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Abstract

Based on Maxwell equations and corresponding electromagnetic constitutive relations, the electrodynamic equations

and electromagnetic force expressions of a current-conducting thin plate in electromagnetic field are deduced. Nonlinear

magneto-elastic vibration equations of the thin plate are given. In addition, nonlinear subharmonic resonances of the thin

plate with two opposite sides simply supported which is under the mechanic live loads and in constant transverse magnetic

field are studied. The corresponding vibration differential equation of Duffing type is deduced by the Galerkin method.

The method of multiple scales is used to solve the equation, and the frequency-response equation of the system in steady

motion under subharmonic responses is obtained, and the stability of solution is analyzed. According to the Liapunov

stability theory, the critical conditions of stability are obtained. By the numerical calculation, the curves of resonance

amplitude changing with the detuning parameter, the excitation amplitude and the magnetic intensity and corresponding

state planes are obtained. The existing regions of nontrivial solutions and the changing law of stable and unstable solutions

are analyzed. The time history response plots, the phase charts and the Poincare mapping charts are plotted. And the effect

of the magnetic intensity on the system is discussed, and some complex dynamic performances as period-doubling motion

and quasi-period motion are analyzed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With the fast development of modern science and technology field such as aerospace industry, nuclear
industry, magnetic suspension transportation, electromechanical dynamic system, etc. the application of
electro-magneto mechanics are more and more extensive. The analysis on magneto-elastic dynamics of
structures under the complicated electro-magnetic filed has been more and more focused on. The interaction
of many fields such as electromagnetic field, mechanical field, must be considered of, so there are some
difficulties during creating models and solving equations. It is still the topic studied in both theoretical and
practical.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In recent years, the electromagnetic elasticity mechanics developed very quickly. Many researchers from
different countries made a lot of theoretical discussion and got some available results. Pao et al. [1,2] create a
foundation on the theory of electromagnetic elasticity dynamics by rational mechanic and axiomatization
system method. Moon and Eringen [2–4] established some theoretical models of electromagnetic elasticity
mechanics of ferromagnetic medium. Papers [5–7] studied the dynamic stability of ferromagnetic elastic beams
on theoretical and experimental viewpoints, respectively. Papers [8,9] elaborate about the dynamic and the
static stability of a thin plate in magnetic fields and thermal conditions. On the theoretical study of magneto-
elastic vibrations of a current-carrying thin plate, Ambarcumian and Moljchenko [10,11] did some creative
works and got a lot of available outcomes. Papers [12,13] analyzed the dynamic characteristics of a current-
conducting plate under the effect of the electric current and the pulse magnetics, respectively. Paper [14]
studied large dynamotor’s rotor winding’s electro-magnetic elasticity resonance and bifurcation. At present,
the focus is on the study of nonlinear vibration, bifurcation and chaotic dynamic of magneto-elastic coupling
system. Because many factors affect the system motion and their acting form is complex, there are still many
problems need to be further studied.

Based on papers [15,16], this paper further studies the magneto-elastic subharmonic resonance and stability
of current-conducting thin plate. The nonlinear vibration Duffing equation and the amplitude–frequency
response in the steady motion of a thin plate in the transverse magnetic field are derived. And the stability of
solutions is analyzed. At last, by means of calculated examples, the amplitude frequency-response curves,
dynamic response charts and Poincare mapping charts are obtained, and the effect of electromagnetic and
mechanical parameters on the system are analyzed.
2. The magneto-elastic oscillation equations of current-conducting thin plate

2.1. Electrodynamic equation

Considering the material is a nonpolarized and nonsusceptively good conductor, the specific conductance
and magneto-conductivity is same as that in the vacuum. We also can ignore the effect of the displacement
current. Therefore, as shown in Fig. 1, in Cartesian coordinate, each electromagnetic measure of internal
medium of conductive thin plates should satisfy the Maxwell’s electromagnetic equations

r � B ¼ 0; r �D ¼ 0; r � E ¼ �
qB
qt
; r �H ¼ J (1)

