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Abstract

In this study free vibration of simply supported and clamped super elliptical plates is investigated. This class of plates
includes a wide range of external boundaries varying from an ellipse to a rectangle. Although studies on the upper and
lower bounds of these plate geometries, namely circle and rectangle, are quite extensive, contributions on the mid-shapes,
especially for simply supported boundary edges are very limited. The Kirchhoff plate model with isotropic and
homogeneous material is studied. The super elliptical powers are chosen from 1 to 10. The Ritz method is employed for the
solution of the energy equations of the plates. The effects of Poisson’s ratio, which should not be neglected for simply
supported plates with curved boundaries, and the aspect ratio of the plate are both examined in detail. The effect of
thickness variation is also considered in this study. In order to avoid long computational run times, physically pertinent
trial functions are utilized. The frequency parameters obtained are presented and compared with published results for plate
shapes that match the current cases.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Super elliptical plates can be identified with the boundary Eq. (1). Changing the power of the super ellipse,
this equation can be used for various geometrical shapes. Although these plates have a broad area of use in
mechanical, civil, aecrospace and many other engineering branches, they do not have sufficient engineering
data as declared by Refs. [1,2]. Considering simply supported curved edges, ignoring the effect of Poisson’s
ratio, which is in the strain energy expression apart from the one in the bending stiffness of the plate, leads to
remarkable error. Therefore, for simply supported boundary conditions, various Poisson’s ratio values are
employed. Studies on extreme cases of super elliptical plates (circular, elliptical, rectangular) are extensively
covered in the literature [3—14]. Yet, the studies on the other shapes that can be expressed by the super
elliptical boundary are partial.

Wang et al. [1] obtained solutions for super elliptical plates by using two-dimensional polynomials at a
degree of 12 for frequency and buckling factors. Although they worked on diverse super elliptical powers, they
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neglected the effect of Poisson’s ratio on the behavior of simply supported plates. Altekin [2] studied the static
and dynamic behavior of super elliptical plates. He used both variational and weighted residual methods and
compared the results, which were obtained in a non-parametrical way. Leissa [3] presented a detailed study on
vibration of plates for many plate shapes. Chakraverty et al. [4] studied free vibration of annular elliptical
plates through boundary characteristic orthogonal polynomials as trial functions in the Rayleigh—Ritz
method. In their work, they considered combinations of simply supported, clamped, and free boundaries for
inner and outer edges. They investigated the effect of boundary conditions and hole size on different modes of
vibration. Chen et al. [5] employed radial basis function for free vibration analysis of clamped plates and
examined the validity of the method by rectangular and circular plates. Enlarging the scope of the works on
elliptical plate vibrations to the ones resting on elastic media, Mukherjee [6] obtained the solution of integral
equation of the system via orthogonal polynomials.

Despite the huge amount of work on plate vibration, very little has been reported on plates with variable
thicknesses. Bayer et al. [7] focused on the vibration of clamped elliptical plates with variable thickness.
Solving the equations of the plate by both moment method and Rayleigh—Ritz method, they compared the
results for several aspect ratios of the elliptical plates. Vibration of symmetrically laminated super elliptical
plates was studied by Chen et al. [8]. Since the transverse shear is an important factor in the mechanical
behavior of the laminated composite panels, they preferred shear deformable plate model. Leissa [9], Sato [12],
and Narita [13,14] obtained results for simply supported elliptical plates via several methods. Frequency
parameters for several values of Poisson’s ratios are reported in those studies.

Singh and Tyagi [15] presented results for vibrations of a clamped elliptical plate with variable thickness
employing Galerkin’s method. Singh and Chakraverty [16] extended the results for elliptical plates to various
boundary conditions. They used characteristic orthogonal polynomials satisfying the essential boundary
conditions in Ritz method. Zhou et al. [17] and Liew and Feng [18] explored the vibration of super elliptical
plates with a three-dimensional approach by using Ritz method.

