¼ Xpres

þW (26)

This defines the matrix Xpres which is square and invertible, of order nc� nc, so
+W is given by

þW ¼ X�1pres

qLpres

FLpres

( )
(27)

This constitutes the set of nc equations required to find the nc terms in +W. The two sets of equations
required for all values of qL,0 and FLext at the left-hand end of the system are therefore

qL;0 ¼
Hpres

Hfree

( )
W ¼

Hpres

Hfree

( )
X�1pres

qLpres

FLpres

( )
(28)

and

FL ¼
Ufree

Upres

( )
W ¼

Ufree

Upres

( )
X�1pres

qLpres

FLpres

( )
(29)
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3.2. The doubly infinite system excited at a single junction

This system can be considered as two contiguous semi-infinite systems extending to infinity on either side of
the loaded junction. At the junction, all the connected coordinates of the two systems must be identical while
the total force from each system at each coordinate must be equal to the external force applied at that
coordinate. Some of the coordinate displacements may in fact be zero, but it may not be obvious a priori which
these will be although under some external loading conditions it is clear. The simplest example is the infinite
beam excited by a transverse force when symmetry of the transverse response demands that the rotational
displacement at the junction must vanish. In more complicated doubly infinite periodic systems, similar
deductions may be made if all the exciting forces are in one of the two classes, ‘‘Class A’’ or ‘‘Class B’’, as
defined in Ref. [3]. If they are all of Class A, then all the Class B displacements will be zero and vice versa. The
Class A forces and the Class B displacements are then the ‘prescribed’ forces and displacements, respectively,
as categorised in the last section. The Class A displacements and Class B forces are the ‘free’ ones. The doubly
infinite system response can then be found directly from Eqs. (28) and (29) except that the external forces in
those equations must be one half of the forces applied to the doubly infinite system, simply because the applied
forces are shared equally by the left-hand and right-hand semi-infinite systems. When the external forces are
all of Class A, the Class A displacements at equal distances from the loaded junction on either side are
identical, and the Class B displacements are equal and opposite.

When these conditions are not readily identifiable (and this will occur when the periodic element does not
possess x-wise symmetry) the doubly infinite system response can still be found from the general expressions in
the previous section by considering the two adjacent semi-infinite systems, as follows.

Firstly, find separate +H and �H matrices for the left- and right-hand systems. Find also the corresponding
+U and �U matrices, equate the displacements at the junctions of the left- and right-hand systems (junction 0)
and use Eqs. (17a), (20a)) to yield

þqL;0 ¼
þHþW ¼ �qR;0 ¼

�H�W (30)

So

þHþW� �H�W ¼ 0 (31)

Next equate the sum of the forces on the two systems at junction 0 to the externally applied forces at that
junction, FLext. Eqs. (18), (21) now lead to

þFL;0 þ
�FR;0 ¼

þUþW� �U�W ¼ FLext (32)

Finally combine Eqs. (31), (32) into the single equation for +W and �W

þH� �H
þU� �U

� � þW
�W

� �
¼

0

FLext

( )
(33)

so

þW
�W

� �
¼

þH� �H
þU� �U

� ��1 0

FLext

( )
(34)

From these values of +W and �W one finds the displacements and forces at any point within the whole
infinite system.

3.3. The finite system of Nel elements excited at its ends

All 2nc characteristic waves, positive- and negative-going, participate in the total motion so W is now of
order 2nc. The matrix equations for qL,0 and qR;Nel

, FL,0 and FR;Nel
for the system can be stacked to relate the
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whole set of end displacements and end forces to W. Hence

qL;0

qR;Nel

( )
¼

H

HEmNel

� �
W and

FL;0

FR;Nel

( )
¼

U

UEmNel

� �
W (35a,b)

in which the matrices H and U are of order nc� nc. The two matrices containing them in the above equation
are therefore square and invertible so together they yield

W ¼
H

HEmNel

� ��1 qL;1

qR;Nel

( )
and W

U

UEmNel

� ��1 FL;1

FR;Nel

( )
(36a,b)

Altogether these constitute 4nc equations for the 2nc terms within W. To start with, only those which express
the known boundary conditions of displacement and/or force at the two ends of the system (2nc of them) are
useable but are sufficient for the determination of W. Thereafter the remaining 2nc are used to find the
unknown displacements or forces at the ends.

