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Abstract

The method of reverberation-ray matrix has been developed and successfully applied to analyze the wave propagation in
a multibranched framed structure or in a layered medium. However, the formulation is confined to the case of external
concentrated loads applied at the junctions. This paper aims to extend the formulation of reverberation-ray matrix
to cases of continuously distributed loads and point moving loads. To this end, a non-uniform bar subjected to these new
types of loads is considered for illustration. The difference lies largely in the exact solutions, which include the particular
parts due to the loads considered in this paper. The compatibility between displacements in the dual coordinates for a
single member is utilized to derive the phase relations. For several types of loadings, numerical results are given and
compared with the exact solutions or those obtained by other available method. Exact agreement is observed, thereby
validating the present approach. The commonly adopted method that transforms distributed load to equivalent nodal
forces is also discussed.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The method of reverberation-ray matrix (MRRM) has been developed by Pao et al. in a series of
publications [1-3] for analyzing planar truss structures subjected to dynamic loads from the viewpoint of wave
propagation. The method has been shown to be a potential alternative for dynamic structural analysis, which
can predict more accurate dynamic behavior of structures than all available methods [2-4]. The method has
also been extended to analyze transient wave propagation in layered media [5,6]. So far, all previous papers on
the MRRM [1-6] considered concentrated external loads only. The place where the load acts is a junction or
can be modeled artificially as a junction so that within each component (structural member or single layer),
there is no external load and only the homogeneous parts (complementary solutions) of the governing
equations are employed.

In the MRRM, the most unusual feature is to establish two local coordinates (named as dual local
coordinates) for each member, the origins being located at the two ends of the member, respectively. The
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traveling waves would be expressed exactly by complex eigenfunctions and two teams of unknown coefficients
called the local arriving and departing wave amplitudes, respectively, which would be determined by joint
conditions and compatibility conditions in each member. From the exact complementary solutions, the
reverberation-ray matrix is constructed in the MRRM, which is the product of the global scattering matrix
and the phase matrix. The global scattering matrix relates the global arriving wave vector a to the departing
wave vector d. The source vector due to the concentrated loads applied at the junctions (nodes, joints, or
interfaces) emerges in this relation. The phase matrix gives another relationship between a and d according to
the phase difference due to the dual local coordinates for each member, and is homogeneous in the case of
concentrated loads applied at junctions. For transient analysis, the Fourier or the Laplace transform is usually
adopted, and the analysis is first carried out in the transformed domain. The inverse transform should be
performed to obtain the time-varying response. The associated integration of specific integrand function,
which has many poles, is usually a great obstacle of accurate analysis. In the MRRM, it is supposed to use the
Neumann-series expansion technique to avoid the difficulty. Comparison with experimental results [1,2] and
other analytical methods [7] indicated that the MRRM is an alternative for dynamic analysis of engineering
structures.

Bar is a fundamental type of structure members. Many structures, such as tall buildings and high-rise towers
subjected to vertical earthquake motion could be modeled as a bar fixed to a moving base with constant or
variable mass and stiffness [8]. In Doyle’s monograph [9], a detailed discussion on longitudinal waves in
uniform bars is presented and exact solutions of some basic problems can be found. Dynamic response of
structures subjected to moving loads has been discussed in Fryba’s monograph [10]. Matsuda et al. [11]
analyzed the longitudinal impulsive response of non-uniform bars by using two different methods, i.e. the
modal analysis and the Laplace transformation.

In this paper, we extend the MRRM to analyze the response of a non-uniform bar subjected to continuously
distributed loads as well as point moving loads. The compatibility condition of displacements in dual local
coordinates is employed to derive the phase relations. This is different from the previous derivation, which is
based on the mechanism of wave propagation. We will show that, instead of an inhomogeneous scattering
relation appearing in previous studies [1-6], for the case of continuously distributed loads, the phase relation
include inhomogeneous terms. For a uniform fixed—free bar subjected to a harmonic uniform load, the
solution is shown to coincide with that obtained by a traditional exact method. It shall be noted that, the bar
model is very simple, but it serves as a good example to illustrate our idea of generalizing the current
formulation of MRRM to consider loads other than concentrated ones. The formulation for other types of
basic structures, such as shafts, Euler—Bernoulli beams, Timoshenko beams, beam—columns and thin-walled
structures is similar.