In the current study, the vibration problem is approached parametrically and the free vibration of super
elliptical plates is examined considering sensitivities of the frequency parameters by different super ellipticity
degrees, aspect ratios of the super ellipses, Poisson’s ratio of the material, and thickness variation. The study is
carried out for several Poisson’s ratios and plate aspect ratios. Two forms of trial functions are used in the Ritz
method; powers of geometrical boundary shape equation and complete sets of polynomials, which are
explained in the next section.

2. Basic assumptions and equations

The equation of the boundary for a super ellipse may be expressed as

2n 2n

X Y

s + e =1 (1)
where 7 is the power of the super ellipse. The graphical representation of the boundary is as in Fig. 1. In this
study the frequency parameters, 1> = wb>\/ph /D, are structured according to the geometry presented in this
figure.

Selection of the trial functions has crucial importance in accuracy of approximation and is time consuming

[19,20]. A trial function for deflection function of the mid-plane, w, may be represented by

2n 2n 2 2
X y X Y
w= (ﬁ—i_ﬁ_l) (ocoo-i—oczo;-i-txoz?) ()

where g, 0>, and o, are the unknown coefficients. This deflection function possesses such a property that it
has the form of two-fold symmetry which is required for the fundamental vibration mode. Although this
function gives accurate results for the first vibration mode, it does not give truthful results for higher modes.
Also for high powered super ellipses and variable thicknesses the results become very erroneous. Leissa [9]
used this shape function for a simply supported ellipse and obtained results for lots of aspect ratios
and Poisson’s ratios. For convergence studies results of that study are compared with the ones obtained
in this study.
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Fig. 1. Super elliptical plate edge in cartesian coordinate system.

Table 1
Shape functions associated with the modes

Plate type Mode type Shape function

Homogeneous Symmetric modes (1,3) oo+ ocozyz + a04y4 + :x()(,yG + 090x2 + oczzxzyz + a24x2y4 +ogxt + oc42x4y2 + agox®
Homogeneous Non-symmetric modes (2) oo+ oty + ctoay® + o3y + ot10x! + 011Xy + 002X Y2 + etaox? + ety X2y + oo’
Variable thickness (for n =1)  All modes ao+ 0 G+ oGP+ a3 GP A+ ouGH 05GP (G = (¥ [d + 1P 6P —1))

Variable thickness (for n =2, 8) All modes tto0 + o102y + otgay™ + oy + otaox + oo x Y + o0ax?yt + 00Xt + 040x*y? + 0gox®

In this paper, for plates with constant thicknesses complete sets of polynomials as in Eq. (3) are used for
deflection functions:

2n 2n k
x .

w= (ﬁ +)b% - 1> [o00x"y” + o10x"y" + 020Xy + a1 xX°y! + apix ' + ooy o+ axy] (3)
where o; are unknown coefficients, and k is the power of the geometrical shape equation for satisfying
kinematical boundary conditions.

1 for simply supported boundary conditions

2 for clamped boundary conditions
i+j = pis the order of the polynomial. In order to obtain accurate results for the first three modes p values up
to 6 are used.
For variable thickness cases, in addition to power series the trial function of Eq. (4) is also used. This

function is composed of powers of geometrical boundary shape equation of ellipse, and the boundary
conditions are satisfied in the same way of the plates with constant thickness. The shape functions used herein

are presented in Table 1
2n 2n 1 2n 2n 2 2n 2n 3
X Y X Y X Y
& O€0+Oﬁl(ﬁ+ﬁ—l) +O€2<ﬁ+ﬁ—l> +O€3(ﬁ+ﬁ—l>

2n 2n 4
X Y

(4)
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The expression for the strain energy of the plate is

w  w ? *wow Pw\’
20—V |=—==——-=— dxd 5
// { <6x2 d 2) 1= 5a57 (axay> A ©®)
where D = ER®/[12(1—v?)] is the bending rigidity, E is Young’s modulus, and v is Poisson’s ratio. Although
increasing more powers of boundary equation in Eq. (4) gives more accurate results, this causes excessive run
time and requires very high computer memory which is not available in current market computers, except

special designed ones.
The expression representing the kinetic energy of the plate is

j7ﬁh( [aw‘”)“”} dxdy ©)