Consider now the system which is excited by known forces at the left-hand and/or the right-hand end, but
whose end displacements are not otherwise constrained. FL,0 and FR;Nel

are therefore known (i.e. prescribed)
and will be identified by symbols already used in Section 3.1, FLext and FRext, qL,0 and qR;Nel

are all unknown
(i.e. free). Hence

W ¼
U

UEmNel

� ��1 FLext

FRext

( )
(37)

and

qL;0

qR;Nel

( )
¼

H

HEmNel

� �
W ¼

H

HEmNel

� �
U

�UEmNel

� ��1 FLext

FRext

( )
. (38)

The overall receptance matrix relating all the values of q and F at the two ends of the system of Nel elements
is therefore

a1;Nel
¼

H

HEmNel

� �
U

�UEmNel

� ��1
. (39)

Computational difficulties arise with this when the terms in EmNel with positive exponents are raised to large
enough powers of Nel to cause computer overflow. This must be circumvented by splitting W into its positive
and negative-going components, +W and �W and EmNel into the corresponding matrices EmNel and �EmNel . +W
represents the wave-coordinate values at the left-hand end of the system of the waves which propagate to the
right, while �W represents the wave coordinates at the right-hand end of the system and which propagate to
the left. The mNel’s of mNel’s for positive-going waves cannot cause overflow. The negative-going waves travel
backwards from the right-hand end so their m’s in �EmNel are multiplied by �Nel, so the terms of EmNel cannot
overflow either. If corresponding positive and negative waves are represented in +W and �W in the same order,
then �EmNel and þEmNel are identical.

The total motion at the two ends is now expressed by

qL;0 ¼
þHþWþ �H�EmNel�W and qR;Nel

¼ þHþEmNelþWþ �H�W (40a,b)

and the end displacements are given by the single equation

qL;0

qR;Nel

( )
¼

þH �H�EmNel

þHþEmNel �H

" #�1
þW
�W

� �
(41)

The associated force vectors at the ends are expressed in similar form by

FLext

FRext

( )
¼

þU �U�EmNel

�þUþEmNel �U

" #�1
þW
�W

� �
(42a)
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so that

þW
�W

� �
¼

þU �U�EmNel

�þUþEmNel ��U

" #�1
FextL

FextR

( )
. (42b)

and

qL;0

qR;Nel

( )
¼

þH �H�EmNel

þHþEmNel �H

" #
þU �U�EmNel

�þUþEmNel ��U

" #�1
FextL

FextR

( )
(43)

The receptance matrix across the whole Nel array is

aNel
¼

þH �H�EmNel

þHþEmNel �H

" #
þU �U�EmNel

�þUþEmNel ��U

" #�1
. (44)

3.4. The system with one end fully constrained

This can easily be analysed by using Eq. (40b) and the top line of Eq. (42a). If the right-hand end is fixed, set
qR;Nel

to zero and equate FextL for the left-hand end to the externally applied forces. This leads to

½þHþEmNel �H�
þW
�W

� �
¼ 0 and FLext ¼ ½

þU �U�EmNel �

þW
�W

� �

which combine into the simple equation

þH�EmNel �H
þU �U�EmNel

" #
þW
�W

� �
¼

0

FextL

( )
. (45)

The generalised coordinate values at the right-hand end of element Nm are given by

qLNJ
¼ ½þH �H�

�EmNm 0

0 �EmðNel�NmÞ

" #
þW
�W

� �
(46)

and the forces acting at the same coordinate are

qLNJ
¼ ½þU �U�

�EmNm 0

0 �EmðNel�NmÞ

" #
þW
�W

� �
(47)

3.5. The finite system excited at a single intermediate junction

Let NFL and NFR, respectively, be the number of elements between the excited junction and the left- and
right-hand ends of the system so the total number of elements in the whole system is Nel ¼ NFL+NFR. There
are 2nc characteristic waves of unknown amplitude to the left of the excited junction and another set of 2nc

waves of different amplitude to its right. Although there are 4nc unknowns altogether, the computational
problem may be solved by a method which uses some of the previous equations but involves only 2nc

unknowns at a time. The general approach has often been used for solving uniform-beam vibration problems
by utilising known flexural wave motions [9,10].

The total motion in the finite periodic system can be regarded as the superposition of the motion generated
by the given exciting forces when they act on a doubly infinite system (the ‘infinite system motion’) together
with the motions reflected back into the system from the finite ends. Denote the magnitude of ‘infinite system
motion’ to the right and left of the exciting forces by the vectors +Winf,

+Winf, respectively. They can be
evaluated by the methods of Section 3.2. The corresponding displacements and forces at the right-hand end of
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the finite system due to +Winf are (from Eqs. (17) and (18))

qR;NFR
¼ þHþEmNFRþWinf and FR;NFR

¼ þUþEmNFRþWinf (48a,b)

At the left-hand end of the system, due to �Winf they are (from Eqs. (21b) and (22))

�qL;NFL
¼ �H�EmNFL�Winf and

�FR;NFL
¼ �U�EmNFL�Winf (49a,b)

