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Abstract

Thermoelastic damping is recognized as a significant loss mechanism at room temperature in micro-scale circular plate

resonators. In this paper, the governing equations of coupled thermoelastic problems are established for axisymmetric out-

of-plane vibration of circular plate. Then the analytical expression for thermoelastic damping is obtained. The effects of

environmental temperature, plate dimensions and boundary conditions on the thermoelastic damping are studied.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Micro-scale mechanical resonators have high sensitivity as well as fast response [1–3] and are widely used as
sensors and modulators [4–6]. It is necessary to know how the parameters affect their physical and mechanical
behaviours. For resonators, it is desired to design and construct systems with loss of mechanical energy as little
as possible. Unfortunately, it has been consistently observed that there exists energy dissipation that increases
with size decreasing significantly—even when made from pure single-crystal materials [7]. Many researchers
have discussed different dissipation mechanisms in MEMS [8–14], such as doping-impurities losses, support-
related losses, thermoelastic damping and the Akhiezer effect [8], as well as the radiation of energy away from
the resonator into its surroundings. Mihailovich and MacDonald [9] measured the mechanical loss of various
micron-sized vacuum-operated single-crystal silicon resonators, to identify their dominant loss mechanism.
They examined three possible sources of mechanical loss, including doping-impurity losses, support-related
losses and surface-related losses. Zhang et al. [10] studied the effect of air damping on the frequency response
and the quality factor of a micro-machined beam resonator. Their results indicate that air damping generally
shifts the resonance frequency on the order of no more than 10�6 and degrades the quality factor, and that this
effect of air damping increases as the dimension of the beam decreases. Harrington et al. [11] measured
mechanical dissipation in micron-sized single-crystal gallium arsenide resonators that vibrate in torsion and
flexural modes. They found that the resonance frequency changes with temperature.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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It has been verified that thermoelastic damping is a significant loss mechanism near room temperature in
MEMS resonators [15]. Zener [16,17] predicted the existence of the thermoelastic damping process and then
quickly verified the basic aspects of the theory experimentally [18]. Further experiments consistent with
Zener’s theory were provided by Berry [19] for a-brass, in which case the damping was measured as a function
of frequency at room temperature. Roszhart [20] observed thermoelastic damping in single-crystal silicon
micro-resonators at room temperature. Yasumura et al. [21] also reported thermoelastic damping in silicon
nitride micro-resonators at room temperature, and their measured results are an order of magnitude smaller
than Roszhart’s. Houston et al. [22] studied the importance of thermoelastic damping for silicon-based
MEMS. Their results indicate that the internal friction arising from this mechanism is strong and persists
down to 50 nm scale structures. Lifshitz and Roukes [7] studied thermoelastic damping of a beam with
rectangular cross-sections, and found that after the Debye peaks, the thermoelastic attenuation will be
weakened as the size increases. Srikar and Senturia [23] studied thermoelastic damping in fine-grained
polysilicon flexural beam resonators, and found that single-crystal silicon, rather than fine-grained polysilicon,
is the material of choice for the fabrication of flexural beam resonators for applications in the gigahertz
frequency range.

This paper deals with thermoelastic damping effects on the out-of-plane vibration of circular plate
resonators. Circular plates are common elements in many sensors and resonators [24]. For example, Vig et al.
[25] proposed a micro-resonator-based high sensitivity sensor and sensor array for use as infrared (IR) sensors.
Micro-scale circular resonators may have thickness of 1–10 mm and diameter of 102–103 mm, with resonance
frequencies of the fundamental mode (thickness shear mode) in the range of 100–1000MHz. Although such
micro-resonators are not suitable for precision frequency control applications due to their extremely high
sensitivity to mass loading, they can be used for IR detection and imaging, and for chemical and biological
agent sensing. In particular, when quartz is used as the resonator material, the temperature dependence of the
resonance frequency can be utilized to make precision thermometers [26,27].