Assuming that the plate is undergoing harmonic oscillations the deflection can be written as
w(x, y, 1) = W(x,y)sin(wr) (7

where W(x, y) is the trial function and o represents the unknown natural circular frequency of the plate
pertinent to the assumed shape function. Substituting Eq. (7) into the expression of the kinetic energy of the
oscillating plate a new expression for kinetic energy can be obtained as

2

T= “’7 cos2(wi) // ph(x, y)W(x, y) dx dy (8)
A

The kinetic energy is at the maximum level when the velocity of the plate is maximum which occurs when
w(x, y, t) is zero. This is the case when sin(wt) is zero, which means:

ot=nt (n=0,1,2,...) 9)

Substituting the last expression into Eq. (8), the maximum kinetic energy expression becomes:
2
7= [[ oty (10)
4

The strain energy is maximum when the deflection of the plate is maximum. This occurs when sin(w?) equals
to 1. Using these values of wt the expression of maximum strain energy becomes identical to Eq. (5).

In order to apply the Ritz method firstly an appropriate deflection shape is selected, which is Eq. (4), and
then maximum kinetic and strain energies are equated. An equation in the following form is obtained:

;W oW Fwaw  (Fw\
// {(6)62 6y2> -2 _V)[axZ 02 (6x6y) dxdy

—%ﬂﬁmwwmwmw=o (11
A

In this study Eq. (11) is solved by Ritz method.

If all of the edges of the plate are fixed, the second term on the right-hand side of the first integral expression
becomes zero. Therefore the effect of Poisson’s ratio vanishes. The same situation also holds for straight edged
plates. Thus the expression for total potential energy takes the form:

62W oW 2
// { ( 0x?2 6y2 > } dydy — %//ph(x,y)Wz(x,y) dxdy =0 (12)
4
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3. Plates with variable thickness

In this part of the current study a parabolic variation of the plate thickness in structure of Eq. (13) is
assumed:

h(x,y) = cholo + B(x* + 3] (13)
2
T Qe+ p) (19

where o and f§ are parameters designating non-homogeneity. In Egs. (13) and (14) A is the constant thickness
of the plate, o is the parameter which defines the constant part of the plate, f§ is the parameter which controls
the variation of the thickness, and c is a parameter which controls the volumes of the plates.

In case of thickness variation the bending rigidity also varies and takes the form:

D(x,y) = Dy¢’H (15)
In Eq. (15) Dy = ER®/[12(1—V?)] is the bending rigidity of the plate with constant thickness and,
H =[o+ p(* + )P (16)

After substituting Eqs. (13) and (15) into Eq. (11) the potential energy equation gets the form:

*w *w Pwoew  [(Pw\’
//Doc [0+ B>+ )]3{<ax2 ) -2(1 —v)lax2 e (ax6y> ]}dxdy

— c%//,ocho[ot + B3 + )W 3(x,y)dxdy =0 (17)
A

4. Solution by the Ritz method

The objective of the variational methods is to find from a group of admissible functions those which
represent the deflections of the elastic body, pertinent to its stable equilibrium conditions. The essence of the
Ritz method is the application of principle of minimum potential energy.

The principle of minimum potential energy makes use of the change of the total potential during arbitrary
variation of the deflection. Introducing du, dv, and dw as the virtual displacements of the elastic body, the new
position (u+ dou, v+ ov, w+dw) produces an increase in the strain energy stored. The change in the total
potential energy can be evaluated as

O = IT(u + du, v+ dv, w+ ow) — II(u, v, w) (18)

Since the equilibrium configuration is represented by those admissible functions which make the total
potential of the system minimum, it can be stated that,

S =3U+0V=0U+V)=0 (19)

Components of the compatible infinitesimal virtual displacements (du, év, dw) should satisfy the geometrical
boundary conditions of the elastic system, and be capable of representing all possible displacement patterns. If
these admissible displacement functions are chosen properly very good accuracy can be attained.