Now the motion reflected from the left-hand end is the same as that excited by a set of forces acting at the
left-hand end of a semi-infinite system (see Section 4.1) and will be represented here by the vector +Wrefl of
positive-going waves. Due to this, the corresponding displacements and forces at the left-hand end are

þqLðLHendÞ ¼
þHþWrefl and

þFLðLHendÞ ¼
þUþWrefl (50a,b)

and at the right-hand end of the finite system they are

þqRðRHendÞ ¼
þH�EmNelþWrefl and

þFRðRHendÞ ¼
þU�EmNelþWrefl (51a,b)

The motion reflected from the right-hand end is the same as that excited by a set of forces acting at the right-
hand end of the other semi-infinite system (see Section 4.1). Represented by the vector �Wrefl of negative-going
reflected waves, it generates displacements and forces at the right-hand end given by

�qRðRHendÞ ¼
�H�Wrefl and

�FRðRHendÞ ¼ �
�U�Wrefl (52a,b)

At the left-hand end they are

�qRðLHendÞ ¼
�H�EmNel�Wrefl and

�FRðLHendÞ ¼ �
�U�EmNel�Wrefl (53a,b)

The total motion due to the two sets of reflected waves and the infinite system motion must satisfy the
boundary conditions at the two ends of the finite system.

Consider the special case when both ends of the whole system are free and unconstrained. The total force
vector at each end must vanish so

�FLðLHendÞ þ
þFLðLHendÞ þ

�FinfðLHendÞ ¼ 0 at the left-hand end (54a)

and

�FRðRHendÞ þ
þFRðRHendÞ þ

þFinfðRHendÞ ¼ 0 at the right hand end (54b)

In terms of the W, U, H and E matrices, these are

�U�EmNel�Wrefl þ
þUþWrefl þ

�U�EmNFL�Winf ¼ 0, (55a)

and

�U�Wrefl þ
þUþEmNelþWrefl þ

þUþEmNFRþWinf ¼ 0. (55b)

Combined into a single equation, these become

�U�EmNel þU
�U þUþEmNel

" #
�W
þW

� �
¼

�U�EmNFL 0

0 þUþEmNFR

" #
�Winf

þWinf

( )
(56a)

Hence

�Wrefl

þWrefl

( )
¼

�U�EmNFL þU
�U þUþEmNel

" #�1
�U�EmNFL 0

0 þUþEmNFR

" #
�Winf

þWinf

( )
. (56b)

These constitute 2nc equations for the nc unknown values of �Wrefl and the nc unknown values +Wrefl from
which are found the displacements and forces at any coordinate location in the whole system.
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3.6. The doubly infinite system excited by a force acting within an element

The forced element is connected to a semi-infinite system on each of its sides, so the analysis of the whole
system involves the linking of just three dynamic subsystems, end-to-end, as indicated in Fig. 2. Now the
dynamic stiffnesses and receptances of the two semi-infinite subsystems have been determined in Section 3.1
from the reduced dynamic stiffness matrix of Eq. (2). When the loaded element is linked with these two
subsystems, it must be represented analytically by the complete matrix of Eq. (1) which includes the interior
coordinate contributions. The so-called ‘external force’ which is acting on the whole system is now one of the
interior forces acting on the loaded element.

The analysis is conducted more concisely by using the receptance matrices of the three systems rather than
with their dynamic stiffness matrices. Let the loaded element be numbered ‘‘0’’. Use this suffix on its
displacements and forces which are then related by

qL0

qi0

qR0

8><
>:

9>=
>; ¼ 0a

FL0

Fi0

FR0

8><
>:

9>=
>; (57)

0a is the receptance matrix of the loaded element and can be partitioned as

0a ¼ D�1 ¼

0aLL
0aLi

0aLR

0aiL
0aii

0aiR

0aRL
0aRi

0aRR

2
64

3
75 (58)

The displacement and force vectors at the two ends of the loaded element which link it with the adjacent
semi-infinite systems are

qR0
¼ 0aRL

0aRi
0aRR

j k FL0

Fi0

FR0

8><
>:

9>=
>; and qL0

¼ 0aLL
0aLi

0aLR

j k FL0

Fi0

FR0

8><
>:

9>=
>; (59a,b)

Continuity of displacement requires that qL0
be equal to the displacement vector�qR;1 at the finite end of the

left-hand semi-infinite system which is now excited by the force vector �FLext. Likewise, qR0
must be equal to

the displacement vector þqL;1 at the finite end of the right-hand semi-infinite system which is excited by �FRext.
(Negative and positive prefixes are assigned to these q vectors as before to show they pertain to the left-hand
or right-hand semi-infinite systems, respectively.) Use of Eqs. (19a), (20a) and (21a), (23a) for the right-hand
and left-hand semi-infinite systems, respectively, now leads to

qR0
¼ þqL;1 ¼ �a0semiFext and qL0

¼ �qR;1 ¼ �a0semiFLext. (60a,b)

