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Abstract

In this paper, we investigate the complete synchronization and anti-synchronization (AS) of double-scroll chaotic

attractor exhibited by an extended Bonhöffer–van der Pol (BVP) oscillator, using active control technique. In both

synchronization schemes, the oscillators show good transient performance; while the AS state is further shown to

correspond with complete inverse synchronization. Numerical simulations are also presented to verify the theoretical

results.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, considerable research has been done in nonlinear systems and their various
properties. One of the most important aspects of nonlinear dynamical systems is the property of
synchronization [1–3], which classically, represents the entrainment of frequency of oscillators due to weak
interactions. Studies in this field are partly motivated by experimental realization in lasers, electronic circuits,
plasma discharge and chemical reactions [2–5]. Chaos synchronization is related to the observer problem in
control theory [5]. The problem may be treated as the design of control law for full chaotic observer (the slave
system) using the known information of the plant (the master system) so as to ensure that the controlled
receiver synchronizes with the plant. Hence, the slave chaotic system completely traces the dynamics of the
master in the course of time.

On the other hand, a related phenomenon, anti-synchronization (AS), which is the vanishing of the sum of
the relevant state variables of synchronized systems has been investigated both experimentally and
theoretically in many physical systems [6–14]. A very recent study of the AS phenomenon in non-equilibrium
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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systems suggests that AS could be exploited as a technique for particle separation in a mixture of interacting
particles [14].

In general, various techniques have been proposed for achieving stable synchronization between identical
and non-identical systems. Notable among these methods, the active control scheme proposed by Bai and
Lonngren [15] has received considerable attention during the last decade. Applications to various systems
abound, some of which include the electronic circuits which model a third-order ‘‘jerk’’ equation [16], Lorenz,
Chen and Lü system [17], geophysical model [18], nonlinear equations of acoustic gravity waves [19], Qi system
[19,20]; van der Pol–Duffing oscillator [21], periodically forced pendulum [22], nuclear magnetic resonance
(NMR) modelled by the nonlinear Bloch equations [23], parametrically excited oscillators [24,25], the so-called
Unified chaotic attractor [26]; and most recently in RCL-shunted Josephson junction [27], permanent magnet
reluctance machine [13] and inertial ratchets [14,28].

Recently, there has been resurgent interest in the theoretical and experimental generation of multi-scroll
chaotic attractors [29]. This is partially due to foreseen varieties of practical applications in such fields as
digital and secure communications, synchronous prediction, random bit generation, information systems, to
name but a few [29]. An efficient secure-communication model system should exhibit appreciable
synchronization performance even in its chaotic state. Thus, exploring the synchronization behaviour of
multi-scroll chaotic attractors would be an important and stimulating subject of research interest. However,
this has received inadequate attention. A few reports on this can be found in Refs. [30–32].

The goal of this paper is to employ the active control technique to investigate the synchronization and AS
performance of two identical double-scroll chaotic attractors generated from an extended Bonhöffer–van der
Pol (BVP) oscillator circuit. This problem has not been considered to the best of our knowledge. The BVP
(or Fitzhugh–Nagumo) oscillator model was derived from the van der Pol oscillator to give a more accurate and
reliable description of nonlinear dynamical systems, which can show a stable state and threshold phenomena as
well as stable oscillations. The BVP which is closely related to the Fitzhugh–Huxley (FH) model of the squid giant
axon, the cats carotid sinus nerve [33] and the iron wire model of the nerve [34]; serves as a simplified model for
electrical waves in the heart. Indeed, most studies on the BVP have shown its various applications in medicine (see
for example Refs. [33–36] and references therein). In addition, Chimi et al. [37] demonstrated in a very recent study,
the application of the synchronization in secure communication using two periodically forced BVP oscillators. The
rest of this paper is organized as follows. In Section 2, we give a brief description of the physical circuit of the
extended BVP model and the governing equations. Sections 3 and 4 are devoted to active control formulations for
chaos synchronization as well as numerical simulation results. The last section contains the conclusions.
2. Circuit model

Here we consider an extended BVP oscillator, which consists of two capacitors, an inductor and a linear
resistor as shown in Fig. 1 [38]. By applying Kirchoff’s laws to the various branches of the circuit, the
following equations are obtained:

C
dv1

dt
¼ � i � gðv1Þ

C
dv2

dt
¼ i �

v2

r

L
di

dt
¼ v1 � v2 (1)
Fig. 1. The extended BVP oscillator circuit.
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Fig. 2. Two-dimensional view of the double-scroll chaotic attractor of the extended Bonhöffer–van der Pol oscillators A ¼ B ¼ 1.0 and

d ¼ 1.2.
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where g(v1) is the v–i characteristics of the nonlinear resistor and is given by

gðv1Þ ¼ �av1 � b tanh cv1 (2)

Using the following scaling factors:

� ¼
d

dt
; t ¼

1ffiffiffiffiffiffiffi
LC
p t; A ¼ a

ffiffiffiffi
L

C

r
; B ¼ bc

ffiffiffiffi
L

C

r
; d ¼

1

r

ffiffiffiffiffiffi
L

C
;

r
x ¼

v1

b

ffiffiffiffi
C

L

r
,

y ¼
v2

b

ffiffiffiffiffiffi
C

L
;

r
z ¼

i

b

the normalized equation for the extended BVP oscillator (1) can be written as

_x ¼ � zþ Axþ tanh Bx

_y ¼ z� dy

_z ¼ x� y (3)

where x and y are state variables corresponding to the voltages across the capacitors. The z variable is
proportional to the current in the inductor, while d corresponds to the value of a fixed resistor. A and B are the
control parameters of the system. Extensive experimental and numerical study of the bifurcation and chaotic
phenomenon of the oscillator described by system (3) was recently carried out by Nishiuchi et al. [38]. Beside
various dynamical behaviours observed in the BVP oscillator, a double-scroll chaotic attractor was reported
for (A, B, d) ¼ (1.0,1.0,1.2). This attractor is displayed in Fig. 2.
3. Complete synchronization using active control

Let the drive system of the BVP oscillator be written as

_x1 ¼ � z1 þ Ax1 þ tanh Bx1

_y1 ¼ z1 � dy1

_z1 ¼ x1 � y1 (4)
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Then the response system is

_x2 ¼ � z2 þ Ax2 þ tanh Bx2 þ ux

_y2 ¼ z2 � dy2 þ uy

_z2 ¼ x2 � y2 þ uz (5)

where ui(t), i ¼ x, y, z are control functions to be determined. Subtracting Eq. (4) from Eq. (5) we obtain the
error dynamics as

_ex ¼ � ez þ Aex þ tanh Bx2 � tanh Bx1 þ ux

_ey ¼ ez � dey þ uy

_ez ¼ ex � ey þ uz (6)

where ei ¼ i2�i1, i ¼ x, y, z. In the absence of the controls, the error dynamics system (6) would have an
equilibrium at (0,0,0). If the controls are chosen such that the equilibrium (0,0,0) is unchanged, then
the synchronization between the driver system (4) and the response system (5) reduces to that of finding
the asymptotic stability of the error system (6) at equilibrium. To achieve this, the control functions
are re-defined to eliminate terms in Eq. (6), which cannot be expressed as linear terms in ex, ey and ez, as
follows:

ux ¼ tanh Bx1 � tanh Bx2 þ vxðtÞ

uy ¼ vyðtÞ

uz ¼ vzðtÞ (7)

Substituting Eq. (7) into Eq. (6) we have

_ex ¼ ez þ Aex þ vx

_ey ¼ ez � dey þ vy

_ez ¼ ex � ey þ vz (8)

Using the active control method, a constant matrix M is chosen which will control the error dynamics (6)
such that the feedback matrix

vxðtÞ

vyðtÞ

vzðtÞ

0
B@

1
CA ¼M

ex

ey

ez

0
B@

1
CA (9)

with

M ¼

l1 � A 0 1

0 l2 þ d �1

�1 1 l3

0
B@

1
CA (10)

In Eq. (10), the three eigenvalues l1, l2 and l3 have been chosen as �1, �1 and �1 in order that a stable and
synchronized identical BVP oscillators are achieved. With Eq. (10), the control law is

ux ¼ tanh Bx1 � tanh Bx2 � ð1þ AÞex þ ez

uy ¼ ðd� 1Þey � ez

uz ¼ � ex þ ey � ez (11)
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Fig. 3. Synchronization dynamics of the state variables when the control is activated at t ¼ 20: (a) x1 and x2, (b) y1 and y2, and