The deflected middle surface of a plate can be represented in the form of a series:

)4
W, ) = o f 16, ) + 02/ 2(5 1) + aaf 306 9) + -+ ouf (6 1) = Y aif (X, 9) (20)

i=1
where fi(x, y), i=1, 2, 3, ... , p), are continuous functions that satisfy individually at least the geometrical
boundary conditions and are capable of representing the deflected plate surface. The functions used herein are
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two-dimensional and in the form of

2n 2n k
X Y i
fi,j(X,)’)= (ﬁ ST 1) xy (21
The unknown constants oy, o, a3, ... , o, are determined from the minimum potential energy principle as
ol ol on
e Ay 22
0oy oy oty 22

Table 2
The calculated perimeter and area of the super ellipses fora =1 and b =1

n Perimeter Area
1 6.2832 3.1416
2 7.0177 3.4961
3 7.3178 3.6430
4 7.4798 3.7235
5 7.5814 3.7744
6 7.6510 3.8094
7 7.6932 3.8350
8 7.7374 3.8546
9 7.7635 3.8700
10 7.7809 3.8824
Table 3
Convergence of results with increasing terms
Shape function Clamped Simply supported
A i3 i 3
) 12.5959 - 9.2448 -
o0 + otag x> 7.6033 44.7247
dto0 + otaox> + 01g0)” 10.1053 40.0440 5.1284 44.1744
ttgo + otaox> + ctga)” + 02Xy 9.8171 39.9858 5.1025 44.1737
o0 F 020X F stay? F 00Xy + gt 9.1205 34.8224 4.8731 27.2449
b0 + oo + ooy + 02Xy + oaox? + 0y 8.6289 34.8223 4.8182 26.6303
oo T otozyz + zx04y4 + a06y6 +oex> + a22x2y2 + ot24x2y4 +ogoxt + zx42x4y2 +ogox® 8.6017 30.4910 4.7359 26.6121
Table 4

Comparison of the frequency parameters (12 = wb>+/ph /D) with previously obtained results

n v alb=1 alb=1.5 alb=2 alb=73
1 Present 0.3 4.935 3.687 3.314 3.035

1 Wang et al. [1] - 4.935 3.681 3.303 3.009

1 Sato [12] 0.3 4.935 - 3.293 -

1 Narita [13] 0.3 4.935 - 3.303 -

1 Prakash and Ganapathi [21] - 4.935 - - -

8 Present 0.3 5.066 3.775 3.15 2.783

8 Wang et al. [1] - 4.804 3.486 3.038 2.723
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With this minimization procedure n simultaneous algebraic equations, in terms of the unknown coefficients,
are obtained. The number of the equations is equal to the number of the unknown coefficients, so oy, o, o3, ... ,

o, can be calculated.

Table 5

Comparison of the fundamental mode, > = wb’ /ph/D, with Leissa [9] and Singh and Chakraverty [22]