Such resonators can be considered as a thin circular plate. So the governing equation of the thermoelastic
coupling problem for this resonator can be derived through thin plate theory in cylindrical coordinates. This
paper will give a simple derivation of the approximate thermoelastic equations for a thin circular plate under
out-of-plane vibration and then solve these equations to arrive at an exact expression for thermoelastic
damping in circular plates.
2. Process of thermoelastic damping

An elastic wave dissipates energy due to intrinsic and extrinsic mechanisms. Some of the extrinsic
mechanisms are affected by changes of environment; for example, air damping can be minimized under
ultrahigh-vacuum conditions. The intrinsic dissipation mechanism can be regarded as phonon–phonon
interaction, namely the scattering of acoustic phonons with thermal phonons [7].

When an elastic solid is set in motion, it is taken out of equilibrium, having an excess of kinetic and
potential energy. The coupling of the strain field to a temperature field provides an energy dissipation
mechanism that allows the system to relax back to equilibrium. This process of energy dissipation, called
thermoelastic damping, is what we will discuss in this paper.

Zener [16,17] firstly developed the thermoelastic damping theory by studying the transverse vibration of
homogeneous and isotropic thin beam. Thermoelastic damping arises from thermal currents generated by
compression tension in elastic media. The bending of the reed causes dilations of opposite signs to exist on the
upper and lower halves. One side is compressed and heated, and the other side is stretched and cooled. Thus,
in the presence of finite thermal expansion, a transverse temperature gradient is produced. The temperature
gradient generates local heat currents, which cause increase of the entropy of the reed and lead to energy
dissipation. The temperature across the reed equalizes in a characteristic time tR, while the vibration frequency
of the reed is o. In the low-frequency range, i.e., tR5o�1, the vibrations are isothermal and a small amount of
energy is dissipated. On the other hand, for tRbo�1, adiabatic conditions prevail with low-energy dissipation
similar to the low-frequency range. While tR � o�1, stress and strain are out of phase and a maximum of
internal friction occurs. This is the so-called Debye peak.
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For a beam of thickness h, with a rectangular cross-section, its characteristic time is

tR ¼ ðh=pÞ
2w�1, (1)

where w ¼ k/rcv is the thermal diffusion coefficient, in which r, k and cv are the density, thermal conductivity
and specific heat at constant volume, respectively. The vibration frequency of a beam is

o ¼
q2h

L2

ffiffiffiffiffiffiffiffi
E

12r

s
, (2)

where E is Young’s modulus, L the beam length and the allowed values of q are determined by the supporting
conditions at the two ends of the beam.

In Zener’s theory [16,17], the classical Fourier thermal conduction theory is applied and there is no heat flow
perpendicular to the surfaces of the beam. Thus, the internal friction, Q�1 (Q is the quality factor defined by
Zener), is defined as follows:

Q�1 ¼
a2T TE

Cp

otR

1þ o2t2R
, (3)

where Cp is the specific heat at constant pressure, aT the coefficient of linear thermal expansion, T the
temperature of the reed and o and tR are defined in Eqs. (1) and (2).

Lifshitz and Roukes [7] gave another expression for the thermoelastic damping by

Q�1 ¼
a2T TE

Cp

6

x2
�

6

x3
sinh xþ sin x
cosh xþ cos x

� �
, (4)

in which x ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffi
o=2D

p
.

Wong et al. [28] considered thermoelastic damping of the in-plane vibration of thin silicon rings of rectangular
cross-section. Analysis of thermoelastic damping developed by Zener and by Lifshitz and Roukes was extended to
cover the in-plane flexural vibration of thin rings. The expression of Q�1 for the ring obtained by Wong et al. is the
same as that for a beam obtained by Zener and by Lifshitz and Roukes except that the characteristic length varies
according to the shape of the resonators. For a wide range of ring size relevant to MEMS resonators, the values of
Q-factor predicted by the two approaches agree to within �2% for low-order flexural modes.

