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Abstract

A stochastic averaging procedure for a single-degree-of-freedom (SDOF) strongly nonlinear system with light damping

modeled by a fractional derivative under Gaussian white noise excitations is developed by using the so-called generalized

harmonic functions. The approximate stationary probability density and the largest Lyapunov exponent of the system are

obtained from the averaged Itô stochastic differential equation of the system. It is shown that the approximate stationary

solutions obtained by using the stochastic averaging procedure agree well with those from the numerical simulation

of original systems. The effects of system parameters on the approxiamte stationary probability density and the largest

Lyapunov exponent of the system are also discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The fractional calculus has a history of more than 300 years. It is a subject on derivatives and integrals of
arbitrary order. The system model with fractional derivatives is established to describe the dynamic properties
of the systems in many fields, e.g., electrochemistry, thermal engineering, acoustics, electromagnetics,
mechanics, control and especially viscoelastic materials. Constitutive relations of viscoelastic materials based
on a fractional derivative are used to accurately describe the frequency-dependent damping behavior of many
materials. Gement [1] first proposed the fractional derivative constitutive model of the viscoelastic material in
the 1930s. Adolfsson [2] formulated a fractional order viscoelastic model for large deformations. It was also
shown by Bagley and Torvik [3–5] and Koeller [6] that a fractional derivative model can be applied to describe
the characteristics of some viscoelastic materials very well. Agrawal [7] presented the application of fractional
derivatives in thermal analysis of disk brakes. Deng et al. [8] used the fractional derivative model of dissipative
effects to study the response of polyurethane foam in quasi-static compression tests. Depollier et al. [9]
established fractional differential equations for the scattering operators deduced from the fractional
telegraph equation which described the propagation of transient acoustic signals in a layered porous medium.
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.06.026

ing author. Tel.: +86571 879 52651.

esses: ZLHuang@zju.edu.cn (Z.L. Huang), jinling113@gmail.com (X.L. Jin).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.06.026
mailto:ZLHuang@zju.edu.cn
mailto:jinling113@gmail.com


ARTICLE IN PRESS
Z.L. Huang, X.L. Jin / Journal of Sound and Vibration 319 (2009) 1121–11351122
Chen et al. [10] proposed to use the fractional order disturbance observer for vibration suppression
applications such as hard disk drive servo control.

Several methods have been developed to study deterministic systems with damping modeled by a fractional
derivative, including Laplace transforms [4,5], Fourier transforms [11], numerical methods [12–15],
eigenvector expansion [16], the averaging method [17–19] and so on. Spanos and Zeldin [20] proposed a
frequency-domain approach for systems with fractional derivatives. Agrawal [21–23] presented an analytical
scheme for stochastic dynamic systems with fractional derivatives by using the eigenvector expansion method
and the properties of Laplace transforms of convolution integrals. Ye et al. [24] studied the stochastic seismic
response of structures with viscoelastic dampers by using the Fourier-transform-based technique and the
Duhamel integral-type expression. Agrawal [25] presented an analytical solution for stochastic response of a
fractionally damped beam by using the normal-mode approach and the Laplace transform technique. All the
methods proposed for the stochastic systems with fractional derivative damping are only applicable to weak
nonlinear systems. To the authors’ knowledge, there is no analytical procedure for strongly nonlinear
stochastic systems with a fractional derivative.

In the present paper, based on the generalized harmonic functions, a stochastic averaging procedure for
SDOF strongly nonlinear stochastic dynamic systems with light damping modeled by a fractional derivative is
developed. The approximate stationary probability density and the largest Lyapunov exponent of the system
are obtained by using the averaged Itô stochastic differential equations. Three examples are given to illustrate
the application of the proposed procedure.
2. Generalized harmonic functions

Consider the free vibration of a nonlinear conservative oscillator. The equation of motion of the oscillator is
of the form [26,27]

€xþ gðxÞ ¼ 0 (1)

where g(x) is the strongly nonlinear odd function, i.e. g(�x) ¼ �g(x).
The first (energy) integral of the oscillator is