Substituted into Eq. (59), these yield (after some rearrangement)

FL0

FR0

( )
¼ �

0aLL þ
�a0semi

0aLR

0aRL
0aRR þ

�a0semi

" #
0aLi

0aRi

( )
(61)

from which the displacements due to Fi0 at any point in the whole system can be determined.
LH
semi-infinite

system

RH
semi-infinite

system

Loaded
element

Fi

Fig. 2. Three dynamic sub-systems linked end-to-end and forced within the middle system.
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3.7. Periodic systems whose elements are themselves periodic

These constitute bi-periodic systems, an example of which is a long periodically supported rail with a
complicated section, the periodic element of which is itself modelled as a periodic system of Nel elements. The
propagation constants of the whole periodic system are found (as before) from the eigenvalues of Eq. (6), but
the dynamic stiffness matrix required is now that which relates the end forces and displacements of the finite
set of Nel elements, i.e. the inverse of the receptance matrix of Eq. (44). Denote this by DNel

, so

DNel
¼

þU �U�EmNel

�þUþEmNel ��U

" #
þH �H�EmNel

þHþEmNel �H

" #�1
(62)

The eigenvalues obtained from the new eigenvalue equation can now be used to find the whole system
motion generated by a set of harmonic forces at a single span-wise location. Use should be made of the
appropriate analyses of Sections 3.1 to 3.6, in which the new eigenvalues and eigenvectors are incorporated.

4. Forced response calculations with a reduced set of characteristic waves

4.1. Free-wave propagation in the reduced system

Hundreds of coupling coordinates exist between periodic elements in some finite-element calculations.
Twice as many characteristic waves participate (at least to some degree) in any forced motion of the system
and this can lead to excessive computation times. Usually, at any given frequency only a few of the
characteristic waves contribute appreciably to the total response. If these waves can be identified in a
preliminary investigation, subsequent calculations can be undertaken which involve only those waves and
much less time is expended. It will now be shown formally how the preceding forced vibration theory can be
modified to accomplish this. It is based on observations made initially by Gry [20] who developed his own
theory which is fundamentally (though not obviously) on similar lines. Brown and Byrne [23] have also used
this approach.

Suppose ncw waves have been identified as the main contributors to the response over a limited frequency
range. In general, their eigenvectors (as determined from Eq. (6)) are complex, the real and imaginary parts of
which describe a different mode of displacement at a periodic junction. These different modes will be referred
to as ‘sub-modes’ and the reduced system will be analysed in terms of them. Each will be treated as
independent and essentially real, leading to 2ncw sub-modes in all. Experience, however, has shown that fewer
may be used for the following reasons:
(a)
 An evanescent wave may have a purely real mode and can then be represented by just one sub-wave.

(b)
 A good approximation to such an evanescent wave may be possible by linearly combining the real

and imaginary parts of an associated propagating wave. (This is valid in the case of low-frequency
flexural motion.) It is unnecessary (and can even be undesirable) to include that evanescent sub-mode
separately at all.
(c)
 A pair of waves which have complex-conjugate propagation constants have positive and negative
complex-conjugate wave modes. Their real parts are essentially identical as also are their imaginary parts.
Only the one real part and the one imaginary part need be included, i.e. just two real sub-modes to
represent a pair of complex modes.
In consequence, the total number of wave modes required to analyse the reduced system will usually be less
than 2ncw. Denote the actual number of sub-modes used by nred, the value of which is the order of the reduced
matrices to be generated.

The magnitude of the jth sub-mode at the left-hand end of an element will be denoted by the single
generalised coordinate qLsubj

, the column vector qLsub representing the whole set of them. qRsub is the
corresponding vector for the right-hand end of the element. These qsub’s combine in the reduced system to
form a new set of characteristic waves which approximate those of the original system and have propagation
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constants which should also closely approximate those of the original system. They are the new characteristic
modes to be used in the forced response calculations for the reduced system.