(c) z1 and z2.
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To numerically verify the effectiveness of the designed controllers, we used the standard fourth-order
Runge–Kutta algorithm to solve the drive-response systems (2) and (3), with a time step size of 0.005. The
parameters of the system were selected such that the system exhibits two-scroll chaotic attractor as shown in
Fig. 2. That is A ¼ 1.0, B ¼ 1.0 and d ¼ 1.2. The initial conditions were taken as x1(0) ¼ �1.0, x2(0) ¼ 0.5,
y1(0) ¼ 1.0, y2(0) ¼ �0.5, z1(0) ¼ �1.0 and z2(0) ¼ 0.5. The simulation results for x1, x2; y1, y2 and z1, z2 are
illustrated in Figs. 3(a)–(c) respectively. In Fig. 3, the controls have been activated at t ¼ 20. Prior to t ¼ 20,
the two systems exhibit different dynamics due to the difference in initial conditions. However, as soon as the
controls are switched on, the response system is forced to trace the dynamics of the driver system. The
synchronization is a complete one as depicted in Fig. 7(a) where a direct and linear relationship is shown to
exist between x1 and x2 variables along the synchronization manifold defined by x1 ¼ x2. In Fig. 4, we show
the asymptotic convergence of the synchronization errors when the controls have been activated at t ¼ 0. The
plots show a good transience performance as synchrony is achieved for tX7.
4. Anti-synchronization using active control

To investigate AS in the extended BVP oscillator, we define the AS errors for the drive-response system as

s1 ¼ x1 þ x2; s2 ¼ y1 þ y2; s3 ¼ z1 þ z2 (12)
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Fig. 4. Error dynamics in the synchronized state, showing the transient performance of the control when activated at t ¼ 0.
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Adding Eqs. (4) and (5) and using the definitions in Eq. (12), we have

_s1 ¼ As1 � s3 þ tanh Bx1 þ tanh Bx2 þ u1

_s2 ¼ � ds2 þ s3 þ u2

_s3 ¼ s1 � s2 þ u3 (13)

Redefining the controls (ui(i ¼ 1,2,3)) as follows:

u1 ¼ � ðtanh Bx1 þ tanh Bx2Þ þ v1

u2 ¼ v2

u3 ¼ v3 (14)

the AS error system (13) becomes

_s1 ¼ As1 � s3 þ v1

_s2 ¼ � ds2 þ s3 þ v2

_s3 ¼ s1 � s2 þ v3 (15)

Proceeding as before, it is found that the same matrix as in Eq. (10) is chosen such that

½v1; v2; v3�
T ¼M½s1; s2; s3�

T (16)

and obtain the following control law:

u1 ¼ � ðtanh Bx1 þ tanh Bx2Þ � ð1þ AÞs1 þ s3

u2 ¼ ðd� 1Þs2 � s3

u3 ¼ � s1 þ s2 � s3 (17)

Again, we perform a numerical investigation for the AS scheme using the same parameters and initial
conditions as in the previous section. While Fig. 6 shows the asymptotic convergence of the AS errors; Fig. 5
shows the dynamics of the state variables in the AS state. The plots in Fig. 6 also reveal a good transient
performance. However, the AS synchrony is achieved when tX10, implying that the CS state has better
transient performance compared to the AS state. Finally, we neglect the initial transient and plot in Figs. 7(a)
and (b) x1 vs. x2. The dynamics are obviously confined to the manifold x1 ¼ x2 for complete synchronization
(Fig. 7(a)) and x1 ¼ �x2 for AS (Fig. 7(b)), the latter corresponding to the phenomenon of complete inverse
synchronization reported by Shahverdiev et al. [39,40].
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5. Concluding remarks

Conclusively, this paper has presented active control-based synchronization and AS schemes for a simple
three-dimensional autonomous circuit describing an extended BVP oscillators. The operating regime for
double-scroll chaotic behaviour was used. Thus, the complexity of the systems was retained. The theoretical
results have been validated with corresponding numerical simulations; and stable synchronized and anti-
synchronized states were achieved. The BVP oscillator studied here could serve as a good model for chaos-
based secure-communication system particularly when operated in the multi-scroll chaotic attractor regime. In
this direction, the possibilities of realizing multi-scroll chaotic attractors and its synchronization from the BVP
oscillator are issues that will be addressed in a future paper.
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