1

2
_x2 þUðxÞ ¼ H (2)

where H is the total energy and

UðxÞ ¼

Z x

0

gðuÞdu (3)

is the potential energy. Assume that functions g(x) and U(x)are such that Eq. (1) has periodic solutions
surrounding the origin in domain O on the phase plane ðx; _xÞ and the origin is an equilibrium point.
The periodic solution of Eq. (1) in O can be written as [26]

xðtÞ ¼ a cos yðtÞ

_xðtÞ ¼ �anða; yÞ sin yðtÞ

yðtÞ ¼ fðtÞ þ G (4)

where

nða; yÞ ¼
df
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½UðaÞ �Uða cos yÞ�

a2 sin2 y

s
(5)

in which a is related to H as follows:

UðaÞ ¼ Uð�aÞ ¼ H (6)
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where cos y and sin y are the so-called generalized harmonic functions [26], a is the amplitude of displacement
and n(a, y) is the instantaneous frequency of the oscillation. Expand n�1 into a Fourier series as follows:

n�1ða; yÞ ¼ C0ðaÞ þ
X1
r¼1

CrðaÞ cos ry (7)

Substituting Eq. (5) into Eq. (7) and integrating Eq. (7) with respect to y from 0 to 2p lead to the following
approximate averaged frequency of the system:

oðaÞ ¼ 1=C0ðaÞ (8)

Thus, in averaging we can use the following approximate relation:

yðtÞ � oðaÞtþ G (9)

3. Stochastic averaging procedure for the system with light damping modeled by a fractional derivative

Consider a strongly nonlinear conservative oscillator subject to light damping containing a fractional
derivative and weak Gaussian white noise excitations. The equation of motion is of the form

d2

dt2
X ðtÞ þ �c1DaX ðtÞ þ �c2h

dX ðtÞ

dt

� �
þ gðX Þ ¼ �1=2f k X ;

dX ðtÞ

dt

� �
W kðtÞ

0oao1 or 1oao2; k ¼ 1; . . . ;m (10)

where e is a small positive parameter, c1, c2 constant coefficients, hðdX ðtÞ=dtÞ a linear or nonlinear function of
dX ðtÞ=dt, g(X) the same as that in Eq. (1), �1=2f kðX ;dX ðtÞ=dtÞ amplitudes of weakly external and (or)
parametric excitations and Wk(t) Gaussian white noises with correlation functions

E½W kðtÞW lðtþ tÞ� ¼ 2DkldðtÞ (11)

ec1D
ax(t) denotes the fractional derivative damping. There are many definitions for a fractional derivative.

In the present paper, the following Riemann–Liouville definition is adopted [28]:

DaX ðtÞ ¼

1

Gð1� aÞ
d

dt

Z t

0

X ðt� tÞ
ta

dt; 0oao1

1

Gð2� aÞ
d2

dt2

Z t

0

X ðt� tÞ
ta�1

dt; 1oao2

8>>><
>>>:

(12)

The sample motion of system (10) is nearly periodic and can be written as

X 1 ¼ X ðtÞ ¼ A cos YðtÞ (13)

X 2 ¼ _X ¼
dX ðtÞ

dt
¼ �AnðA;YÞ sin YðtÞ (14)

where the dot represents the derivative with respect to t and

YðtÞ ¼ FðtÞ þ GðtÞ

nðA;YÞ ¼
dF
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½UðAÞ �UðA cos YÞ�

A2 sin2Y

s

¼ b0ðAÞ þ
X1
r¼1

brðAÞ cos rY (15)

in which A, Y, F and G are random processes. The averaged frequency can be obtained in a manner similar to
that in Eq. (8). Differentiating Eq. (13) with respect to t and equating the resulting equation to Eq. (14) yield

_A cos Y� _GA sin Y ¼ 0 (16)
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Differentiating Eq. (14) with respect to t and substituting the resulting equation together with Eqs. (13)
and (14) into Eq. (10) lead to

_A
gðAÞ � gðA cos YÞ cos Y

An sin Y
þ _G

gðA cos YÞ
n

¼ �c1DaðA cos YÞ þ �c2h �An sin Yð Þ � �1=2f kðA cos Y;�An sin YÞW kðtÞ (17)