The electromagnetic constitutive relation is

D ¼ �0E; B ¼ m0H; J ¼ s Eþ
qu
qt
� B

� �
(2)

where B(Bx,By,Bz) is the magnetic induction density vector, H(Hx,Hy,Hz) the magnetic field intensity vector,
J(Jx,Jy,Jz) the current density vector, D(Dx,Dy,Dz) the electric displacement vector, E(Ex,Ey,Ez) the electric
field intensity vector, u(ux,uy,uz) the displacement vector of each internal point of the conductor, s the electric
conductance, e0 the dielectric constant in the vacuum, m0 the permeability in the vacuum, t is time variable,
‘‘r‘‘ the Hamilton operator.
o
x

y

z

h/2
h/2

B0

Fig. 1. Current-conducting thin plate in magnetic field.
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When the thin plate moves in the external magnetic field, the internal electromagnetic measure can be
written as [6]

HðHx;Hy;HzÞ ¼ H0ðH0x;H0y;H0zÞ þ hðhx; hy; hzÞ (3.1)

BðBx;By;BzÞ ¼ B0ðB0x;B0y;B0zÞ þ bðbx; by; bzÞ (3.2)

EðEx;Ey;EzÞ ¼ eðex; ey; ezÞ (3.3)

DðDx;Dy;DzÞ ¼ dðdx; dy; dzÞ (3.4)

where h, b, e, d are electromagnetic measures that excited by perturbation motion.
The displacement of each internal point of the plate can be expressed as

uxðx; y; z; tÞ ¼ uðx; y; tÞ þ zyxðx; y; tÞ (4.1)

uyðx; y; z; tÞ ¼ vðx; y; tÞ þ zyyðx; y; tÞ (4.2)

uzðx; y; z; tÞ ¼ wðx; y; tÞ (4.3)

where u, v, w are the displacement components of the points in middle plane; yx ¼ �ðqw=qxÞ, yy ¼ �ðqw=qyÞ.
Thus, based on the magneto-elastic hypothesis of a thin plate [10], we combine Eqs. (1) and (2), and

integrate over the period cycle [�h/2, h/2], the electrodynamic equations are got as followed:

qhz

qx
þ s ey �

qu

qt
B0z þ

qw

qt
B0x

� �
¼

hþx � h�x
h

(5)

qhz

qy
� s ex þ

qv

qt
B0z �

qw

qt
B0y

� �
¼

hþy � h�y

h
(6)

qey

qx
�

qex

qy
þ m0

qhz

qt
¼ 0 (7)

where hþx (x,y,h/2,t), h�x (x,y, �h/2,t) are the perturbation magnetic induction density of the surface and h is the
thickness of plate.

2.2. The expression of electromagnetic force

The expression of the Lorenz force in the magnetic field produced by amoeboid movement body is

fðf x; f y; f zÞ ¼ J� B (8)

Using the third equation of Eq. (2), and integrating along the thickness, the expression of electromagnetic
force and moment in a unit area of thin plate is obtained:

Fx ¼ shB0z ey þ B0x

qw

qt
� B0z

qu

qt

� �
(9)

Fy ¼ shB0z �ex þ B0y
qw

qt
� B0z

qv

qt

� �
(10)

Fz ¼ shB0y ex � B0y

qw

qt
þ B0z

qv

qt

� �
� shB0x ey þ B0x

qw

qt
� B0z

qu

qt

� �
(11)

mx ¼
sh3

12
B2
0z

q2w
qt qx

(12)

my ¼
sh3

12
B2
0z

q2w
qt qy

(13)
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2.3. The nonlinear magneto-elasticity vibration equation