alb v=0.25 v=20.5
Present Leissa Singh Present Leissa Singh
1.0 4.8601 4.865 4.8601 5.2127 5.219 5.2127
1.1 4.4490 4.454 4.4489 4.7662 4.772 4.7662
1.2 4.1526 4.157 4.1526 4.4356 4.442 4.4356
1.4 3.7679 3.773 3.7679 3.9898 3.990 3.9898
1.7 3.4555 3.463 3.4555 3.6078 3.617 3.6078
2.0 3.2813 3.292 3.2813 3.3866 3.399 3.3866
2.5 3.1098 3.128 3.1098 3.1698 3.189 3.1698
3.0 3.0014 3.027 3.0014 3.0387 3.066 3.0387
Table 6
Frequency parameters, > = wbzx/ph /D, for simply supported super elliptical plates with constant thickness
n afb 3 73 2
v=0.1 v=20.2 v=0.3 v=0.1 v=0.2 v=20.3 v=0.1 v=0.2 v=0.3
1 1.0 4.6192 4.7826 4.9351 13.7208 13.8564 13.8985 25.3757 25.4988 25.6188
1.2 3.9596 4.0904 4.2128 10.4107 10.5377 10.5909 19.6477 19.765 19.8787
1.4 3.6173 3.7193 3.8149 8.4587 8.5730 8.6210 15.4489 15.5607 15.6686
1.6 3.4213 3.5002 3.5743 7.2280 7.3277 7.3626 12.6742 12.7777 12.8768
2.0 3.2114 3.2586 3.3034 5.8399 5.9107 5.9105 9.4287 9.5108 9.5886
3.0 2.9779 2.9937 3.0090 4.5181 4.5442 4.4578 6.2711 6.3060 6.3389
4.0 2.8549 2.8624 2.8699 4.0136 4.0254 3.8735 5.1026 5.1170 5.1309
2 1.0 4.6072 4.6497 4.7359 12.8983 13.0182 13.2215 26.4938 26.5625 26.6121
1.2 3.9515 4.0238 4.0928 9.6163 9.7290 9.8387 20.4277 20.5440 20.6572
1.4 3.5509 3.6125 3.6712 7.6853 7.7897 7.8910 16.0930 16.2181 16.3407
1.6 3.3029 3.3562 3.4067 6.4708 6.5663 6.6587 13.3160 13.4366 13.5551
2.0 3.0292 3.0699 3.1084 5.1167 5.1947 5.2698 10.2047 10.3081 10.4098
3.0 2.7929 2.8149 2.8358 3.9375 3.9824 4.0254 7.5246 7.5885 7.6513
4.0 2.7244 2.7371 2.7492 3.5909 3.6172 3.6425 6.7668 6.8087 6.8497
8 1.0 5.0624 5.0640 5.0655 14.7895 14.7918 14.7932 28.5913 28.6078 28.6231
1.2 4.2876 4.2891 4.2904 11.1777 11.1855 11.1921 21.9232 21.9335 21.9421
1.4 3.8182 3.8196 3.8209 8.9294 8.9401 8.9496 17.3429 17.3613 17.3777
1.6 3.5114 3.5129 3.5143 7.4424 7.4545 7.4654 14.2673 14.2902 14.3110
2.0 3.1463 3.1480 3.1496 5.6701 5.6826 5.6941 10.5228 10.5429 10.5613
3.0 2.7802 2.7818 2.7832 3.9154 3.9237 3.9315 6.5720 6.5741 6.5759
4.0 2.6531 2.6541 2.6551 3.3168 3.3210 3.3249 5.0486 5.0467 5.0448
10 1.0 5.1800 5.1805 5.181 15.4827 15.4827 15.4828 30.2072 30.2202 30.2322
1.2 4.3874 4.3879 4.3883 11.6837 11.6894 11.6943 23.4866 23.4993 23.5105
14 3.9071 3.9076 3.9080 9.3292 9.3380 9.3458 18.6763 18.6975 18.7168
1.6 3.5924 3.5929 3.5933 7.7761 7.7863 7.7956 15.3855 15.4102 15.4328
2.0 3.2144 3.2151 3.2158 5.9221 5.9324 5.9419 11.3243 11.3433 11.3608
3.0 2.8239 2.8249 2.8259 4.0659 4.0721 4.0779 7.0104 7.0110 7.0114
4.0 2.6344 2.6851 2.6859 3.4294 3.4324 3.4352 5.3628 5.361 5.3593
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Table 7

Frequency parameters, A> = wb*+/ph /D, for clamped super elliptical plates with constant thickness

675

n a/b 7 3 72
1 1.0 10.2158 21.2749 34.9408
1.2 8.7178 16.4582 27.2553
1.4 7.8910 13.6449 21.7666
1.6 7.3928 11.8820 18.1925
2.0 6.8444 9.8985 14.0819
3.0 6.3119 8.0331 10.2272
4.0 6.1037 7.3889 8.9518
2 1.0 8.6017 19.6330 30.4910
1.2 7.8785 14.9489 25.6566
1.4 7.1584 12.2512 20.0958
1.6 6.7265 10.5966 16.6119
2.0 6.2536 8.8143 12.7718
3.0 5.8060 7.3198 9.5366
4.0 5.6468 6.8561 8.5455
8 1.0 9.3005 26.7632 44.5642
1.2 7.9395 19.2351 34.4356
1.4 7.1935 15.3328 27.7945
1.6 6.7495 12.7312 23.2008
2.0 6.2766 7.3449 17.4107
3.0 5.8716 7.0101 11.3081
4.0 5.7483 6.2872 9.1652
10 1.0 9.3763 27.6621 48.9207
1.2 8.0022 20.8522 38.0785
1.4 7.2459 16.5062 30.8002
1.6 6.7934 13.6137 25.6814
2.0 6.3068 10.2140 19.1815
3.0 5.8826 7.1564 12.3145
4.0 5.7520 6.3285 9.9107