Solving Eqs. (16) and (17), yields

dA

dt
¼ �F 1ðA;GÞ þ �1=2G1kðA;GÞW kðtÞ

dG
dt
¼ �F 2ðA;GÞ þ �1=2G2kðA;GÞW kðtÞ (18)

where

F1 ¼ F11 þ F12 (19a)

F 2 ¼
n cos Y

gðAÞ
c1DaðA cos YÞ þ

n cos Y
gðAÞ

c2hð�An sin YÞ (19b)

G1k ¼
�An sin Y

gðAÞ
f kðA cos Y;�An sin YÞ (19c)

G2k ¼
�n cos Y

gðAÞ
f kðA cos Y;�An sin YÞ (19d)

F11 ¼
An sin Y

gðAÞ
c1D

aðA cos YÞ (19e)

F 12 ¼
An sin Y

gðAÞ
c2hð�An sin YÞ (19f)

According to the Stratonovich–Khasminskii theorem [29], A(t) and G(t) converge weakly into a
two-dimensional diffusion Markov process as e-0, at a time interval 0ptpT, where T�Oð��1Þ. The
limiting process can be described by the averaged Itô stochastic differential equations. Because the averaged
Itô equation for A is independent of G, the limiting process A(t) is a one-dimensional diffusion process
governed by

dA ¼ mðAÞdtþ sðAÞdBðtÞ (20)

where the drift and diffusion coefficients are

mðAÞ ¼ � F11 þ F 12 þDkl

qG1k

qA
G1l þDkl

qG1k

qG
G2l

� �
Y

s2ðAÞ ¼ � 2DklG1kG1lh iY (21)

in which h�iY represents the averaging with respect to Y.
Because A and G vary slowly with time, the following approximate relation can be obtained by using

Eq. (9):

Yðt� tÞ � YðtÞ � oðAÞt (22)
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By using the approximate relation (22), the deterministic averaging of the term associated with fractional
derivative on the right-hand side of the first equation of Eq. (21) can be simplified as follows:

(a) 0oao1

hF 11iY ¼
c1

gðAÞ
lim

T!1

1

T

Z T

0

DaðA cos YÞ � An sin Ydt

¼
c1

gðAÞ
lim

T!1

1

TGð1� aÞ

Z T

0

An sin Y�
d

dt

Z t

0

X ðt� tÞ
ta

dt
� �

dt

¼
c1

gðAÞGð1� aÞ
lim

T!1

1

T

Z T

0

An sin Yd

Z t

0

X ðt� tÞ
ta

dt
� �

¼
c1

gðAÞGð1� aÞ
lim

T!1

1

T
An sin Y

Z t

0

X ðt� tÞ
ta

dt
� �����

T

0

�
1

T

Z T

0

Z t

0

X ðt� tÞ
ta

dt
� �

d

dt
ðn sin YÞdt

( )

(23a)

(b) 1oao2

hF 11iY ¼
c1

gðAÞ
lim

T!1

1

T

Z T

0

DaðA cos YÞ � An sin Ydt

¼
c1

gðAÞ
lim

T!1

1

TGð2� aÞ

Z T

0

An sin Y�
d2

dt2

Z t

0

X ðt� tÞ
ta�1

dt
� �

dt

¼
c1

gðAÞ
lim

T!1

1

T

Z T

0

An sin YdðDa�1X ðtÞÞ

¼
c1

gðAÞ
lim

T!1

1

T
ðAn sin YDa�1X ðtÞÞjT0 �

1

T

Z T

0

Da�1X ðtÞ
d

dt
ðn sin YÞdt

� 	

¼
c1

gðAÞ
lim

T!1
�

1

T

Z T

0

Da�1X ðtÞ
d

dt
ðn sin YÞdt


 �
(23b)

In Eqs. (23), A is treated as a constant in the integration because A varies slowly.
To simplify Eqs. (23), the following asymptotic integrals are used:Z t