We consider the interaction of mechanic field and electromagnetic field. On the basis of the basic hypothesis
of thin plates and the principle of virtual work, we can get the nonlinear magneto-elasticity vibration
equations of the plate under the condition of electromagnetic field [15]

qNx

qx
þ

qNxy

qy
þ Fx þ Px ¼ rh

q2u
qt2

(14)

qNy

qy
þ

qNxy

qx
þ Fy þ Py ¼ rh

q2v
qt2

(15)

q2Mx

qx2
þ

q2My

qy2
þ 2

q2Mxy

qx qy
þ

q
qx

Nx

qw

qx
þNxy

qw

qy

� �
þ

q
qy

Ny

qw

qy
þNxy

qw

qx

� �
þ

qmx

qx
þ

qmy

qy
þ Fz þ Pz

¼ rh
q2w
qt2

(16)

where Nx, Ny, Nxy are in-plane efforts; Mx, My, Mxy are bending moments, Px, Py, Pz are mechanical load and
r is density of the material.

Combining all equations we have got, and considering corresponding constitutive and geometrical
equations, then we got the nonlinear electromagnetic elasticity vibration equations which describe current-
conducting thin plate.

3. The subharmonic vibration of current-conducting thin plate in transverse magnetic filed

3.1. Nonlinear magneto-elastic vibration equations

Discussing the current-conducting metal thin plate under the mechanic dynamic load Pz ¼ p0 sinOt (p0 is
the amplitude of the live force, O is the frequency) in the constant transverse magnetic field B0(0,0,B0z).
Studying the magneto-elastic vibration of rectangular beam–plate with two opposite sides simply supported
(x ¼ 0,l) and other two sides free. Based on the magneto-elasticity vibration equation and the expression of
electromagnetic force, ignore the effect of inertia force in middle surface, the nonlinear magneto-elastic
vibration equations of beam–plate in transverse field leads to the following equation:

DM

q4w
qx4
þ rh

q2w
qt2
�

3

2
DN

qw

qx

� �2 q2w
qx2
�

sh3B0z

12

q3w

qt qx2
� Pz ¼ 0 (17)

Here, DN ¼ Eh/(1�v2) is the tensile strength, DM ¼ Eh3/12(1�v2) is the flexural strength, E the Young’s
modulus and n the Poisson ratio.

The solution of Eq. (17) in first mode expansion form, which satisfies the boundary condition, is given as follows:

wðx; tÞ ¼ FðtÞ sin
px

l
(18)

Substituting Eq. (18) into Eq. (17), using the Galerkin method to integrate the above equations, the
nondimensional Duffing equation with damping item is derived:

€qþ qþ Z01 _qþ Z02q
3 ¼ Z03 cos O0t (19)

where

Z01 ¼
sh2B2

0z

12ron

p
l

� �2
; Z02 ¼

3DNh

8ro2
n

p
l

� �4
; Z3 ¼

4p0

prh2o2
n

; on ¼

ffiffiffiffiffiffiffiffi
DM

rh

s
p
l

� �2
nondimensional term t ¼ ont, q ¼ F/h, O0 ¼ O/on, _q and €q are corresponding the first and second derivative of q

with respect to t.
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3.2. The solving method of subharmonic resonance

Considering the hard excitation to analyze the subharmonic resonance (O0E3) of the thin plate. Take
Eq. (19) as

€qþ q ¼ ��Z1 _q� �Z2q3 þ Z3 cos O0t (20)

where Z1 ¼ Z01/e, Z2 ¼ Z02/e, Z3 ¼ Z03 and e is the lead-in parameter.
Solving the above equation by the method of multiple scales [17,18] and expressing the approximate

solution as

qðt; �Þ ¼ q0ðT0;T1Þ þ �q1ðT0;T1Þ þ � � � (21)

Here, new independent variable T0 ¼ t, T1 ¼ et.
Substituting Eq. (21) into Eq. (20) and equate coefficients of like powers of e at each side of the equation.