This paper studies the thermoelastic damping effect on the vibration of circular plate. Section 3 gives the
derivation of the thermoelastic equations for a circular plate under out-of-plane flexural vibration. Section 4
solves these equations and arrives at an exact expression for thermoelastic damping in circular plate. In
Section 5, the validity of Zener’s theory on analyzing the thermoelastic damping in circular plate is verified,
and the effects of plate size, boundary conditions and environmental temperature on the thermoelastic
damping are analyzed for silicon plate.

3. Formulation of basic equations

This section will derive the governing equations for the thermoelastic coupling problem of circular plate
vibration. To simplify the derivation for thin circular plates, the following basic hypotheses, including the
Kirchhoff–Love plate theory, are employed in the analysis [29]:
(a)
 Normal stress szz can be neglected relative to the principal stresses, i.e., szz ¼ 0.

(b)
 The rectilinear element normal to the middle surface before deformation remains perpendicular to the

strained surface after deformation and their elongation can be neglected, i.e., erz ¼ eyz ¼ 0.

(c)
 For small deformation vibration, the deformation along the middle surface can be neglected, i.e., ezz ¼ 0.
3.1. Equation of transverse motion for a thin circular plate

Consider a thin circular plate with uniform thickness h and radius a, as is shown in Fig. 1(a). The cylindrical
coordinate system (r, y, z) is applied to study the vibration of the circular plate, with an origin located at the
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Fig. 1. (a) Schematic illustration of the circular plate and the coordinate system, (b) the first three mode shapes of a simply supported

circular plate along the r-direction.
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center of the plate. We put the neutral surface on the (r, y) coordinate plane, and the z-axis normal to the
neutral surface. The circular plate is made of silicon. In equilibrium, the plate is unstrained, unstressed and
keeps at environmental temperature T0 everywhere.

Circular plates are capable of both in-plane and out-of-plane vibrations, but only out-of-plane vibrations are
considered in this paper. We define u(r, y, z, t), v(r, y, z, t) and w(r, y, z, t) to be the displacement components
along the radial, circumferential and axial directions, respectively, and T(r, y, z, t) the temperature field.
According to the above hypotheses, the relationship between the displacements can be given by

uðr; y; z; tÞ ¼ �z
qwðr; y; tÞ

qr
,

vðr; y; z; tÞ ¼ �z
qwðr; y; tÞ

rqy
,

wðr; y; z; tÞ ¼ wðr; y; tÞ, (5)

where t is the time.
The strain components are given by

�r ¼
qu

qr
¼ �z

q2w
qr2

,

�y ¼
u

r
þ

qv

rqy
¼ �z

qw

rqr
þ

q2w

r2qy2

� �
,

gry ¼
qu

rqy
þ

qv

qr
�

v

r
¼ �2z

q
qr

qw

rqy

� �
. (6)

The cubical dilatation e is thus obtained as

e ¼ �r þ �y ¼ �zr2w. (7)

Stress components are given by the constitutive equation as

sr ¼
E

1� n2
½ð�r þ n�yÞ � ð1þ nÞaTW� ¼ �

E

1� n2
z
q2w
qr2
þ nz

qw

rqr
þ

q2w

r2qy2

� �
þ ð1þ nÞaTW

� �
,

sy ¼
E

1� n2
½ð�y þ n�rÞ � ð1þ nÞaTW� ¼ �

E

1� n2
z

qw

rqr
þ

q2w

r2qy2

� �
þ nz

q2w
qr2
þ ð1þ nÞaTW

� �
,

try ¼ G�ry ¼ �2Gz
q
qr

qw

rqy

� �
, (8)
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where G is the shear modulus and W ¼ T�T0 the temperature increment of the resonator as a function of
(r, y, z, t).