2. Mathematical formulations

First, let us consider the steady-state response of a thin non-uniform bar of length L as shown in Fig. 1(a).
The bar is subjected to an external harmonic continuously distributed force p(x,f) = p(x)e'”" with forcing
frequency w. The force is acting in the direction parallel to the axis of the bar so that the bar is
vibrating longitudinally. The mass density p, the cross-sectional area 4 and Young’s modulus E can vary
arbitrarily along the central line of the bar, i.e. they are all functions of x. It is usually not appropriate to deal
with the non-uniform bar directly because the inhomogeneity of the material/geometry makes it very
difficult to obtain the solution of the corresponding governing equation, except for some special
cases [12]. To overcome the difficulty, we divide equally or non-equally the bar into N sub-bars, each being
sufficiently short so that the material/geometric properties can be regarded as constant within sub-bars. Thus,
the original non-uniform bar is transformed into NV piece-wise uniform sub-bars that are connected one by one
as shown in Fig. 1(b).

The governing equation of motion for a uniform bar subject to the harmonic loading is

FuCx, 1) 10%u(x, 1)
ox2 T 2 or

— Po(x)e”, (1)



322 J.Q. Jiang, W.Q. Chen | Journal of Sound and Vibration 319 (2009) 320-334

. (g -

T
y

: xIJ
o 5 ! > SEREEE > -1 - -
0 1 2 3 2 J N-1 N X I X” J

L

T

-
Fig. 1. A non-uniform bar and the piece-wise uniform model.

where p, = p/EA, and ¢ = \/E/p is the longitudinal wave speed. The steady-state solution to this equation is
well-known

u(x,t) = [aeikx + be k¥ _ % /0 ' Do(s) sin[k(x — s)] ds] el
= [A cos(kx) + B sin(kx) — % xﬁo(s) sin[k(x — )] ds] e, 2)
0

where k = w/c, a and b are arbitrary complex constants, while 4 and B are arbitrary real constants. These
constants are to be determined by the boundary and continuity conditions.

2.1. Scattering matrix

In MRRM, dual local coordinate systems (with two superscripts) should be introduced. For the sub-bar 1/,
as shown in Fig. 1(c), one coordinate system denoted by x”/ originates from the joint I in the positive direction
of x, while another coordinate system, x’/, originates from the joint J in the negative direction of x. It is
obvious that K = k1, A = 4’7 and E” = E”, etc. At a certain point on the sub-bar, we have X = !
and p¥ (x") = —pjl(I" — x). Changing to the local coordinates so defined, we are able to rewrite the
solutions in the two adjacent sub-bars that meet at the joint J as

JI

s T JI T 1 X _ . i
uJI — |flJI{Hk Ty dJle kY X k_lj pél(s) sm[k”(x” o S)]dS‘| el(l)l’
0

. w1 A
K = [ QK | JIK ik " / P (s) sin[kK ('K — S)]dsl it 3)
0

where the term with unknown amplitude &’* represents a wave departing from J and traveling in the positive
direction of x’%; while that with a’ represents a wave arriving at J and traveling in the negative direction of
x’®. The continuity conditions at J demands

uJI + HJK — 0’ fJI :fJK at xJI — xJK — 0’ (4)

where f/ = E’T 4”'ou’! /ox’! is the internal axial force. These conditions lead to a set of equations for the
unknown amplitudes

o1, -1 -1,
Kk _gK | T g _gIK d, (5)