Now the general relationship between qLsub,qRsub and qL, qR has the form

qL

qR

( )
¼ HredL; HredRb c

qLsub

qRsub

( )
(63a)

HredL and HredR are reduced real forms of the original complex H matrix of Eq. (11). Their nred columns are
the sub-modes of the ncw selected original characteristic waves, each column consisting of nc normalised qL

coordinates. The normalised sub-modes for the right- and left-hand ends of the element are identical, so
HredL ¼ HredR and can both be denoted simply by Hred. This leaves Eq. (63a) in the simpler form

qL

qR

( )
¼ Hred; Hredb c

qLsub

qRsub

( )
(63b)

One of Gry’s observations [20] was that the calculated modes yj of low-frequency waves did not vary
significantly over a useful (but limited) frequency range. He therefore assumed that the same values of Hred

calculated at a single frequency within that range could be used as a basis for calculating good approximate
response values from a reduced set of waves over that range. Both he and Brown and Byrne [23] confirmed the
validity of this from calculations on a railway rail. The same assumption will be therefore be made in this
section. A new and reduced-order dynamic stiffness matrix will be derived for the periodic element,
corresponding to the reduced set of wave coordinates. Hred is taken to be the same for all frequencies within
the acceptable restricted range, so does not have to be recalculated for each frequency.

Eq. (63b) is now used to transform Eq. (2) (which relates the actual coupling coordinates to the coupling
forces) into a relationship between the new sub-wave coordinates and their generalised forces. The
transformation yields

Hred; Hredb c
T

DLL DLR

DRL DRR

" #
Hred; Hredb c

qLsub

qRsub

( )
¼ Hred; Hredb c

T
FL

FR

( )
¼

FLgen

FRgen

( )
(64)

FLgen and FRgen (as defined by this equation) are the generalised coupling forces acting on the left- and right-
hand ends of an element. The dynamic stiffness matrix appropriate to the reduced set is therefore

Dred ¼ Hred; Hredb c
T

DLL DLR

DRL DRR

" #
Hred; Hredb c (65)

which is of order 2nred� 2nred and must now be used as in Section 2.3 to find a new set of propagation
constants mnew for the required frequency range. The values so obtained are only approximations to the
original set and pertain to a new set of approximate characteristic waves, each of which is a unique
combination of the sub-modes of the selected waves. Each combination is dominated by a different member,
which explains Gry’s observations [20] (a) that the wave modes of the original and reduced sets were very
similar and (b) that over a limited frequency range his calculated mnew values were very close to the accurate m
values for the original complete wave set. This latter feature justifies the use of the reduced wave set theory
over the limited frequency range. Whenever the reduced wave theory is used, its range of validity should be
tested by the closeness of the agreement.

To find the new values of mnew, first expand Eq. (65) and express it in the form

Dred ¼
HT

redDLLHred HT
redDLRHred

HT
redDRLHred HT

redDRRHred

" #
¼

DredLL DredLR

DredRL DredRR

" #
(66)

so the whole equation relating qLred, qRred, FLgen and FRgen becomes

DredLL DredLR

DredRL DredRR

" #
qLred

qRred

( )
¼

FLgen

FRgen

( )
(67)
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The quadratic eigenvalue equation for emnew is now found from this as in Section 2.2. In the same form as
Eq. (4) it is

½DredRL þ ½DredLL þDredRR�e
mnew þDLRrede2mnew �qLred ¼ 0 (68)

Its eigenvectors form a new matrix Hnew of order nred� 2nred, half of which pertain to positive-going waves
and half to negative-going waves. Its jth column hnew,j contains the contributions of the qLred’s to the jth new
approximate characteristic wave, normalised in some convenient way.

Denote by cnew,j the (scalar) complex magnitude of the new wave j at junction 0 when the system is
harmonically forced, and the whole set of cnew,j values by the column vector Wnew. The contributions of the
new wave j to qLsub are then simply

qLsub;j ¼ Hnew;j cnew;j (69)

Next, denote by FLsub,j the generalised coupling forces between the periodic elements associated with the jth
new wave. It is related to qLsub,j through a new matrix, Unew, in the same way as H and U are related for
the original system in Eq. (7) (see Sections 2.3 and 2.4). Column j of Unew is therefore related to column j of
Hnew by

Unew;j ¼ ½DredLL þDredLRemnew;j �Hnew;j (70)

The generalised coupling forces corresponding to new wave j are FLsub;j ¼ Unew;jcnew;j and the whole set of
them is

FLsub ¼ UnewWnew (71)

4.2. Forced wave propagation in the reduced system

As in Section 3.1 consider first the semi-infinite periodic system loaded at its left-hand end by an arbitrary
set of external forces FLext. These generate the generalised external forces FLext(gen) on the sub-wave modes of
the reduced system as given in Eq. (64) by

FLextðgenÞ ¼ HT
redFLext (72)

which generate a new set of 2nred characteristic waves. (There are 2nred since there are pairs of positive- and
negative-going waves.) Denote by +Wnew the magnitudes of the nred positive-going waves of this set. It is given
as in Eq. (16) by

þWnew ¼
þU�1newFLextðgenÞ (73)

The positive prefixes on +Unew and +Wnew imply the inclusion of terms only from the positive-going waves.
Combining Eqs. (69), (72) and (73) one finds the whole set of corresponding sub-mode coordinates to be

qLsub ¼
þHnew

þU�1newHT
redFLext. (74)