Thus, we can get the moments of flexure and torsion as follows:

Mr ¼

Z h=2

�h=2
srz dz ¼ �D

q2w
qr2
þ n

qw

rqr
þ

q2w

r2qy2

� �
þ ð1þ nÞaT MT

� �
,

My ¼

Z h=2

�h=2
syzdz ¼ �D

qw

rqr
þ

q2w

r2qy2

� �
þ n

q2w

qr2
þ ð1þ nÞaT MT

� �
,

Mry ¼

Z h=2

�h=2
tryzdz ¼ �Dð1� nÞ

q
qr

qw

rqy

� �
, (9)

where

MT ¼
12

h3

Z h=2

�h=2
Wzdz

is the thermal moment, and

D ¼
Eh3

12ð1� n2Þ
.

The equation of transverse motion for a circular plate is

q2Mr

qr2
þ

q
qr

qMry

rqy

� �
þ

q
rqy

qMry

qr

� �
þ

q
rqy

qMy

rqy

� �
� rh

q2w
qt2
¼ 0. (10)

Substituting Eq. (9) into Eq. (10) yields the differential equation of the lateral vibration of the plate

Dr2r2wþDð1þ nÞaTr
2MT þ rh

q2w
qt2
¼ 0, (11)

where r is the density of the plate and r2 the Laplace operator in the polar coordinate system. For
axisymmetric circular plate, the displacement and thermal moment are independent of y, so the Laplace
operator is

r2 ¼
q2

qr2
þ

1

r

q
qr

. (12)
3.2. Thermal conduction equation for circular plate

The thermal conduction equation containing the thermoelastic coupling term has the following form:

kr2Wþ k
q2W
qz2
¼ rcv

qW
qt
þ bT0

qe

qt
, (13)

where cv is the specific heat at constant volume, k the thermal conductivity and b ¼ EaT/(1�2n) the thermal
modulus, in which aT is the coefficient of thermal expansion and n the Poisson’s ratio.

Substituting Eq. (7) into Eq. (13) gives the thermal conduction equation for the plate

kr2Wþ k
q2W
qz2
¼ rcv

qW
qt
� bT0z

q
qt
ðr2wÞ. (14)

This paper only considers the axisymmetric problem for a circular plate. Noting that thermal gradients in
the plane of the cross-section along the plate thickness direction are much larger than gradients along the
radial direction, we can ignore the term r2W in the thermal conduction equation. In summary, we can get the
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governing equation of this problem as

Dr2r2wþDð1þ nÞaTr
2MT þ rh

q2w
qt2
¼ 0, (15)

k
q2W
qz2
¼ rcv

qW
qt
� bT0z

q
qt
ðr2wÞ. (16)

4. Thermoelastic damping in a circular plate

4.1. Solution of the thermoelastic equations

To calculate the effect of thermoelastic coupling on the vibrations of a circular plate, we solve the coupled
thermoelastic Eqs. (15) and (16) for the case of harmonic vibrations. We set

wðr; tÞ ¼ w0ðrÞe
iot; Wðr; z; tÞ ¼ W0ðr; zÞeiot, (17)

where o is the frequency and w0(r) the mode shape. We expect to find that in general the frequency o is
complex, the real part Re(o) giving the new eigenfrequencies of the plate in the presence of thermoelastic
coupling effect, and the imaginary part |Im(o)| giving the attenuation of the vibration.

Substituting Eq. (17) into Eqs. (15) and (16) yields the following equations:

Dr2r2w0 þDð1þ nÞaTr
2MT0 � rho2w0 ¼ 0, (18)

k
q2W0
qz2
¼ iorcvW0 � iobT0zr

2w0, (19)

where

MT0 ¼
12

h3

Z h=2

�h=2
W0zdz. (20)

The solution of Eq. (19) is

W0 �
bT0

rcv

zr2w0 ¼ A sinðmzÞ þ B cosðmzÞ, (21)

where

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
iorcv

k

r
¼ ð1� iÞ

ffiffiffiffiffiffiffiffiffiffi
orcv

2k

r
, (22)

where i is the square root of �1.
There is no flow of heat across the upper and lower surfaces of the plate so that qW0/qz ¼ 0 at z ¼7h/2.