J.Q. Jiang, W.Q. Chen | Journal of Sound and Vibration 319 (2009) 320-334 323

where &’ = [¢7,d’*]" and a’ =[a”,a’X]" are local departing and arriving wave vectors, and
K% = E’®47%Ik’%. Eq. (5) can be rewritten as

/=82 yu=12,...,N—-1). (6)

The 2 x 2 matrix S’ is called the local scattering matrix at joint J, relating the incident waves to the
transmitted and reflected waves. At the two ends (0 and N), the scattering matrices S° and S” will no longer be
2 x 2 matrices, instead, both become matrices of single element. For example, for the bar fixed at the left end
and free at the right end, we can derive from the boundary conditions

d():SoaO’ SOZ—I,
dN — SNaN, SN — 1’ (7)
where d* = &', " = d""V, " = 4", and a" = "NV,

Now combining 2N equations in Egs. (6) and (7), we can obtain a system of equations for the approximate
piece-wisely uniform bar as follows:

d = Sa, (8)
where
d=[d, @), @",....@"Hla",
a=[a" @), @), .. ..@" ",
S = diag[s°,S!,8%,...,SV1 sM. )
The vector d is the global departing wave vector, represents waves departing from all joints (points 0, 1,
2,...) leftward and rightward, and the vector a is the global arriving wave vector, represents waves arriving at
all joints rightward and leftward. The 2N x 2N square matrix S is the global scattering matrix. It can be seen
that Eq. (8) is the same as that for the problem without external loads (including distributed and concentrated
loads) [1,2].

Notice that both d and a are unknown in Eq. (8), which consists of 2N equations. Since there are 4N
unknowns, supplementary equations are necessary.

2.2. Phase matrix and reverberation-ray matrix

We note that, for the same sub-bar, the two solutions in the dual local coordinates should predict the same
result. That is, the displacements u”/ and «’/ should be compatible to each other, i.e.
MIJ(XIJ,Z) — _uJI(lIJ —XIJ, l). (10)

Substituting Eq. (3) into Eq. (10) and employing the Euler formula, we obtain

a’ = _e—ik”l” d" + qu’ = e—ik”l” dv + qu, (11)
where
1 1 " 1T ¢y amiks I R 1T ik s
q’ = 2ik”/o Do (s)e ds, ¢ = _21—k”/0 Py () *ds. (12)

Introduce a new local vector, aJ, at the joint J, and a new global vector d for the departing waves as
~J =~ =0 =T =2 ~N-1.T =N
& =" av], d=[d, @) @)"....@ HLdT, (13)
where d = d"® and @" = d®¥~Y¥_ The global vectors d and d contain the same elements but are sequenced in
different orders. The two vectors thus can be related through a permutation matrix U as

d = Ud, (14)
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where

0 1
U = diag[U°,..., U, U0=[1 0}. (15)

The inversion of the permutation matrix is just itself.
Thus, Eq. (11) can be rewritten as
a=Pd+q, (16)
where the total phase shift matrix P (2N x 2N) is defined by
P= diag[POl, P12, o P(N_I)N], PIJ — diag[—e_ikIJZIJ, _e_ikljllj] (17)

and q is the source vector due to distributed load,

a=1[q".4"¢" . ...V, "I (18)

Thus, for the distributed load, the source effect is involved in the phase relations in Eq. (16), while for the
concentrated load (applied at the joints only), the source term appears in the scattering relations [1,2]. This is
the main difference in the formulations of MRRM between these two types of loadings.

Combining Egs. (8), (14), and (16), gives

I-Ry=s, (19)

where R = SPU is named as the reverberation-ray matrix [1,2], and s = Sq is the global source vector. After d
is obtained from Eq. (19), the total arriving wave vector is calculated according to

a=PUd+q=[PUI—R)"'S+1I]q or a=S"'d. (20)

Then substitution of a and d into the expressions for internal force and displacement yields the steady-state
response of the bar.