5. Integration over the super elliptical region

During solutions of differential equations with approximate methods there are difficulties arising from
integration over a super elliptical area. Any deviation from the area of the super ellipse causes extra error in
the results. Calculating the area and perimeter of the region may give an idea about the convergence of the
integration. Therefore the areas and perimeters of the super ellipses are calculated fora=1landb=1.Ifa=1

and b =1 then the super elliptical function becomes:

x2n+y2n_1=0

y=v1—x¥
and
y/ — _x71+2n(1 _ x2n)—1+1/2n

Thus, calculation of the Riemann sum as

s%i:\/l—i—y/zAx

i=1

(23)

24)

(25)

(26)

gives the length of any curve. In that case the exact value of the perimeter should be expected for n = 1.
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The shapes of the super ellipses for n = 1 and 10 are a circle with a radius of 1 and a shape close to a square
with an edge length of 2, respectively. The results obtained are as expected and are shown in Table 2.

6. Presentation of the results

Circles and ellipses are

special cases of super elliptical forms which were studied previously. In Table 3

convergence of results with increasing polynomial terms is presented and some results of the numerical
analysis are compared with references’ results in Table 4. The results obtained by the references were presented
in different parametric forms. In order to make comparison, all values are transformed to the parameter
wb*\/ ph/D, which is used in the entire study. Some of the frequency parameter values differ from our results.
This variation results from use of different solution methods and different trial functions.

5.5000

5.0000

4.5000

= 4.0000

3.5000

3.0000

2.5000

041 0.2 0.3
v

Fig. 2. Change of the fundamental frequency parameter /> of a simply supported elliptical plate with respect to v ((—e—)
alb=1, (—a—) a/b=14, (—k—) a/b =2, (—&—) a/b =3, (—%—) a/b = 4).

5.5000

5.0000

4.5000

¢ 4.0000

3.5000

3.0000

2.5000

»

0.1 0.2 0.3

Fig. 3. Change of the fundamental frequency parameter A2 of a simply supported super elliptical plate of n = 10 with respect to v ((—s—)
alb=1, (—a—) a/b =14, (—&—) a/b =2, (—&—) a/b =3, (—#%—) a/b = 4).
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The results for ellipses are widely reported in the literature; therefore elliptical shapes are very convenient
for benchmarking purposes. We carried out computations for 8 aspect ratios with v = 0.25 and 0.5 for the
fundamental mode to compare our results with Leissa [9] and Singh and Chakraverty [22]. In Table 5 these
results are presented and good agreement is attained with their results.

In Table 6 frequency parameters for first 3 modes of 4 types of simply supported super elliptical plates with v
values of 0.1, 0.2 and 0.3 are reported. It is clear that as v is increased the frequency parameters also increase
and with increasing a/b ratios the parameters decrease. At high a/b ratios the effect of v decreases and also the
parameters of different super ellipses becomes very similar. These results are valid for all of the 3 modes. The

Table 8
Frequency parameters, 2> = wb*+/phy /Dy, for clamped super elliptical plates with variable thickness