Eq. (63b) gives the corresponding qL coordinates of the reduced system as qL ¼ HredqLsub. Combining this
with Eqs. (72)–(74) yields

qL ¼ Hred
þHnew

þU�1newHT
redFLext. (75)

Obviously, when analysing a semi-infinite system in the positive domain which is excited at its end, one
should only include the positive-going waves in the selected reduced set. If the system is finite their negative-
going counterparts must also be included (as in Section 3.3), so altogether there are 2nred characteristic waves.
Now the total number of boundary conditions to be satisfied at the two ends of the whole system is 2nc but
since 2nredo2nc, this satisfaction is clearly impossible. Another arbitrary selection process must therefore be
involved, in addition to the process of selecting the waves in the first place. This involves a decision about
which boundary conditions should be satisfied and requires both common sense and a clear understanding of
the relative importance of the different boundary conditions in the particular system being considered. Neither
Gry [20] nor Brown and Byrne [23] explicitly addressed this problem in their study of forced response levels in
infinite (not finite) periodic systems. Features such as the following should be taken into account.
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If the boundary conditions at the two ends of the finite periodic system are the same (e.g. both ends are
solidly locked or both are quite free, or both have the same combination of prescribed and free conditions) it
would clearly be sensible to satisfy the boundary conditions at the same coordinate locations at each end. If
one end is locked and the other end is free, then different locations may be considered at the two ends. It is
difficult to generalise on this matter and better to consider each real problem as it comes. It is conceivable that
computations could be carried out by satisfying just one boundary condition at one end of the system and at
(nred�1) locations at the other, but this would need to be justified in the case being considered. Otherwise the
results could be of dubious significance.

The form in which Eqs. (72)–(75) have been presented assumes that all the external forces at the left-hand
end of the system are prescribed and all the left-hand-end displacements are free. If the boundary conditions at
the forced end are mixed (some prescribed forces and some prescribed displacements) the same method must
be adopted as in Section 3.1.

5. Validation of the theory: an application to a finite element model of a thin flat plate

5.1. The method and the periodic model

The above algebraic formulations can be validated by using them to calculate responses for a simple
periodic system for which exact or near-exact solutions can also be found. If the results from both methods
agree, the formulations are validated. The simplest feasible multi-coupled system for this purpose is a FE
model of a uniform thin flat and parallel plate. Divided length-wise into identical (i.e. periodic) slices, each of
which is subdivided identically into a single stack of simple rectangular plate elements, it constitutes a multi-
coupled PS (see Fig. 3). Each slice will be referred to as ‘the stack’.

Finite and infinite lengths of this plate will be considered as it undergoes pure in-plane motion u(x,y), v(x,y)
in the length-wise (x) and width-wise (y) directions, respectively. At low to moderate frequencies, the motions
are those of in-plane bending, in-plane longitudinal or in-plane shear wave motion. Simple ‘engineering’
theories, of course, yield near-exact responses for these motions at low frequencies, so the formulations of this
paper are validated if low-frequency responses from the periodic FE plate model agree with them. The simple
theories to be used are the Euler–Bernoulli theory of bending (ETB) and the Timoshenko theory of bending
(‘Timo’).

Denote the length of each stack by dL and the number of FEs in each stack by Nst. (These elements need not
be identical (see Fig. 3a).). The simple rectangular thin plate FE has four corner nodes and two degrees of
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Fig. 3. (a) A periodic element consisting of a stack of rectangular finite elements, showing the coupling coordinates and forces.

(b) The coordinate numbering system for a stack of six rectangular finite plate elements.
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freedom per node, and all its displacements vary linearly across the element. The total number of coupling
coordinates between adjacent stacks is nc ¼ 2(Nst+1) so a finite plate of length L has L/dL ¼ Nel stacks and a
total of 2(Nst+1)(Nel+1) degrees of freedom. For the greatest accuracy of computation, dL should be very
small (but not too small) so Nst should be large. This can lead to enormous numbers of displacement freedoms
and vast matrices in a conventional FE analysis. Application of the PS theory embodying the Floquet
principle reduces the effective number of freedoms of an infinite system to nc, and of a finite system to 2nc. The
combination of PS and FE analysis in this way will be referred to as the ‘PS–FE’ method.

The actual model studied for this investigation had only six identical elements in each stack but 210 stacks
per unit length. The unit length was taken as the plate width and the length/height ratio of each FE was very
small at 6� 2�10. The overall length of the finite model considered was only 10 plate widths. Many more than
six elements per stack would have been used had the author had access to commercial software such as
ANSYSr but his available software made six the largest practicable number.