If there is no external force, we have s = 0. Thus, the frequency equation governing the free vibration of the
bar can be obtained by letting the coefficient determinant of Eq. (19) vanish, i.e.

det[I — R] = 0. (21
2.3. Case study of a uniform bar
Consider a homogenous bar fixed at x = 0 and free at x = L. Starting from the real form solution (with

respect to the variable x) presented in Eq. (2), we can easily determine the unknown constants from the
boundary conditions as follows:

1 L
A=0, B= m/o Do) cos[k(L — s)] ds. (22)
Thus, the complete solution is
1 . b [ . it
u(x) = m sin(kx) /0 Po(s)cos[k(L — s)]ds — % /0 Do(s) sin[k(x — s)]ds |e'“". (23)

If using MRRM, we have
S = diag[—1,1], U=U° P = diag[—e ¥, —e E,

1 L _ —iks
T Jo Po(s)e™* ds
9= —ikL . (24)

e _ .
—iJo Po(s)e ds
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Solving for the unknown amplitudes a and d from Eqgs. (19) and (20), we finally obtain the displacement as

‘ . 1 /X ) .
u(x) = u”' (x°) = {ame“"x + d%emkr — z / Po(s) sin[k(x — s)] ds} et
iot
= k cos(kL) os(kL)
This is exactly the same as that given by Eq. (23), thus verifying the derivation presented above. If free
vibration problem is considered, we can obtain from Eq. (21)
On _ 2n—Dn
c 21
which also agrees with the well-known result.
It seems rather complicated to apply MRRM to solve this simple problem. However, as has been shown by

Pao et al. [1-6], the superiority of this method will be very prominent when dealing with transient dynamic
problems, as will be illustrated later.

——————sin(kx) / Do(s)cos[k(L — s)]ds — — / Do(s) sin[k(x — s)] ds. (25)

ky = (n=1,2,3,...), (26)

2.4. Numerical results of a non-uniform bar

Consider a non-uniform bar fixed at x = 0 and free at x = L, with constant mass density p and Young’s
modulus E. The cross-sectional area varies in an exponential law along the axis, i.e. 4 = Age™ with o = 1/L
taken in the calculation. The bar is subjected to a uniformly distributed harmonic force p(x,r) = poe'®’ with
po = EAy/L. For the presentation, the quantities are normalized as

t=Ty u=UCEDL, f=FE)EA, o=/t 27)

where 7o = L/c and & = x/L.

It is noted that for this particular problem, exact solution could be derived because the governing equation
can be transformed into an ordinary differential equation with constant coefficients. The derivation is however
omitted here. For the use of MRRM based on the piece-wise uniform model, we divide equally the bar into 20
or 40 sub-bars in the calculation. The normalized axial displacement U and axial force F at x = 0 for @ = 0.3
are shown in Figs. 2 and 3, respectively.

As shown in Fig. 2, the displacement calculated by MRRM (20 sub-bars) satisfies the boundary condition at
the left end perfectly. Comparison of the normalized axial force is also made with the exact solution as shown
in Fig. 3. Excellent agreement can be observed. The comparison also indicates that, with the increasing
number of sub-bars, the results based on the piece-wise uniform model will approach the exact solution
gradually.
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Fig. 2. Normalized axial displacement U at x = 0.
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Fig. 3. Normalized axial force F at x = 0. — MRRM (20 sub-bars). x MRRM (40 sub-bars). ~ Exact.
3. Arbitrary transient response
3.1. General formulation

In the case of an arbitrary time-varying continuously distributed load p(x,f), we shall employ the following
Fourier transform:

1 o0 ) o0 .
o(0) = - / H)e do,  Glw) = / g(De du. (28)
2n —o00 —00
The Fourier transform of the load gives
o0
Plr,w) = / p(x e dr, (29)
—00