0

cosðotÞ
tq

dt ¼ oðq�1Þ
Z s

0

cosðuÞ

uq
du ¼ oðq�1ÞðGð1� qÞ sin

qp
2

� 

þ

sinðsÞ

sq
þOðsð�q�1ÞÞÞZ t

0

sinðotÞ
tq

dt ¼ oðq�1Þ
Z s

0

sinðuÞ

uq
du ¼ oðq�1ÞðGð1� qÞ cos

qp
2

� 

�

cosðsÞ

sq
þOðsð�q�1ÞÞÞ

ðu ¼ ot; s ¼ otÞ (24)

Substituting Eq. (24) into Eq. (23a), the first term on the right-hand side of Eq. (23a) is

lim
T!1

1

T
n sin Y

Z t

0

X ðt� tÞ
ta

dt
� �����

T

0

� lim
T!1

1

T
An sin Y cos Y

Z T

0

cosðotÞ
ta

dtþ An sin2Y
Z T

0

sinðotÞ
ta

dt
� �

� lim
T!1

An sin Yoða�1Þ

T
Gð1� aÞ sin Yþ

ap
2

� 

þ

sinðoT �YÞ
ðoTÞa

� �
¼ 0 (25)

Substituting Eq. (24) into Eq. (23a) and using Eq. (25), Eq. (23a) can be further simplified as follows:

hF11iY �
�c1

gðAÞGð1� aÞ
lim

T!1

1

T

Z T

0

AgðA cos YÞ cos Y
Z t

0

cos oðAÞt
ta

dtþ sin Y
Z t

0

sinoðAÞt
ta

dt

 �

dt

�
�A

gðAÞ
�

c1

2po1�a

Z 2p

0

gðA cos YÞ½cos Y sinðap=2Þ þ sin Y cosðap=2Þ�dY ð0oao1Þ (26a)



ARTICLE IN PRESS
Z.L. Huang, X.L. Jin / Journal of Sound and Vibration 319 (2009) 1121–11351126
Similar to the derivation of /F11SY for 0oao1, Eq. (23b) can be reduced to

hF 11iY �
�c1

gðAÞ
lim

T!1

1

T

Z T

0

Da�1X ðtÞgðA cos YÞdt


 �

¼
�c1

gðAÞGð2� aÞ
lim

T!1

1

T
gðA cos YÞ

Z t

0

X ðt� tÞ
ta�1

dt
� �����

T

0

þ
1

T

Z T

0

Z t

0

X ðt� tÞ
ta�1

dt
� �(

�
dgðX Þ

dX
An sin Ydt

	
¼
�A2

gðAÞ
�

c1

2po2�a

Z 2p

0

dgðX Þ

dX
n sin Y½cos Y sinðða� 1Þp=2Þ

þ sin Y cosðða� 1Þp=2Þ�dY ð1oao2Þ (26b)

To complete the deterministic averaging of the drift and diffusion coefficients in Eq. (21), Gik are expanded
into Fourier series with respect to Y as follows [27]:

Gik ¼ Gik0ðAÞ þ
X1
n¼1

½G
ðcÞ
iknðAÞ cosðnYÞ þ G

ðsÞ
iknðAÞ sinðnYÞ�

i ¼ 1; 2 (27)

Substituting Eq. (27) into Eq. (21) and completing the averaging with respect to Y, one obtains the
following explicit expressions for the averaged drift and diffusion coefficients

mðAÞ ¼ �hF11iY þ
�c2A

gðAÞ

Z 2p

0

n sin Yhð�An sin YÞdYþ �Dkl

�
dG1k0

dA
G1l0 þ

1

2

X1
n¼1

dG
ðcÞ
1kn

dA
G
ðcÞ
1ln þ

dG
ðsÞ
1kn

dA
G
ðsÞ
1ln þ nG

ðsÞ
1knG

ðcÞ
2ln � nG

ðcÞ
1knG

ðsÞ
2ln

 !" #

s2ðAÞ ¼ �Dkl 2G1k0G1l0 þ
X1
n¼1

G
ðcÞ
1knG

ðcÞ
1ln þ G

ðsÞ
1knG

ðsÞ
1ln

� 
" #
(28)

