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Abstract

In this paper an analytical model is proposed to study the nonlinear dynamic behavior of rolling element bearing systems

including surface defects. Various surface defects due to local imperfections on raceways and rolling elements are

introduced to the proposed model. The contact force of each rolling element described according to nonlinear Hertzian

contact deformation and the effect of internal radial clearance has been taken into account. Mathematical expressions were

derived for inner race, outer race and rolling element local defects. To overcome the strong nonlinearity of the governing

equations of motion, a modified Newmark time integration technique was used to solve the equations of motion

numerically. The results were obtained in the form of time series, frequency responses and phase trajectories. The validity

of the proposed model verified by comparison of frequency components of the system response with those obtained from

experiments. The classical Floquet theory has been applied to the proposed model to investigate the linear stability of the

defective bearing rotor systems as the parameters of the system changes. The peak-to-peak frequency response of the

system for each case is obtained and the basic routes to periodic, quasi-periodic and chaotic motions for different internal

radial clearances are determined. The current study provides a powerful tool for design and health monitoring of machine

systems.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rolling element bearings are one of the most widely used components in industrial applications. They have
a great influence on the dynamic behavior of the rotating machines and act as a source of vibration and noise
in these systems. There is a critical need to increase reliability and performance of rolling element bearings to
prevent catastrophic failure of the machinery. Defects in bearings may arise during use or during the
manufacturing process. Different methods are used for detection and diagnosis of bearing defects. Modeling
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

c damping coefficient, N s/m
D pitch diameter, mm
d ball diameter, mm
fu unbalance force, N
FFT fast Fourier transform
Id(t) impulse due to inner race defect
K constant for Hertzian contact elastic

deformation, N/m3/2

m mass of inner race and the rotor, kg
Od(t) impulse due to outer race defect
R pitch radius, mm
Rd(t) impulse due to rolling element defect
Ri inner race radius, mm
Ro outer race radius, mm
r ball radius, mm

t time, s
Wx horizontal component of radial force, N
Wy vertical component of radial force, N
Z number of balls
g internal radial clearance, mm
dj deformation at the point of the contact

of the jth rolling element, m
yj angular position of the jth rolling ele-

ment, rad
lj loading zone parameter of the jth rolling

element
o rotational speed of the shaft, rad/s
ob ball spinning frequency, rad/s
oc rotational speed of the cage, rad/s
obpi inner race defect frequency, rad/s
obpo outer race defect frequency, rad/s
ovc varying compliance frequency, rad/s
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and simulation methods provide an increasingly accurate approach for predicting the dynamic performance of
systems that include ball bearings.

Radially loaded rolling element bearings generate vibration even if they are geometrically perfect. This is
because of the use of a finite number of rolling elements to carry the load. The number of rolling elements and
their position in the load zone change with bearing rotation, giving rise to a periodical variation of the total
stiffness of the bearing assembly. This variation of stiffness generates vibrations commonly known as varying
compliance vibrations [1]. However, the presence of a defect causes a significant increase in the vibration level.
Bearing defects may be categorized as distributed or local. Distributed defects include surface roughness,
waviness, misaligned races and off-size rolling elements [2]. They are usually caused by manufacturing error,
improper installation or abrasive wear [3]. Local defects include cracks, pits and spalls on the rolling surfaces.
The dominant mode of failure of rolling element bearings is spalling of the races or the rolling elements,
caused when a fatigue crack begins below the surface of the metal and propagates towards the surface until a
piece of metal breaks away to leave a small pit or spall [4]. Whenever, a local defect on an element interacts
with its mating element, abrupt changes in the contact stresses at the interface result, which generates a pulse
of very short duration. This pulse produces vibration and noise which can be monitored to detect the presence
of a defect in the bearing.

A lot of research work has been published recently, on the detection and diagnosis of bearing defects [5–7].
Tandon and Choudhury [4] presented a complete review of vibration and acoustic measurement methods for
the detection of defects in rolling element bearings. But just few works present mathematical models for
simulation of local bearing defects and most of proposed models investigated the distributed defects
particularly waviness of raceways [8–11].

The early works on mechanical modeling of localized bearing defects was performed by McFadden and
Smith [12]. They proposed a vibration models for a single point defect on the inner race of a rolling element
bearing under radial load. In this model the vibration is modeled as the product of a series of impulses at the
rolling element passing frequency with the bearing load distribution and the amplitude of the transform
function, convolved with the impulse response of the exponential decay function. They developed the single
point defect model to describe the vibration produced by multiple point defects [13]. These models were
experimentally verified by NASA researchers using nonlinear signal analysis techniques [14].