We can obtain

D2
0q0 þ q0 ¼ Z3 cos O0T0 (22)

D2
0q1 þ q1 ¼ �2D0D1q0 � Z1D0q0 � Z2q

3
0 (23)

where D0 ¼ q=qT0, D1 ¼ q=qT1, D2
0 ¼ q2=qT2

0.
The general solution of Eq. (22) can be written as

q0 ¼ AðT1Þ expðiT0Þ þ L expðiO0T0Þ þ cc (24)

where L ¼ Z3(1�O0
2)�1/2, i2 ¼ �1, cc expresses conjugate complex items of the front items.

Then substitute Eq. (24) into Eq. (23), we can get

D2
0q1 þ q1 ¼ � ð2iA

0 þ iZ1Aþ 6Z2L
2Aþ 3Z2A

2ĀÞ expðiT0Þ � LðiZ1O0 þ 3Z2L
2

þ 6Z2AĀÞ expðiO0T0Þ � Z2fA
3 expð3iT0Þ þ L3 expð3iO0T0Þ þ 3A2L exp½ið2þ O0ÞT0�

þ 3Ā
2
L exp½iðO0 � 2ÞT0� þ 3AL2 exp½ið1þ 2O0ÞT0� þ 3AL2 exp½ið1� 2O0ÞT0�g þ cc (25)

where the apostrophe expresses the first derivative about T1, Ā express the conjugate complex of A.
In order to solve the equation, we lead the detuning parameter d, and let O0 ¼ 3+ed. To eliminate the

secular term, we put

ið2A0 þ Z1AÞ þ 6Z2AL2 þ 3Z2A2Āþ 3Z2Ā
2
L expðidT1Þ ¼ 0 (26)

Letting AðT1Þ ¼ ð1=2ÞaðT1Þ exp½ibðT1Þ� in Eq. (26) and separating real and imaginary parts, we obtain

a0 ¼ �
Z1
2

a�
3

4
Z2La2 sin g ðg ¼ dT1 � 3bÞ (27.1)

ag0 ¼ ðd� 9Z2L
2Þa�

9

8
Z2a3 �

9

4
Z2La2 cos g (27.2)

Under the condition of steady motion, let a0 ¼ g0 ¼ 0, then based on the above two equations and eliminate g,
we can finally obtain the amplitude frequency-response equation as

9
4
Z21 þ ðd� 9Z2L

2 � 9
8
Z2a2Þ

2
¼ 81

16
Z22L

2a2 (28)

The solution of Eq. (28) can also be expressed as

a2 ¼ k1 � ðk
2
1 � k2Þ

1=2 (29)

where

k1 ¼
8d
9Z2
� 6L2; k2 ¼

64

81Z22

9Z21
4
þ ðd� 9Z2L

2Þ
2

� �

Because k2 is the positive value, the nontrivial solution can only exist in the condition of k140 and k1
24k2.
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3.3. The analysis of stability

When we analyze the stability of equilibrium solution under tiny disturbance, we can use following
assumption:

a ¼ a0 þ a1; g ¼ g0 þ g1 (30)

where a0, g0 are equilibrium solutions of steady motion, a1, g1 are tiny disturbance terms.
Substituting Eq. (30) into Eq. (27), and expanding for small a1 and g1, noting that a0 and g0 satisfy Eq. (27),

and keeping linear terms in a1 and g1, we obtain

a01 ¼
Z1
2

a1 �
3Z2
4

La2
0 cos g0

� �
g1 (31.1)

g01 ¼ �
9Z2
4
ða0 þ L cos g0Þa1 �

3Z1
2

g1 (31.2)

Based on the Lyapunov stability approximation theory, the stability of equilibrium solution of Eq. (27)
depends on the eigenvalue of the coefficient matrix on the right-hand sides of Eq. (31). Through the Jacobi
matrix of Eq. (31), we can obtain the following eigenvalue equation:

Z1
2
� l �

3Z2
4
La2

0 cos g0

�
9Z2
4
ða0 þ L cos g0Þ �

3Z1
2
� l

								