The Fokker–Planck–Kolmogorov (FPK) equation associated with Eq. (20) is

qp

qt
¼ �

q
qA
½mðAÞp� þ

1

2

q2

qA2
½s2ðAÞp� (29)

The boundary condition for Eq. (29) depends on the domain O. If g(X) is a monotonic increasing
function for X40, the boundary conditions are p ¼ finite at A ¼ 0 and p; qp=qA! 0 as A-N. Herein, only
these boundary conditions are considered and the stationary solution of Eq. (29) is of the following form:

pðAÞ ¼
C

s2ðAÞ
exp

Z A

0

2mðuÞ

s2ðuÞ
du


 �
(30)

where C is a normalization constant.
The stationary probability density of the systemHamiltonian H ¼ U(A) can be obtained from Eq. (30) as follows:

pðHÞ ¼ pðAÞ
dA

dH

����
���� ¼ pðAÞ

gðAÞ

����
A¼U�1ðHÞ

(31)

where U�1 is the inverse function of U. Then the joint stationary probability density of the generalized displacement
and velocity can be obtained as follows:

pðx1; x2Þ ¼ pðHÞ=TðHÞ
��
H¼x2

2
=2þUðx1Þ

(32)

where

TðHÞ ¼
2p

oðAÞ

����
A¼U�1ðHÞ

(33)
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4. Asymptotic stability with probability one

The asymptotic stability with probability one of a stochastic system can be studied by using a Lyapunov
function or a Lyapunov exponent. The largest Lyapunov exponent can be used to determine the necessary and
sufficient condition for the asymptotic stability with probability one of the trivial solution of a stochastic
system. To obtain the largest Lyapunov exponent of the system by using the averaged Itô equation Eq. (20),
the new norm defined as the square root of the system Hamiltonian [30] is introduced

Y ðtÞ ¼ H1=2ðtÞ (34)

The averaged Itô stochastic differential equation for Y(t) can be obtained from Eq. (20) by using the Itô
differential rule

dY ¼ m̄ðY Þdtþ s̄ðY ÞdBðtÞ (35)

where

m̄ðY Þ ¼
1

2
Y�1gðAÞmðAÞ �

1

8
Y�3g2ðAÞ �

Y�1

4

dgðxÞ

dx

����
x¼A


 �
s2ðAÞ

s̄ðY Þ ¼ 1
2
Y�1gðAÞsðAÞ (36)

in which A is a function of Y because Y ¼ U1=2ðAÞ.
The approximate largest Lyapunov exponent can be derived by using Eq. (36) as follows [30]:

l ¼ lim
t!1

1

t
lnY ðtÞ ¼ m̄0ð0Þ � ðs̄0ð0ÞÞ2=2 (37)

Based on the Oseledec multiplicative ergodic theorem [31], the trivial solution of averaged system (35) is
asymptotically stable with probability one if lo0 and unstable if l40. The boundary between asymptotically
stable and unstable original system (10) is approximately determined by l ¼ 0.
5. Numerical simulation of a fractional derivative

The fractional derivative defined in Eq. (12) can be rewritten as follows:

DaX ðtÞ ¼
1

Gð1� aÞ
d

dt

Z t

0

X ðt� tÞ
ta

dt ¼
1

Gð1� aÞ
X ð0Þ

ta
þ

Z t

0

_X ðtÞ
ðt� tÞa

dt
� �

¼
1

Gð1� aÞ
X ð0Þ

ta
þ

Z t

0

_X ðt� tÞ
ta

dt
� �

¼
1

Gð1� aÞ
X ð0Þ

ta

þ
1

Gð2� aÞ

Z t1�a

0

_X ðt� s1=ð1�aÞÞds ðs ¼ ta; 0oao1Þ

DaX ðtÞ ¼
1

Gð2� aÞ
d2

dt2

Z t

0

X ðt� tÞ
ta�1

dt

¼
1

Gð2� aÞ
ð1� aÞX ð0Þ

ta
þ

_X ð0Þ

ta�1
þ

Z t

0

€X ðt� tÞ
ta�1

dt

 �

ð1oao2Þ (38)