Tandon and Choudhury [15] proposed an analytical model for predicting the vibration frequencies of
rolling bearings and the amplitudes of significant frequency components due to a localized defect on outer
race, inner race or on one of the rolling elements under radial and axial loads. The defects described with finite
width triangular, rectangular and half-sine pulses. The results showed that, when both radial and axial loading
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exist the outer race defects generates vibration in the outer race defect frequency and its harmonics.
For an inner race defects, in the absence of radial loading the vibration generated in the inner race defect
frequency. But in the case of both radial and axial loading, the vibration generated in the inner race defect
frequency and its sidebands at shaft frequency. They also reported that the vibration level is affected by the
pulse shape.

Sopanen and Mikola [16,17] proposed a dynamic model for a deep-groove ball bearing including localized
and distributed defects, effect of internal radial clearance and unbalance excitation of the system. The model
considers the Hertzian contact deformation and elastohydrodynamic fluid film in rolling contacts. For the
modeling purpose, the shape of the defect is described with the length and the height of the defect. The results
of their simulation indicates that both inner ring and outer ring defects generates vibration at their nominal
frequencies. They also found that the amplitude of the vibration for similar defects is higher for an outer race
defect. This is because the outer ring defect is always in the load zone, and thus the pulse occurs every time a
ball passes over the defect.

Cao and Xiao [18] presented a dynamic model for double-row spherical roller bearing and studied various
surface defects, including localized and distributed ones in their model. The spherical roller bearing systems
carries one more extra degree of freedom on the moving race so they formulated the roller inner/outer race
contact angles as functions of the axial displacement of the moving race to reflect their dependence on the axial
movement.

There is an urgent need to study the topological structure and stability of rotor bearing systems with ball
bearings. There are a lot of parameters which can act as a source of nonlinearity in these systems such as radial
internal clearance and also local surface defects. Recently, Tiwari et al. [19] and Harsha [20] investigated the
stability of a rigid rotor supported by deep-groove ball bearings and described the unstable ranges for different
radial clearances but the stability of a rolling bearing rotor system containing local surface defects has not
been studied before.

In this paper a mathematical method was developed based on the two-degree-of-freedom nonlinear
model proposed by Sunnersjo [1]. In this model, the rolling elements are modeled as nonlinear springs
according to Hertzian contact theory and the effect of loading zone has been taken into account. Fulata et al.
[21] analyzed the radial vibration of ball bearings derived from Sunnersjo’s model. They reported the system
may exhibit super-harmonic and sub-harmonic resonances, beat and chaotic vibrations. The surface defects
including single point defects on raceways and rolling elements were introduced to this model with several
mathematical expressions and the equations of motion were updated in each case. A modified Newmark time
integration technique used to solve the equations of motion numerically [22]. The classical Floquet theory is
applied to the proposed model to investigate the linear stability of the bearing system including local defects
on raceways and rolling elements. Finally, the basic routes to chaos in rolling bearing systems are discussed in
details.

2. Characteristic defect frequencies

There are some basic motions in rolling element bearings which demonstrate dynamics of the elements of
rotating bearing and each has its specific frequency. These frequencies are illustrated in Fig. 1. They are cage
ωb

ωbpo
ωc

ωbpi

ωs

Fig. 1. Basic frequency in a bearing.
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frequency (oc); ball passing inner race frequency (obpi), ball passing outer race frequency (obpo) and ball spin
frequency (ob). These frequencies are known as defect frequencies of rolling element bearings (see Appendix A
for more details). Any defect in bearing elements, results in an increase of vibration energy at defect
frequencies or combination of them [23].

For normal speeds, these defect frequencies lie in the low-frequency range and are usually less than 500Hz
[4]. In practice, however, these frequencies may be slightly different from the calculated values as a
consequence of slipping or skidding in the rolling element bearings [24].
3. Governing equations of motion

Consider the rolling element bearing is shown in Fig. 2. In this model which was developed by Sunnersjo [1],
the inner race of the bearing is assumed to have two degrees of freedom. The contact forces are summed over
each of the rolling elements to give overall forces on the shaft and bearing housing.