Thus, the coefficients A and B are determined as

A ¼ �
bT0

rcv

1

m cosðmh=2Þ
r2w0,

B ¼ 0. (23)

The temperature profile W0(r, z) across the plate is then given by

W0ðr; zÞ ¼
bT0

rcv

r2w0 z�
sinðmzÞ

m cosðmh=2Þ

� �
. (24)

According to Eqs. (20) and (24), the expression of MT0 is obtained as

MT0 ¼ DMð1þ f ðoÞÞr2w0, (25)
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where

DM ¼
bT0

rcv

; f ðoÞ ¼
24

m3h3

mh

2
� tan

mh

2

� �� �
. (26)

Substitution of Eq. (25) into Eq. (18) gives

Dor
2r2w0 � rho2w0 ¼ 0, (27)

where

Do ¼ Dð1þ DDð1þ f ðoÞÞÞ, (28)

DD ¼ ð1þ nÞaTDM ¼
ð1þ nÞaTbT0

rcv

. (29)

For axisymmetric vibration of circular plate, the solution of Eq. (27) is

w0ðrÞ ¼ A0J0ðprÞ þ B0Y 0ðprÞ þ C0I0ðprÞ þD0K0ðprÞ, (30)

where p4 ¼ rho2=Do, and the coefficients A0 through D0 and the allowed values of p are determined by the
boundary conditions. Due to the limitation of w0(r) at the plate center (r ¼ 0), we get B0 ¼ D0 ¼ 0, that is

w0ðrÞ ¼ A0J0ðprÞ þ C0I0ðprÞ. (31)

In this paper, two kinds of boundary conditions are considered. On the one hand, boundary conditions
regarding movements in the case of a clamped plate have the form of

w0jr¼a ¼ 0;

dw0

dr

����
r¼a

¼ 0:

8><
>: (32)

Substitute expression of deflection, i.e., Eq. (31), into the boundary conditions, i.e., Eq. (32), we have

A0J0ðpaÞ þ C0I0ðpaÞ ¼ 0;

�A0pJ1ðpaÞ þ C0pI1ðpaÞ ¼ 0:

(
(33)

In order to get nontrivial solutions, the constants A0 and C0 must be nonzero. Therefore, we obtain the
following frequency equation:

J0ðpaÞ I0ðpaÞ

�J1ðpaÞ I1ðpaÞ

�����
����� ¼ 0. (34)

The allowed value of pa may be obtained through solving Eq. (34) as pa ¼
ffiffiffiffiffi
qn

p
, where qn ¼ {10.21, 39.78,

89.10, y}.
On the other hand, in the case of a simply supported plate, the boundary conditions become

w0jr¼a ¼ 0;

½r2w0 þ ð1þ nÞaT MT0�jr¼a ¼ 0:

(
(35)

According to Eq. (25), the second expression in Eq. (35) can be changed to

f½1þ ð1þ nÞaTDM ð1þ f ðoÞÞ�r2w0gjr¼a ¼ 0, (36)

namely,

r2w0jr¼a ¼ 0. (37)

So the boundary conditions for a simply supported plate has the following form:

w0jr¼a ¼ 0;

r2w0jr¼a ¼ 0:

(
(38)
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Substituting Eq. (31) into Eq. (38) yields the following frequency equation:

J0ðpaÞ I0ðpaÞ

J0ðpaÞ �I0ðpaÞ

�����
����� ¼ 0, (39)

whose solution is pa ¼
ffiffiffiffiffi
qn

p
, where qn ¼ {4.977, 29.76, 74.20, y}.

From Eqs. (31), (34) and (39), we can obtain the mode shape of the clamped and the simply supported plate,
respectively. To make the problem intuitionistic, in Fig. 1(b), we present the first three mode shapes of a
simply supported circular plate along the r-direction.