It becomes apparent that all derivations in Section 2 keep unaltered, except that the final results thereby
obtained are all in the transformed (frequency) domain. Thus, the Fourier inverse transform should be used to
obtain the results in the time domain as follows:

u(x, 1) _ L / 7i(x, w)e" do. (30)
27 ) _ o
Since the expression for % contains departing and arriving wave amplitudes determined from Egs. (19) and
(20), respectively, the integrand of Eq. (30) has an infinite number of poles, which correspond to the natural
frequencies predicted by Eq. (21). This makes it very difficult to obtain accurate numerical results if the
integration is carried out directly. To avoid the difficulty, Pao et al. [1,2] suggested to use the following
Neumann series:

when calculating the departing wave vector in the frequency domain. This technique removes the singularities
due to the poles in the integration (and hence greatly improve the numerical accuracy), and also embodies the
wave propagation procedure in each member of the structure. A detailed discussion on the Neumann-series
expansion and the selection of various parameters in the integration can be found in Pao et al. [1-3,7].

It is emphasized that, if the spectral element method [13], which is also based on the exact solutions is
employed, it is impossible to employ the Neumann series in Eq. (31) to remove the poles in the integrand.
Although small damping could be introduced artificially to avoid the singularities, its value largely depends on
the problem under consideration, and hence the experience of the researcher becomes crucial to obtaining
accurate results [13].
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3.2. Numerical results

Consider again a non-uniform bar with fixed—free boundaries, subjected to the following time-stepped
uniformly distributed force:

0, t>61y. (32)

EA/(10,000L), 0<1<6t.
px, 0 = {

The cross-sectional area varies according to A = Aoe™F, and the bar is divided into 20 sub-bars in the
calculation. The normalized axial force at £ = 0.25 and 0.5L are given in Fig. 4. It can be shown that after the
remove of the external load, the axial force still varies with the time since no damping has been included in the
analysis. Actually, the response will tend to be steady and can be viewed as the response of the bar due to an
appropriate initial disturbance.

The results calculated by MRRM are also compared with those by the commercial software ANSYS as
indicated in Fig. 5. It is shown that the two results coincide with each other very well. One of the advantages of
MRRM is that the total number of sub-bars required in the calculation could be much less than that normally
used in the conventional finite element method (FEM) to achieve the same numerical accuracy. In this
example, the non-uniform bar is approximated by 160 finite elements and the time step is taken to be
5x 107%s. Consequently, the numerical efficiency of the FEM is significantly lower than MRRM.
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Fig. 4. Normalized axial force F at (a) £ = 0.25, and (b) ¢ =0.5.
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Fig. 5. Comparison of normalized axial force F at (a) £ = 0.25, and (b) ¢ =0.5. — MRRM. -:-.-. ANSYS.

In order to illustrate the application of the present method, we further consider a linearly varying external
force as follows:

EA
2y, 0<1<61,

px,)=4¢ L (33)
0, t> 61y.

For the same non-uniform bar considered above, the axial strain at the mid-span is shown in Fig. 6, which
again agrees well with the result obtained by Ansys.

As the third example, we consider a fixed—fixed uniform bar loaded both by a distributed force
p(x,t) = 10EAx(L—x)/L* within 0<x<0.3L and a concentrated force f, = E4A at x = 0.8L. The periods of
duration of the two forces are assumed to be 8¢, and 10z, respectively. To solve this problem, we first divide
the bar into three segments (sub-bars 01, 12, and 23) as shown in Fig. 7(a). Since there is no distributive load
applied onto sub-bars 12 and 23, the particular solution in the expression of displacement vanishes. The
continuity conditions at joint 2, where the concentrated force f, is applied, should be revised as

23 auZI

Ou
EA@He =15:Aa)7 at x2 =x¥ =0. (34)
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Fig. 7. (a) Sketch of a fixed—fixed uniform bar. (b) Normalized axial force at & = 0.7.

The scattering relation such obtained contains a source vector and has the form of d = Sa+s;. The other
derivations and the form of Eq. (19) keeps unaltered except s = Sq +s;.