5.2. Computed results and comparisons with simple theories

Computer programmes were written within a software package which used precisely the same expressions as
derived in this paper, using them directly for the response calculations. Now the accuracy of the forced
vibration calculations depends fundamentally on the accuracy of the computed free-wave propagation
constants it uses. This was therefore investigated by comparing the computed values of the wavenumbers for
the model (i.e. the calculated propagation constants� the number NE of periodic elements per unit length)
with exact values derived from a solution of the exact partial differential equations of the in-plane motion of a
flat plate. Details of this are not presented. Suffice it to say that very good agreement was found for the low-
order propagating and attenuating waves over the non-dimensional frequency range O ¼ 0–2, and satisfactory
agreement was found over the range O ¼ 2–4. (O ¼ ob/cL and o ¼ radian frequency, b ¼ plate width (taken
to be unity), cL ¼ longitudinal wave speed in the plate material. O ¼ 2 is a very high frequency as far as in-
plane plate bending is concerned. At this frequency the half-wavelength of ETB in-plane flexural waves is only
1.2 plate widths.

One feature of the computed PS–FE wavenumbers does differ significantly from those of the exact solution,
but not so significantly as far as the current investigations are concerned. The PS–FE theory predicts the
correct finite number of propagating wavenumbers at low to medium frequencies, but the number of
attenuating (evanescent) waves it predicts is finite. The exact theory, however, predicts an infinite number of
attenuating waves at all frequencies. The low-order propagating wavenumbers from the PS–FE theory agreed
closely with those of the exact theory, but this was true only for the lowest order evanescent wave. Agreement
between the propagation constants of the higher-order evanescent waves was not good and, in fact,
degenerated with increasing wave order. However, the detrimental effect of this on PS–FE forced vibration
calculations would only be significant when local distortions close to the exciting forces were being examined.
This paper is not of concerned with these.

Response calculations have been carried out for the FE plate model with the boundary conditions analysed
above in Sections 3.1 to 4.2. Equal y-wise forces of non-dimensional magnitude 0.5 were considered at a single
x-wise location on the plate model at coordinates 2 and 14 (see Fig. 3), the two forces together constituting a
unit force. They acted at the ends of the semi-infinite and finite plates, and at a ‘central’ x-wise junction on a
doubly infinite plate. In each case, the corresponding non-dimensional y-wise displacements (v) of the plate
were computed for the same locations as the forces. As these displacements are equal at coordinates 2 and 14,
either one of them can be called the direct receptance of the plate to the total unit transverse force applied at
that x-wise location.

Fig. 4 shows the variation with O of the direct receptance of the semi-infinite FE plate model as given by
Eq. (20a), and compares it with the receptances predicted by the ETB and Timo theories of bending.
Timoshenko’s recommended shear factor of 0.833 was used. The convergence of all three curves at frequencies
below O ¼ 1 validates the theory (and algebra) of Section 3.1. (It is shown much more clearly at low
frequencies when the curves are plotted with a logarithmic frequency scale.) Their divergence at higher
frequencies simply demonstrates the well-known inadequacy of ETB and Timoshenko at higher frequencies.
The agreement between the PS–FE and Timoshenko results from O ¼ 0 to 2 and the progressive disagreement
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Fig. 5. The direct in-plane receptance of the doubly infinite thin plate subjected at its centre to two equal transverse in-plane forces of 0.5:

(——) values from the PS-FE method and (——) Timoshenko values, shear factor ¼ 1.
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Fig. 4. The variation with frequency of the direct in-plane receptance of a semi-infinite thin plate subjected at its end to two equal

transverse in-plane forces of 0.5: (——) values from the PS–FE method; (—— ——) values from the Euler–Bernoulli theory of bending

(ETB) and (– – – –) values from the Timoshenko theory of bending (Timo).
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with ETB demonstrates the already well-known superiority of Timo over ETB. It gives further confidence in
the forced vibration theory of this paper.

Similar conclusions can be drawn from the calculated direct receptances shown in Fig. 5 for the doubly
infinite plate (see Section 3.2) computed by the method of prescribed forces and displacements described
in Section 3.1. The agreement between these and the Timoshenko results is validation of the details of
Section 3.2.

Shown in Fig. 6 are the direct receptances for a ‘free–free’ plate (i.e. free at each end) as derived in
Section 3.3 and given by Eq. (39). The plate is loaded at just one end, and the PS–FE results are compared
with two Timoshenko curves, one having been computed with a shear factor of 0.833 and the other with a
shear factor of 1.0. The curve for the higher shear factor has the slightly higher frequencies (as expected) but it
remains to be explained why the pairs of Timo peaks for this particular plate always straddle the PS–FE peaks.
It does nothing to suggest that the theory of Section 3.3 is invalid. Rather, its validity is demonstrated by the
convergence of all the curves at the lowest frequencies.