								
¼ 0 (32)

If considering the condition that a0 and g0 are the equilibrium solutions of Eq. (27), expanding the above
determinant yields

l2 þ c1lþ c2 ¼ 0 (33)

where c1 ¼ Z1

c2 ¼ � 3
3Z2
4

� �2

La2
0ða0 þ L cos g0Þ cos g0 �

3

4
Z21

¼
3

2

3Z2a0

4

� �2

ða2
0 � k1Þ

here the expression of k1 is the same as Eq. (29).
Fig. 2. The existing region of subharmonic resonance (B0z�ed).
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Fig. 3. The existing region of subharmonic resonance (p0�ed).

Fig. 4. The existing region of subharmonic resonance (B0z�p0).

Fig. 5. The amplitude–detuning parameter curve.

H. Yuda, L. Jing / Journal of Sound and Vibration 319 (2009) 1107–1120 1113
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Fig. 7. The amplitude–excitation amplitude curve.

Fig. 6. The amplitude–excitation amplitude curve.

Fig. 8. The amplitude–magnetic density curve.

H. Yuda, L. Jing / Journal of Sound and Vibration 319 (2009) 1107–11201114
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Then according to Routh–Hurwitz criterion, we can get the necessary and sufficient condition which makes
the equilibrium solution stable under the condition of Z140 as

a2
04k1 (34)

4. The analysis of numerical results

Considering the aluminum thin plate, the main parameters are the electric conductivity s ¼ 3.63� 107O/m,
the density r ¼ 2670 kg/m3, the Poisson parameter n ¼ 0.34, Young’s modulus E ¼ 71GPa, the thickness
h ¼ 4mm and the dimension l ¼ 0.4m.

Figs. 2–4 correspondingly give the condition of existence of solutions in subharmonic resonance. Through
the evolution law of curves in Figs. 2 and 3, we can see that if given the relevant excitation amplitude value or
magnetic intensity the nontrivial solution does not exist when ed ¼ 0. The subharmonic resonance of the
system can only be excited when the detuning parameter reaches a certain value. Fig. 4 indicates that when we
Fig. 9. The amplitude–magnetic density curve.

Fig. 10. The phase trajectory chart of state plane (p0 ¼ 3000N/m2, B0z ¼ 0.8T): (a) ed ¼ 0.05, (b) ed ¼ 0.15.
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choose properly detuning parameter and only the excitation amplitude value in a specific range the nontrivial
solution can exist. But when the magnetic intensity reaches some values leading the nontrivial solution not to
exist, the subharmonic resonance is not excited.

Figs. 5–9 are the characteristic curves that resonance amplitude varies with detuning parameter, excitation
amplitude and magnetic induction intensity (the real line represents stable solution and the dashed represents
unstable solution). From Fig. 5, we can know that with the increase of detuning parameter the resonance first
be excited at p0 ¼ 1000N/m2, then at p0 ¼ 2000N/m2, last at p0 ¼ 3000N/m2. When the detuning parameter
reaches a certain value, the change of excitation amplitude affects amplitude a little. Fig. 6 indicates that when
the detuning parameter is at a definite value, with the increase of magnetic intensity, the range of excitation
amplitude which can excite the resonance is narrower. Fig. 7 indicates that when the magnetic intensity is at a
definite value, with the increase of detuning parameter, the range of excitation amplitude which can excite
resonance is wider but narrower in the opposite case. Fig. 8 indicates that when the excitation amplitude is at a
definite value, with the increase of detuning parameter, the range of magnetic intensity which can excite
resonance is wider but narrower in the opposite case. The resonance amplitude increases with the increase of
detuning parameter. From Fig. 9, we can see that when the detuning parameter at a certain value and the
magnetic intensity in some certain range, the change of excitation amplitude has a little effect on resonance
Fig. 11. The vibration characteristic plot (B0z ¼ 3.5 T): (a) The time history response plot. (b) The phase chart. (c) Poincare mapping

chart.
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amplitude. But when B0z ¼ 2.55T, the two lines which corresponding to p0 ¼ 2000 and 3000N/m2 intersect
which means that they have the same amplitude.