n p o alb

1.0 0.8 0.2

b 73 2 22 s
1 0.0 1.0 10.2158 39.8372 86.7407 13.2458 158.5923
1 Ref. [3] 10.216 13.229 149.89
1 Ref. [15] 10.216 39.771 89.106 13.246 158.59
1
2 1.0 8.6108 33.4003 84.6464 11.1457 130.9290
8 1.0 9.3005 - - 12.3501 143.1174
1 0.1 0.1 10.42737 36.1421 82.0731 13.6150 175.7097
1 Ref. [16] 10.6 - - 13.61 150.3
1 0.4 1.0 10.3613 38.2207 85.3728 13.4789 167.4870
1 0.6 10.4036 37.2419 83.5732 13.5582 171.6945
1 0.4 10.4247 36.1421 82.0731 13.6116 175.7159
1 0.0 13.9764 37.5610 101.5613 18.4298 269.8621
8 0.4 1.0 16.3514 - - 13.8841 151.2620
8 0.6 18.4617 - - 14.9147 154.9988
8 0.4 20.8206 - - 16.2125 158.7762
8 0.0 51.5213 - - 46.5247 331.3280
1 0.6 1.0 10.3957 37.4793 83.9681 13.5422 170.7398
1 0.6 10.4247 36.1421 82.0731 13.6116 175.7159
1 0.4 10.4221 34.7856 80.9284 13.6396 180.0826
1 0.0 13.9764 37.5609 101.5610 18.4298 269.8621
8 0.6 1.0 17.9529 - - 14.6560 154.1450
8 0.6 20.8206 - - 16.2125 158.7762
8 0.4 23.8357 - - 18.1247 163.7357
8 0.0 51.5213 - - 46.5247 331.3280
1 1.0 1.0 10.4247 36.1421 82.0731 13.6116 175.7159
1 0.6 10.4166 34.4098 80.7475 13.6413 181.2419
1 0.4 10.3805 33.0136 80.6734 13.6299 185.7919
1 0.0 13.9764 37.5610 101.5613 18.4298 269.8621
2 1.0 1.0 10.5981 37.7942 83.9800 12.0460 154.1212
2 0.6 11.6319 40.3050 92.1581 12.4485 164.1702
2 0.4 12.7057 42.8516 99.2933 12.9148 174.0754
2 0.0 21.6957 62.1708 135.4570 20.4829 282.0777
8 1.0 1.0 20.8206 - - 16.2125 158.7762
8 0.6 24.7201 - - 18.7402 165.3285
8 0.4 28.4311 - - 21.5802 173.2132
8 0.0 51.5213 - - 46.5247 331.3280
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parameters for clamped boundary conditions are presented in Table 7. The variation of frequency
parameters of clamped plates is v independent. The effect of aspect ratio is the same as the effect on the simply
supported plates.

Table 9

Frequency parameters, 12 = wb*\/phy /Dy, for simply supported super elliptical plates with variable thickness

n p o alb
1.0 0.8 0.2
b 2 2 72 2

1 0.0 1.0 4.9351 29.7201 74.6830 6.4034 77.2922
2 1.0 4.7359 25.3307 76.2596 5.8880 65.8396
8 1.0 5.0655 - - 6.8048 63.2498
1 0.1 0.1 4.5605 26.33179 70.83201 5.9143 70.9674
1 Ref. [16] 0.1 5.035 - - 6.535 70.31