Receptances found from Eq. (46) for the finite plate loaded at a free end and fully fixed at the other (a fixed-
free plate or short thin cantilever beam) are shown in Fig. 7. A much narrower frequency range has been
considered here, simply because a wider range contains so many resonances that the figure becomes almost
unintelligible. By demonstrating good agreement between the two sets of receptances, the smaller range is
quite sufficient for the current validation purpose. All the resonance peaks for the undamped plate model
would approach much higher values had smaller frequency increments been used in the calculations. No
significance should therefore be given to the differences between the peak values of the two sets.
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(——) values from the PS–FE method and (– – –) Timoshenko values, shear factor ¼ 0.833.

Fig. 8. The effect of reducing the number of participating modes on the direct in-plane receptance of the semi-infinite thin plate of Fig. 4,

as calculated by the PS–FE method: (——) all 14 complex characteristic waves included, (– – – –) two parts of one complex wave included

(ncw ¼ 1) and (———) two parts of each of three complex waves included (ncw ¼ 3).
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Fig. 6. The direct in-plane receptance of a finite free-free thin plate subjected at one end to two equal transverse in-plane forces of 0.5:
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Fig. 8 shows the effect on the computed receptances of reducing the number of wave coordinates in the
calculations in the manner described in Section 4.2. The figure compares the computed PS–FE receptance
curve of Fig. 4 for the semi-infinite plate (with all 14 positive-going waves being included) with values
determined firstly by including the two sub-waves from a single characteristic wave (see Section 4.1) and then
by including six sub-waves from just three characteristic waves. The two sub-wave modes were the separate
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real and imaginary parts of the single dominant complex wave-mode identified from the 14-wave response
calculation at O ¼ 0.0126. This was the lowest order propagating wave, equivalent to the fundamental in-
plane flexural wave in the plate. The lowest order evanescent wave was not included separately as it was
automatically regenerated from the two parts of the propagating wave as mentioned in Section 4.1. The six
sub-wave modes were the two parts of each of the three dominant waves identified at O ¼ 5.2. These were the
lowest order propagating wave and two distinctly different ‘complex-conjugate’ evanescent waves.

The results shown in Fig. 8 are sufficient to validate the underlying theory and algebraic details of Section 4.
The receptances from the two sub-wave approximation are very close to the 14-wave values over the
surprisingly wide low-frequency range O ¼ 0–1.6, but these two sub-waves are clearly inadequate above
O ¼ 1.8. The six sub-wave approximation is superior over the high-frequency range O ¼ 2–6, and is also good
over the low-frequency range O ¼ 0–1. Further detailed comparisons are unwarranted as six elements in a
stack are quite insufficient at the higher frequencies.
6. Conclusions

The former general theory of free-wave motion in multi-coupled PSs has provided the basis for a
systematically developed, expanded and successfully applied general theory of forced wave motion in 1D PSs.
Like the former theory it starts from the dynamic stiffness matrix of a single periodic element. The forced
motion of a semi-infinite periodic system excited by forces at its finite end is then analysed in terms of the well-
known characteristic waves of free motion. The forced motion of this particular system is fundamental to all
the subsequent theory and is used to analyse the responses of both doubly infinite and then finite periodic
systems. The computational process involved can be very long if the dynamic stiffness matrix of the periodic
element is very large, leading to many waves participating in the forced motion. Full details are given whereby
this matrix can be suitably transformed and reduced to allow only the most significant wave motions to be
considered, Computation times are thereby greatly reduced.

The theory and its details have been validated through calculations of the in-plane vibration response of a
uniform flat and parallel thin plate, modelled by a periodic array of FEs and excited by in-plane forces. Plates
of both infinite and finite length with various boundary conditions were considered. The excellent agreement
obtained between the computed low-frequency responses and those predicted by well-known approximate thin
beam theories was sufficient validation, despite only six simple thin plate elements being considered in the
periodic slices.

The combination of PS theory with FE analysis as presented is ideal for studying forced vibrations of long
uniform rails, bars and complicated structural sections, especially at high frequencies when cross-sectional
distortion is significant. Wavenumbers and forced responses can be computed by considering just one short
periodic length-wise slice of the bar subdivided into the simplest of elements. Computational accuracy can be
enhanced by making the slice extremely short, down to a point determined by frequency and computational
ill-conditioning. Computation times depend only on the number of elements in the single slice and not on the
total number in the whole system. The number within the slice determines the number of coupling coordinates
between adjacent slices and limits the number of independent free harmonic wave motions that can exist in the
model. This limit is most significant at high frequencies and leads to errors in computed responses which
increase with frequency.
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