Now the vibration frequency of the circular plate considering thermoelastic coupling effect can be drawn
from the expression of p4 ¼ rho2=Do, namely,

o ¼ p2

ffiffiffiffiffiffiffi
Do

rh

s
¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DDð1þ f ðoÞÞ

p
, (40)

where o0 is the eigenfrequency when thermoelastic coupling effect is ignored with the expression of

o0 ¼
qn

a2

ffiffiffiffiffiffi
D

rh

s
. (41)

Noting that DD51 for silicon (DD ¼ 1.26� 10�4 for T0 ¼ 293K), we can replace f(o) in the square root by
f(o0) and expand Eq. (40) into a series up to first order. Then Eq. (40) becomes

o ¼ o0 1þ
DD

2
ð1þ f ðo0ÞÞ

� �
. (42)

By the convenient substitution

x ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffi
o0rcv

2k

r
, (43)

we can easily extract the real and imaginary parts, giving the vibration frequency of the plate together with the
corresponding attenuation coefficient [7],

ReðoÞ ¼ o0 1þ
DD

2
1�

6

x3
sinh x� sinx
cosh xþ cosx

� �� �
, (44)

ImðoÞ ¼ o0
DD

2

6

x3
sinh xþ sin x
cosh xþ cos x

�
6

x2

� �
. (45)

Thus, we arrive at an expression for thermoelastic damping in a circular plate, which is given by

Q�1 ¼ 2
ImðoÞ
ReðoÞ

����
���� ¼ DD

6

x2
�

6

x3
sinh xþ sin x
cosh xþ cos x

� �
. (46)

It can be seen that Eq. (46) has the similar form to Eq. (4).

4.2. Concise analysis based on Zener’s approach

It is shown in Eq. (6) that the radial strain in the plate is directly proportional to z, the axial distance from
the neutral plane. According to Zener’s approach, the quality tR is the relaxation time for the establishment of
temperature equilibrium across the thickness of beam. Effectively, the relaxation time tR has the same
meaning in the circular plate as in a thin beam [28]. Alternating temperature gradient exists between the upper
and lower surfaces of the plate during vibration. As a result, unidirectional heat flow and relaxation across the
thickness of the plate causes energy to be dissipated. Thus, it can be argued that thermoelastic damping in
plates undergoing out-of-plane flexural vibrations can be modeled using Zener’s approach as developed for
slender beam, Eqs. (1) and (3). On this basis, the Q�1-factor of a circular plate is given by Eq. (3) using
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a relaxation time based on the thickness of the plate, i.e.,

tR ¼
h

p

� �2 rcv

k
, (47)

and the natural frequency of the plate is given by Eq. (41).

5. Results and discussions

In this section, the relationship between Q�1, plate dimensions, boundary conditions and vibration modes
for silicon MEMS devices under different environmental temperatures are explored. According to the theory
outlined in Section 4, it is possible to predict thermoelastic damping for silicon plate as a function of radius a,
thickness h, and mode number n.

We use the literature values of the thermodynamic properties of silicon for three representative
temperatures: 120, 200 and 293K, where the temperature dependency of E, k, cv and aT was reported as
summarized in Table 1 [30]. Noting that, in the range of the temperature considered, temperature dependency
of thermal properties of silicon, i.e., k, cv and aT are obvious.

In general, the elastic and thermal properties of silicon are temperature dependent. However, the
temperature change associated with thermoelastic vibration is known to be small (51K) [28] and it is
therefore reasonable to treat the mechanical and thermal parameters as constants with values applicable to the
environmental temperature T0. In the following subsections, the n ¼ 1 mode will first be considered in detail
before considering higher-order modes.