The normalized axial force F(&,1) = f/EAy at £ = 0.7 is calculated and shown in Fig. 7(b). For 0<t<0.1,
there is entirely no dynamic response at £ =0.7. At the instant of t = 0.1, the wave generated by the
concentrated external force f, arrives at that point, and a stepped response can be observed with the amplitude
being one half of the force f,. Later at T = 0.4, the wave excited by the distributed load also arrives, resulting in
an obvious change in the waveform as we can see from Fig. 7(b). Actually, from the change of the waveform,
the wave propagating along the rod and scattering at joints can be clearly identified. Thus, the present method
can give an accurate prediction of transient response of structures especially at the early time.
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3.3. Discussion on the method of equivalent nodal forces

In the FEM, the distributed forces are usually replaced by equivalent nodal forces by using the principle of
equilibrium of virtual work. For a one-dimensional bar element, this gives

F(0) !
{ FO) } = /0 NTp(x, 1) dt, (35)

where N = [1—x// x/I] is the shape function, and F(0) and F(/) are the equivalent nodal forces for an arbitrary
distributed load p(x, ?) applied over the element 0<x</. Under such an approximation, the problem with
distributive load is transformed to the one with concentrated forces only, and the traditional MRRM [1,2] can
be employed directly.

Now we consider a fixed—free uniform bar subject to a constant distributed load p(x, ) = EA/L (0<t<6ty).
The responses obtained based on the present formulations for distributed load and those by the traditional
MRRM using the concept of equivalent nodal forces are compared in Fig. 8. As we can see, the traditional
results get closer to the present ones with the increasing number of elements. The convergence of axial force is
worse than the displacement, and hence a much finer mesh is needed to obtain accurate transient force
response, which also means a reduction in the numerical efficiency.
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Fig. 8. (a) Normalized displacement at & = 0.5. (b) Normalized axial force at ¢ = 0.5. — distributed load (1 element). © Equivalent nodal
force (1 element). ---= Equivalent nodal force (10 elements). + Equivalent nodal force (30 elements).
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4. Case of a point moving load
4.1. A uniform rod subjected to a point moving load

First, we consider a uniform bar subject to a point moving load p(x,f) = psd(x—aot). In this case, by
applying the Fourier transform to the governing equation, we obtain

2
d-u(x, (}J) + kzﬁ(x, (U) — _p_ee—iwx/ao, (36)
dx? ap

where p, = ps/(EA). The solution to this equation can be written as

Uu(x, ) = ac"™ + de7* — e, 37)
where k| = w/ag and p; = p,/ [ao(k* — k%)]. Thus, in the two local coordinates (0-1 and 1-0) for the uniform
rod, we have

| Jex01 AN e 01
uOl — a01e+1k,x —|—d016 ikx —pe ik x

>

10 10 +ikx'0 10 —ikx10
+d’e

u’ =a + pre k=", (38)

where we have noticed the fact that in the 1-0 coordinate, the force moves from x'° =/ to x'° = 0 with the
positive direction of force also reversing. If the bar is fixed—fixed, we can obtain the scattering relation as

dOl —1 0 a()l D1
0GR ] oo o

For other boundary conditions, only the elements of the scattering matrix S change.
The displacements in the dual coordinates should be compatible to each other, i.e.