Fig. 10 is the phase trajectory chart of moving phase plane. S1 is the stable focus, S2 the saddle and the trend
of orbital depends on initial conditions. From the specific position of the focus and the saddle, we can see that
when ed ¼ 0.05 the stable solution is a ¼ 0.069 and the unstable solution is a ¼ 0.008; when ed ¼ 0.15 the
stable solution is a ¼ 0.182 and the unstable solution is a ¼ 0.116. These numeric values are anastomose with
the above amplitude characteristic curves.

In order to analyze the complex dynamic character of system further, in a given excitation amplitude value
(p0 ¼ 3000N/m2) and detuning parameter (ed ¼ 0.15), by changing magnetic intensity value, we obtain the
corresponding time history response plot, the phase chart and the Poincare mapping chart (Figs. 11–14). From
these figures, we can know that when B0z ¼ 3.5 T (Fig. 11) the subharmonic resonance is not excited and the
system expresses stable single-frequency periodic motion excited by external excitation. The phase chart is a
closed circle, the Poincare mapping chart expresses a small clusters of points set. When B0z ¼ 2.0 T (Fig. 12)
the subharmonic resonance is excited. The system expresses the classical stable period-doubling motion. The
phase chart is the closed curve twice intersected by three circles. The Poincare mapping chart expresses three
separated clusters of point sets. This is the typical form of the stable period-doubling motion. When
B0z ¼ 0.4 T (Fig. 13) system expresses the combinative motion of quasi-period motion and period-doubling
Fig. 12. The vibration characteristic plot (B0z ¼ 2.0 T): (a) The time history response plot. (b) The phase chart. (c) Poincare mapping

chart.
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Fig. 13. The vibration characteristic plot (B0z ¼ 0.4 T): (a) The time history response plot. (b) The phase chart. (c) Poincare mapping

chart.

H. Yuda, L. Jing / Journal of Sound and Vibration 319 (2009) 1107–11201118
motion. The phase chart is an annulus with boundary. The Poincare mapping chart still expresses three
separated clusters of points set. When B0z ¼ 0.25T (Fig. 14) the points in Poincare mapping chart constitute a
closed ring. The system expresses a complex quasi-period motion. From these we can know that in a certain
range of parameter, with the weakening of magnetic intensity, the motion transit from stable single-frequency
periodic motion to period-doubling motion and quasi-period motion.

From such results, we can see that when the subharmonic resonance happens, the system expresses a
complex dynamic behavior. We can control the system vibration by choosing the proper magnetic or
mechanical parameters.

5. Conclusions
(1)
 Magneto-elastic coupling dynamic problem is an interesting topic in recent years, and its not easy to
solve these questions. This paper is about the current-conducting thin plate in electromagnetic field,
and it is important theoretic meaning to study the nonlinear magneto-elasticity harmonic resonance
and stability.
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Fig. 14. The vibration characteristic plot (B0z ¼ 0.25T): (a) The time history response plot. (b) The phase chart. (c) Poincare mapping

chart.

H. Yuda, L. Jing / Journal of Sound and Vibration 319 (2009) 1107–1120 1119
(2)
 Through numerical example, we analyzed existence condition, amplitude value, and dynamic phenomenon
that changing with electromagnetic or mechanism, etc. These results indicate that we can control the
system dynamics behavior by means of changing corresponding parameter. The results can be used as a
reference to analyze the structure’s complex dynamic behaviors in actual magnetic field.
(3)
 Based on this paper, more problems can be studied, such as, nonlinear vibration of plate in complex
electromagnetic field, high dimension magneto-elastic dynamic, bifurcation and stability.
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