5.1. Thermoelastic damping for plate of a/h ¼ 50 under T0 ¼ 293 K

First we consider the case of a circular plate with fixed aspect ratio of a/h ¼ 50 under the temperature of
T0 ¼ 293K. When h is varied, a changes accordingly with h. Fig. 2 shows the thermoelastic damping of the
Table 1

Mechanical and thermal properties of silicon under different temperatures

T0 (K) E (GPa) r (kgm�3) n k (Wm�1K�1) cv (J kg
�1K�1) aT (10�6K�1)

120 169.0 2330 0.22 876 328 �0.057

200 166.9 2330 0.22 266 557 1.406

293 165.9 2330 0.22 156 713 2.59

Fig. 2. Variation of thermoelastic damping of a circular plate with thickness. The aspect ratio of the plate is fixed as a/h ¼ 50 and the

environmental temperature is T0 ¼ 293K.
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circular plate against thickness h. The solid lines present the values for a clamped plate and the dashed lines for
a simply supported plate.

It is shown that as the thickness increases, the thermoelastic damping increases first and then decreases, and
there is a critical thickness, denoted as hc, with the maximum value of thermoelastic damping. The maximum
value of Q�1 are almost the same for both the clamped plate and the simply supported plate. However, the
critical thickness for the clamped plate is smaller than that for the simply supported plate.
5.2. Thermoelastic damping for different geometries and boundary conditions

We plot the dependence of thermoelastic damping on geometry in three different ways: (1) Q�1 against
thickness h for fixed aspect ratio a/h, (2) Q�1 against thickness h for fixed radius a and (3) Q�1 against radius a

for fixed thickness h. The dependence of thermoelastic damping on boundary conditions is also considered.
The circular plate is clamped and simply supported, respectively. The outcome is shown in Fig. 3 for the case
of a plate vibrating in its fundamental mode (qn ¼ 10.21 for clamped and qn ¼ 5.783 for simply supported
plate).

Fig. 3 shows that thermoelastic damping Q�1 clearly depends on the geometry of the plate. In addition, the
boundary conditions and environmental temperatures also influence the value of Q�1.

First of all, it is shown that under the environmental temperature of T0 ¼ 120K, the thermoelastic damping
Q�1 is very small. In Gysin’s research [31], he tested the internal friction Q�1 of the first eigenmode of micro-
fabricated silicon cantilevers in the temperature range of 15–300K and found that the thermoelastic damping
depends on temperature clearly and that thermoelastic damping is the smallest under the temperature of 20
and 125K. Now our calculation also demonstrates this phenomenon.

In addition, as the plate size increases, the thermoelastic damping Q�1 first increases and then decreases.
And there exits a critical size at which Q�1 takes the maximum value. When the plate size is larger
than the critical size, Q�1 of simply supported plate is larger than that of clamped plate under the same
plate size.

Finally, the maximum value of Q�1 is independent of the dimensions of the plate and the boundary
conditions, but mainly depends on the environmental temperature. It is shown in Fig. 3 that under the same
environmental temperature, Q�1max, the maximum value of Q�1, has the same value under the three cases: fixed
aspect ratio a/h, fixed plate thickness h, and fixed plate radius a. Furthermore, the value of Q�1max of clamped
plate is the same as that of simply supported plate. These phenomena are due to the temperature dependency
of E, aT and cv. According to the expression of Q�1, i.e., Eq. (45), we can get Q�1max ¼ 0:494DD, where DD is a
temperature-dependent parameter. It is obvious from Zener’s theory that the maximum value of Q�1 is
independent of dimensions of a beam, as expressed by Eq. (3). Here, we can demonstrate that this
phenomenon is also valid for a circular plate.
5.3. Comparison between the present method and Zener’s approach

The above analyses show that the thermoelastic damping is size dependent and there is a critical thickness at
which the thermoelastic damping reaches maximum value for a plate with fixed aspect ratio of a/h. For the
method presented in this paper, the critical thickness can be obtained through the expression of dQ�1/dh ¼ 0.
And for Zener’s approach, it is obtained through tR ¼ o0

�1.
Table 2 presents the critical thicknesses (mm) predicted using the present method and Zener’s approach for

a/h ¼ 50 under different temperatures. It also shows the percentage difference between the two methods, using
Zener’s approach as the baseline.