(", ) = =7 — X", w) (40)

! ikl 0 410 .
{alo } = l 0 —e‘ik’] {dm or a=PU"d, (41)

where U’ is the permutation matrix defined by Eq. (15). Combining Eq. (39) with Eq. (41) gives the final
equation that is similar to Eq. (19). It is interesting to note that for the case of a point moving load, the source
term comes from the scattering relation, differing from the case of a continuously distributed load.

from which we obtain

4.2. A non-uniform bar subjected to a point moving load

If the bar is non-uniform, then the piece-wise uniform bar model shown in Fig. 1(b) shall be employed. Since
the point load is moving along the whole non-uniform bar, at different moment, it will traverse different sub-
bars. For the sub-bar acted by the point moving load, the governing equation in the frequency domain is
shown in Eq. (36), while for the sub-bar in absence of the load, the governing equation is given by

d*u(x, w)
dx?
However, the different form of equation at different time will introduce significant inconvenience in the
calculation. We thus employ a unified treatment in the following. Assume that we divide the bar into N equal
sub-bars with the length of each sub-bar being L/N. In this case, the time for the load traversing each sub-bar
will be ¢, = L/(Nag). Hence, for the jth sub-bar, the governing equation in the time-domain under the local
coordinate x”/ can be written as (with superscripts IJ omitted)

Fu(x, 1) 1 0%u(x, 1)
ox2 T 2 o

+ K*u(x, w) = 0. (42)

—{H[t — (= Dts] = H(t = jt)}pdlx + (G — DL/N — aot], (43)
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where H(-) is the Heaviside step function. Eq. (43) then can be transformed into the frequency domain as

d*u(x, )

S+ Ka(x, o) = Fi(x, 0) + Fa(x, o), (44)

where F(x,») = —(p,/ag)e ¥/« +0=Dil and Fy(x, w) = (p,/ao)e V) (x — L/N). Note that F,(x,®) could
be viewed as an external concentrated load applied at the right end, say joint J, of the sub-bar /J. In this case,
we could solve Eq. (44) only with F(x,w) and change the continuity conditions at joint J to

@k =0, =7 pleerioin) a2 = K <o, (43)
do

The solution of Eq. (44) with F(x, ) only is
u(x, w) = aelkx + de ikx _plefi(u[x/aoJr(jfl)t,y]' (46)

The following derivation is then similar and omitted here for brevity.
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4.3. Numerical results

As a numerical example, consider a uniform rod with both ends fixed, subjected to a point moving load
p(x, 1) = EAyo(x — apt) with the speed @y = 20 m/s, and the length of the rod L = 1 m. The results are shown in
Fig. 6, and are compared with those obtained by the method of mode expansion (MME) [10]. In the later
method, the first 250 modes are used in the calculation. The two results are found to agree with each other very
well. In particular, with the increasing number (1) of modes, MME predicts better and better results when
compared with those obtained by MRRM, as shown in Figs. 9 and 10 clearly.

5. Conclusions

In this paper, the MRRM is extended to analyze the wave propagation in a bar subjected to continuously
distributed loads and point moving loads. The particular solutions of the wave equations are obtained and the
compatibility condition of displacements in dual local coordinates is employed to derive the phase relations.
Different from the cases of concentrated external loads applied at the joints only, the source term appears in
the phase relation for the distributed load. Several examples, either theoretical or numerical, are considered.
Good agreement with existing results is obtained, validating the application of MRRM for different types of
loadings and the correctness of the derived formulations. Regarding the method of equivalent nodal forces,
the numerical example shows that, a certain large number of artificially divided elements are required to
obtain an accurate dynamic response, especially for the axial force.

It is noted that the MRRM is based on continuum models, and hence there is no discretization error as
usually encountered in the FEM, boundary element method or finite difference method. Compared with other
continuum model-based methods, such as the spectral element method [9] and the method of transfer matrix
(MTM) [13], MRRM is numerically stable and more accurate in obtaining transient responses of structures. A
more detailed comparison of MRRM with MTM can be found in a recent review article by Pao et al. [7].

The present work makes a key step for the application of MRRM in a wider range of engineering problems.
Although we consider only the bar model in this paper, the formulations for other types of structures could be
deduced similarly. It is hoped that the method developed here could help analyzing the wave propagation in
some structures where axial waves and flexural waves may couple at junctions through the joint conditions
[1,2], and it is also especially hoped that the investigation would be useful to the NDT of engineering
structures based on their dynamic behavior.
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