By using the approximate initial relation DaX ð0Þ ¼ _X 0 as defined in Ref. [14], the following numerical
integration of fractional derivative is adopted:

DaX ðnDtÞ ¼
1

Gð1� aÞ
X 0

ðnDtÞa
þ

1

Gð2� aÞ

Xn

j¼1

Z ðjDtÞ1�a

ððj�1ÞDtÞ1�a

_X ðnDt� s1=ð1�aÞÞds

¼
1

Gð1� aÞ
X ð0Þ

ðnDtÞa
þ

1

Gð2� aÞ

Xn

j¼1

ðjDtÞ1�a � ððj � 1ÞDtÞ1�a

2
ð _X n�j þ _X nþ1�jÞ ð0oao1Þ
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DaX ðnDtÞ ¼
1

Gð1� aÞ
X ð0Þ

ðnDtÞa
þ

_X ð0Þ

Gð2� aÞðnDtÞa�1

þ

Pn
j¼1½ðjÞ

2�a
� ðj � 1Þ2�a�ð _X nþ1�j � _X n�jÞ

Gð3� aÞðDtÞa�1
ð1oao2Þ (39)

The samples of Gaussian white noises are generated by using a random number between zero and one [32].
The responses of the original system (10) are calculated by using the fourth-order Runge–Kutta algorithm
and Eq. (39).
6. Examples

6.1. Example 1

Consider a linear oscillator subject to nonlinear dampings containing a fractional derivative and Gaussian
white noise excitation. The equation of motion is of the form

d2

dt2
X ðtÞ þ a1D

aX ðtÞ þ a2
dX ðtÞ

dt

� �3

þ o2X ðtÞ ¼W ðtÞ (40)

where W(t) is a Gaussian white noise with intensity 2D1, o constant natural frequency and a1, a2 light
damping coefficients.

The conservative oscillator associated with system (40) is a linear oscillator, the following transformations
are adopted:

gðX Þ ¼ o2X

X 1 ¼ X ðtÞ ¼ A cos y

X 2 ¼ _X ðtÞ ¼ �Ao sin y

y ¼ otþ f (41)

Based on the stochastic averaging method described in Section 3, the averaged Itô equation for A is of the
form of Eq. (20) with the following averaged drift and diffusion coefficients of the form:

mðAÞ ¼ �
a1A sinðap=2Þ

2o1�a �
3a2o2A3

8
þ

D1

2o2A

s2ðAÞ ¼
D1

o2
(42)

The stationary solution of the system can be obtained as follows:

pðAÞ ¼
Co2A

D1
exp �

a1o1þa sinðap=2Þ
2D1

A2 �
3a2o4

16D1
A4


 �
(43)

where C is a normalization constant.
According to Eqs. (31) and (32), the joint stationary probability density of displacement and velocity can be

derived from Eq. (43) as follows:

pðx1;x2Þ ¼
Co
2pD1

exp �
a1o1þa sinðap=2Þ

2D1
ðx2

1 þ x2
2=o

2Þ �
3a2o4

16D1
ðx2

1 þ x2
2=o

2Þ
2


 �
(44)

The stationary probability density of displacement and the stationary probability density of velocity can be
derived from Eq. (44).

The stationary probability density of amplitude, the stationary probability density of displacement and the
stationary probability density of velocity are shown in Fig. 1, where the results for different a values are
compared. The joint stationary probability density of displacement and velocity obtained by using a numerical
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simulation of original system (40) and by using the averaging method for the case a ¼ 3/2 are shown in Fig. 2.
It can be seen from Figs. 1(b and c) that the stationary response of the system is close to a Gaussian
distribution when the fractional order value is small, while it is a diffusive limit cycle when the value of a is
large enough. It can also be observed from Figs. 1 and 2 that the results from analytical solutions by using the
proposed stochastic averaging procedure agree well with those from the numerical simulation of original
system (40), and the order of fractional derivative of the damping plays an important role in the stationary
response of the system. In the simulation of original system (40), the time step is 0.01 s, the number of samples
is 200 and the duration of time is 1600s.
6.2. Example 2