1 0.4 1.0 4.7207 28.14752 72.16911 6.1239 73.7418
1 0.6 4.6311 27.2604 71.3105 6.0068 72.2154
1 0.4 4.5605 26.3318 70.83201 5.9143 70.9680
1 0.0 5.8754 28.3969 94.6047 7.6108 90.0799
2 0.4 1.0 4.6039 27.6610 71.7065 5.8605 62.2229
2 0.6 4.6744 28.5688 75.7998 5.8903 60.6093
2 0.4 4.7909 29.6924 79.9329 5.9603 59.2548
2 0.0 7.9663 52.2200 117.1394 9.3806 74.9330
8 0.4 1.0 7.1977 - - 7.5553 55.5622
8 0.6 7.9595 - - 8.1161 51.4971
8 0.4 8.8424 - - 8.7974 47.3216
8 0.0 20.7296 - - 18.4471 27.3551
1 0.6 1.0 4.6503 27.4698 71.4777 6.0319 72.5464
1 0.6 4.5605 26.3318 70.83201 5.9143 70.9680
1 0.4 4.5120 25.26604 70.8382 5.8502 70.0237
1 0.0 5.8754 28.3969 94.6047 7.6108 90.0799
2 0.6 1.0 4.6543 28.3409 74.8562 5.8801 60.9627
2 0.6 4.7909 29.6924 79.9329 5.9603 59.2548
2 0.4 4.9890 31.2671 84.7721 6.1020 58.1826
2 0.0 7.9663 52.2200 117.1394 9.3806 74.9330
8 0.6 1.0 7.7729 - - 7.9758 52.4464
8 0.6 8.8424 - - 8.7974 47.3216
8 0.4 9.9995 - - 9.7161 42.4853
8 0.0 20.7296 - - 18.4471 27.3551
1 1.0 1.0 4.5605 26.3318 70.83201 5.9143 70.9680
1 0.6 4.5063 24.9839 70.9535 5.8424 69.8799
1 0.4 4.5229 23.9774 71.9113 5.8626 69.9169
1 0.0 5.8754 28.3969 94.6047 7.6108 90.0799
2 1.0 1.0 4.7909 29.6924 79.9329 5.9603 59.2548
2 0.6 5.0561 31.7547 86.1163 6.1542 58.0050
2 0.4 5.3733 33.9143 91.4499 6.4217 57.9146
2 0.0 7.9663 52.2200 117.1394 9.3806 74.9330
8 1.0 1.0 8.8424 - - 8.7974 47.3216
8 0.6 10.3427 - - 9.9917 41.1701
8 0.4 11.7927 - - 11.1645 36.1786
8 0.0 20.7296 - - 18.4471 27.3551
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For the round edged simply supported plates Poisson’s ratio-dependent term should not be neglected. In
Figs. 2 and 3, the effect of Poisson’s ratio on low and high ordered super ellipses is accentuated. The changes
of the fundamental frequencies with respect to Poisson’s ratio are compared. It is seen that the Poisson’s ratio
effect becomes very minimal when high values of n are used for the super elliptical boundary shape equation.
In Fig. 2 elliptical shapes are considered and there are noticeable changes with changing Poisson’s ratios
especially for low aspect ratios. In Fig. 3 super ellipses geometrically similar to rectangles are considered and
the lines which represent the trend of the change are horizontal which means that the effect of Poisson’s ratio
is negligible for high powered super ellipses.

In context of this study the outcome of thickness variation is also considered. This effect is governed by 2
more parameters than the constant thickness cases, which are the controlling parameter of constant part of the
plate («) and controlling parameter of the thickness variation (f). Results of variable thickness calculations are
obtained for Poisson’s ratio of 0.3. The parameters for clamped and simply supported cases are presented in
Tables 8 and 9, respectively. Because of many controlling parameters the amount of probable combinations is
quite large. For some coinciding combinations comparisons with results from literature are also presented in
the same tables.

7. Concluding remarks

In Tables 6 and 7 the frequency parameters, A%, for 3 modes of super elliptical plates with constant thickness
are tabulated for different values of a/b ratios and Poisson’s ratios. Considering super ellipticity levels, the v
dependency is significant for low n values, but for high values of n where the plate edges are very straight there
is almost no v dependency. In Figs. 2 and 3, the v dependency of the frequency parameters is examined in a
graphical form for n = 1 and 10, respectively, in order to see the variation of the parameters for different super
ellipticity levels. For elliptical shapes with a/b = 1 the ratio of 4* for v = 0.3 to the one for v = 0.1 is 1.0684,
whereas the same ratio for n = 10 is 1.0002. From Fig. 2 the dependency of the frequency parameters can also
be examined for changing a/b values. It is clearly seen that for high a/b ratios the v dependency is negligible
because the slopes of the lines for these ratios are close to 0.

For super elliptical plates with variable thickness one can make the following observations from the results
given in Tables 8 and 9. For clamped plates if all the other parameters are kept fixed then the frequency
parameters increase with decreasing « values and this increase amount is sharp when o gets close to 0. If f8
parameter is varied the change in frequency parameters is very small and the direction of the change of
frequency parameters is the same as the direction of the change of . For simply supported plates the observed
change with respect to o is very small except for &« = 0. When « = 0 the same sharp change is observed.
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