It is shown that the values predicted using the present method are a little larger than those by Zener’s
approach, but the percentage difference between the two methods are quite small under all the conditions of
different boundary conditions and environmental temperatures when the aspect ratio is fixed as a/h ¼ 50. This
demonstrate that the Zener’s approach can also be used in analyzing the thermoelastic damping in out-of-
plane vibration of circular plates.
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Fig. 3. Thermoelastic damping in silicon circular plate plotted for different geometries under different boundary conditions and

environmental temperatures: (a) fixed aspect ratio a/h ¼ 50, change h; (b) fixed thickness h ¼ 10 mm, change a and (c) fixed radius

a ¼ 500mm, change h.
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5.4. Higher modes of vibration

Fig. 4 illustrates the variation of Q�1 with thickness h for circular plates with fixed aspect ratio of a/h ¼ 50
under the temperature of T0 ¼ 293K for modes of n ¼ 1, 2, 3. It is known from Section 5.3 that the tendency
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Fig. 4. Variation of Q�1 with thickness h for modes of n ¼ 1, 2, 3. The aspect ratio is fixed as a/h ¼ 50 and the environmental temperature

is T0 ¼ 293K.

Table 2

Critical thickness of plate for a/h ¼ 50 and percentage difference based on Zener’s approach

T0 (K) 120 200 293

Clamped plate

hc (mm)

Zener’s approach 1099 197.7 89.99

Present method 1102 198.2 90.24

Difference (%) 0.273 0.253 0.278

Simply supported plate

hc (mm)

Zener’s approach 1940 349.2 159.0

Present method 1946 350.1 159.4

Difference (%) 0.309 0.258 0.252
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of Q�1 for simply supported plate is similar to that for clamped plate, so Fig. 4 only shows the case of clamped
plate for the purpose of brevity.

It can be seen from Eq. (41) that the frequency with thermoelastic coupling effect being ignored increases
with mode number n. In general terms, this might cause a larger or a smaller Q�1, depending on the
comparison between o0

�1 and tR. However, the maximum value of Q�1 maintains the same value for different
vibration mode. This also demonstrates that Q�1max depends on nothing but the temperature.

The curves in Fig. 4 show that the characteristic thickness becomes smaller for higher vibration mode. This
can be analyzed through the expression of characteristic thickness. In the present method, the characteristic
thickness is obtained through the expression of dQ�1/dh ¼ 0. However, it is very difficult to get the expression
of hc due to the complexity of the expression of Q�1. Since the percentage difference between the present
method and Zener’s theory is very small, we can obtain the expression through Zener’s theory, i.e., the
equation of tR ¼ o0

�1. According to Eqs. (41) and (47), we can get the following expression of hc for the
circular plate with fixed aspect ratio of a/h ¼ 50:

hc ¼
2500p2k

qnrcv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ð1� n2Þ

s
(48)

It is known that qn shows larger value for higher vibration mode. As a result, hc gets smaller for higher
vibration mode, as shown in Fig. 3.
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6. Conclusions

This paper derived the coupling equations for thermoelastic coupling problem in axisymmetric out-of-plane
vibration of circular plate and then obtained the exact expression for thermoelastic damping.

It is shown that the thermoelastic damping depends on temperature clearly and it is a significant loss
mechanism at room temperature for micro-scale circular plate resonators.

In addition, the thermoelastic damping also changes with the plate dimensions and boundary conditions.
There is a critical dimension at which the maximum of thermoelastic damping occurs, and this maximum
value is found to be governed by the environmental temperature. On the other hand, in the temperature range
of 120–293K, Q�1 increases with the environmental temperature. Finally, it is found that Zener’s
thermoelastic damping approach can also be used in analyzing the out-of-plane vibration of circular plates.
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