Consider a stochastic system with strongly nonlinear stiffness and damping modeled by a fractional
derivative. The equation of motion is of the form

d2

dt2
X ðtÞ þ cDaX ðtÞ þ o2

0X þ kX 3 ¼W ðtÞ (45)

where W(t) is a Gaussian white noise with intensity 2D1, o0 a linear stiffness coefficient and k a positive
nonlinear stiffness coefficient. The damping coefficient c and the excitation intensity 2D1 are small parameters.
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The following transformations are adopted:

X 1 ¼ X ðtÞ ¼ A cos YðtÞ

X 2 ¼ _X ðtÞ ¼ �AnðA;YÞ sin YðtÞ

YðtÞ ¼ FðtÞ þ GðtÞ

UðX 1Þ ¼ o2
0X 2

1=2þ kX 4
1=4 (46)

where

nðA;YÞ ¼ ½ðo2
0 þ 3kA2=4Þð1þ Z cos 2YÞ�1=2 � b0ðAÞ þ b2ðAÞ cos 2Yþ b4ðAÞ cos 4Yþ b6ðAÞ cos 6Y

Z ¼ kA2=ð4o2
0 þ 3kA2Þ (47)

in which

b0ðAÞ ¼ ðo2
0 þ 3kA2=4Þ1=2ð1� Z2=16Þ

b2ðAÞ ¼ ðo2
0 þ 3kA2=4Þ1=2ðZ=2þ 3Z3=64Þ
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b4ðAÞ ¼ ðo2
0 þ 3kA2=4Þ1=2ð�Z2=16Þ

b6ðAÞ ¼ ðo2
0 þ 3kA2=4Þ1=2ðZ3=64Þ (48)

According to the stochastic averaging method described in Section 3, the averaged Itô equation for the
amplitude A has the form of Eq. (20). The averaged drift and diffusion coefficients are expressed as follows:

mðAÞ ¼

D1
8o4

0 þ 3o2
0kA2 þ ðkA2Þ

2

16ðo2
0 þ kA2Þ

3A
�

cðo2
0Aþ 3kA3=4Þ sinðap=2Þ

2ðo2
0 þ kA2Þo1�a

; 0oao1

D1
8o4

0 þ 3o2
0kA2 þ ðkA2Þ

2

16ðo2
0 þ kA2Þ

3A
�

cA sinðap=2Þ

2ðo2
0 þ kA2Þo2�a

o2
0 þ

3kA2

4

� �
b0 �

o2
0

2
b2 �

3kA2

8
b4


 �
; 1oao2

8>>>>><
>>>>>:

s2ðAÞ ¼ D1
o2

0 þ 5kA2=8

ðo2
0 þ kA2Þ

2
(49)

where the averaged frequency o(A) ¼ b0(A). Then the stationary solutions of the system can be obtained by
using Eqs. (30)–(32).

The stationary probability density of amplitude, the stationary probability density of displacement and the
stationary probability density of velocity are shown in Fig. 3, where different orders of fractional derivative
are considered. The joint stationary probability densities of displacement and velocity from an analytical
solution and from a numerical simulation of original system (45) with a ¼ 2/3 are shown in Fig. 4. It can be
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observed from Figs. 3 and 4 that the results obtained by using the stochastic averaging method agree with
those from the numerical simulation of original system (45). In the simulation of original system (45), the time
step is 0.01 s, the number of samples is 300 and the duration of time is 2400 s.

6.3. Example 3

Consider the asymptotic stability with probability one of a SDOF system subject to the parametric excitation of
Gaussian white noise and damping modeled by a fractional derivative. The equation of motion is of the form

d2

dt2
xðtÞ þ cD1=2xðtÞ þ o2

0xðtÞ þ kx3ðtÞ ¼ _xW ðtÞ (50)

where W(t) is a Gaussian white noise with intensity 2D1, c the small damping coefficient, o0 a linear stiffness
coefficient and k a positive nonlinear stiffness coefficient.
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According to the stochastic averaging procedure described in Section 3, the averaged Itô equation for the
amplitude A is of the form of Eq. (20) with the following averaged drift and diffusion coefficients:

mðAÞ ¼ �
cðo2

0Aþ 3=4kA3Þ

2
ffiffiffiffiffiffi
2o
p
ðo2

0 þ kA2Þ
þ

D1Að5o6
0=8þ 7o4

0kA2=16þ 413o2
0ðkA2Þ

2=512þ 119ðkA2Þ
3=512Þ

ðo2
0 þ kA2Þ

3

s2ðAÞ ¼
D1A

2ð3o4
0=4þ 7o2

0kA2=8þ 67ðkA2Þ
2=256Þ

ðo2
0 þ kA2Þ

2
(51)

where o(A) is the same as that in Eq. (49).
Introducing the new norm in Eq. (34), the drift and diffusion coefficients for Y(t) in Eq. (36) can be obtained

from Eq. (51) as follows:

m̄ðY Þ ¼
ðo2

0Aþ kA3Þ

½2ðo2
0A2 þ kA4=2Þ�1=2

mðAÞþ

(
s2ðAÞ

½2ðo2
0A

2 þ kA4=2Þ�3=2

� ½ðo2
0 þ 3kA2Þðo2

0A
2 þ kA4=2Þ � ðo2

0Aþ kA3Þ
2
�
���

A¼A Yð Þ

s̄2ðY Þ ¼
ðo2

0Aþ kA3Þ
2

2ðo2
0A2 þ kA4=2Þ

s2ðAÞ

�����
A¼A Yð Þ

(52)

where A(Y) is the inverse function of Y ¼ ðo2
0=2A2 þ k=4A4Þ

1=2.
Case 1: o040.
In this case, the asymptotic expressions for drift and diffusion coefficients as Y-0 can be obtained from

Eq. (52) as follows:

m̄0ð0Þ ¼ �
c

2
ffiffiffiffiffiffiffiffi
2o0

p þ
5D1

8

s̄0ð0Þ ¼
ffiffiffiffiffiffiffiffiffi
3D1

p

2
(53)

Thus, the largest Lyapunov exponent can be obtained by using Eq. (37) as follows:

l ¼ m̄0ð0Þ � ðs̄0ð0ÞÞ2=2 ¼ �
c

2
ffiffiffiffiffiffiffiffi
2o0

p þ
D1

4
(54)

The approximate necessary and sufficient condition for the asymptotic stability with probability one of the
trivial solution (0,0) of system (50) is

c4
ffiffiffiffiffiffiffiffi
2o0

p
D1=2 (55)

Case 2: o0 ¼ 0.
In this case, the asymptotic expressions for drift and diffusion coefficients as Y-0 can be obtained

from Eq. (52) as follows:

m̄ðY Þ ¼ �
9cY 3=4

61=4
ffiffiffiffiffiffiffiffi
143
p

k1=8
þ

253D1

256
Y

s̄2ðY Þ ¼
67

64
D1Y

2 (56)

The largest Lyapunov exponent can be obtained by using Eq. (37) as follows:

l ¼ m̄0ð0Þ � ðs̄0ð0ÞÞ2=2 ¼
�1; c40

þ1; co0

(
(57)

Thus, the system is asymptotically stable with probability one when c40 and unstable when co0.

7. Concluding remarks

The stochastic averaging procedure for a SDOF strongly nonlinear oscillator subject to dampings modeled
by a fractional derivative and Gaussian white noise excitations has been developed by using generalized
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harmonic functions. The original system was reduced to a one-dimensional Markov process for amplitude A

by using the proposed stochastic averaging method. Then, the approximate stationary response and the largest
Lyapunov exponent of the system are obtained by using the averaged Itô stochastic differential equation. The
stationary probability densities obtained by using the stochastic averaging method agree well with those from
the numerical simulation of the original systems for two examples. The results showed that the order of
fractional derivative plays an important role in the responses of the systems. The largest Lyapunov exponent
and stochastic stability with probability one of a nonlinear conservative oscillator subject to light damping
modeled by a fractional derivative and stochastic parametric excitation depend on the value of the stiffness
coefficient. It should be pointed out that the response and stability of a multi-degree-of-freedom stochastic
system with dampings modeled by a fractional derivative can also be studied in a similar way.
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