The overall contact deformation for the jth rolling element, dj, is given by

dj ¼ x cos yj þ y sin yj � g (1)

where g is the internal radial clearance. Neglecting the effect of rolling element inertia, the inner and outer race
contact forces can be combined with an overall contact stiffness. The total restoring forces in x and y direction
on the shaft and bearing housing is given by

f x ¼ K
XZ

j¼1

ljd
1:5
j cos yj

f y ¼ K
XZ

j¼1

ljd
1:5
j sin yj (2)

where lj is the loading zone parameter for the jth rolling element:

lj ¼
1 dj40

0 djp0

(
(3)

In Eq. (2) Z is the number of rolling elements and K is the overall contact stiffness which is obtained from
Hertzian deformation local to the contact zone. It depends on the geometry and material properties of the
contacting surfaces [16]. yj is the angular position of the jth rolling element which is given by

yj ¼
2pðj � 1Þ

Z
þ octþ y0 (4)

where oc is the cage frequency (see Appendix A) and y0 is the initial angular position of the first rolling
element respect to x-axis.
ω
O

ωc×tωc

x

y

2π/Z

Fig. 2. Mass–spring model of rolling element bearing.
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Now, the governing equations of motion can be obtained by applying the inertia, damping and restoring
force to the inner race as following:

m €xþ c _xþ f x ¼W x þ f u cos ot (5)

m €yþ c _yþ f y ¼W y þ f u sin ot (6)

where m is the mass of inner race and the rotor supported by bearing and c is the equivalent viscous
damping. Wx and Wy are the components of radial force acting on the rotor, fu is the unbalance force
which is taken for balanced rotor as zero and o is the shaft frequency. The governing equations of
motion (5) and (6) are two coupled strongly nonlinear second-order differential equations with parametric
excitation.

4. Surface defect modeling

When a local defect such as pitting exists in one of the bearing components, a transient force occurs
whenever another bearing component contacts the defective surface. A local fault produces an impulse
having a repetition rate equal to the characteristic frequencies (Appendix A) of the bearing: ball passing
frequency for the outer raceway, ball passing frequency for the inner raceway, and twice the ball spin
frequency [25]. Although, this can cause quite complex reactions within the bearing, for the purpose of
modeling, the reaction can be approximated by a short term impulses. The impulses are modeled using the
following operator:

LdðyÞ ¼
1 yj jpye

0 yj j4ye

(
(7)

where ye is the half of the desired length of the defect in tangential direction. Separate equations are developed
for each defect type. The amplitude of the impulse is affected by both the applied load and the angular velocity
at the point of the contact; it can also be modulated due to relative motion of the load zone. The duration of
contact between defect surface and rolling elements is too small, so the chosen impulse should last
proportional to the ratio of length of the defected surface to the circumference of the race way in which the
defect is located. The amplitude of the generated impulse is related to the loading ðL̄Þ and shaft speed and will
be modulated due to relative motion of the balls towards the load zone.

4.1. Inner race defect

The vibration produced by inner race defect can be modeled as a series of impulses repeating with the
frequency of inner race contact angle:

IdðtÞ ¼ aidAid ðhid ; L̄;oÞ
XZ

j¼1

ð1þ aidðjÞÞLd modðyij ; 2pÞ �
2p
Z
ðj � 1Þ � jid

� �
(8)

Also, the inner race contact angle yij:

yij ¼
2p
Z
ðj � 1Þ þ ðoc � oÞ � t (9)

aid is the amplitude modulation due to relative motion of the load zone respect to inner race, Aidðhid ; L̄;oÞ is
the mean impulse amplitude due to point defect with depth of hid, aid(j) is the amplitude modulation due to the
jth rolling element, jid is the initial angular offset of the defect to first rolling element.

In the above formulation, the effect of localized defects is modeled as an impulse sequence, which includes a
summation over the number Z of all rolling and the impulse sequence is then further added to the radial
displacement of each rolling element. It is notable that this summation over all rolling elements does not mean
that each rolling element produces an impulse individually. This procedure just finds those rolling elements
which pass the defective region on inner race surface by estimating the angular distance between defect
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position and each rolling element. If this angular distance is less than defect size an impulse would be
generated. Commonly, the defect size is small and just one rolling element at a certain time may pass the
defective region, however the formulation was written for general case. So if the defect size is such large that at
each time more than one rolling element contact it, the impulse amplitude would be modulated in the
corresponding defect function (e.g. Id(t)). Similarly, the above description may be explained for outer race and
rolling element defects as formulated in the following sections.

4.2. Outer race defect

For the case of localized defect on the outer race the vibration model is similar to that produced by an inner
race defect. So the vibration generated due to outer race defect can be expressed as

OdðtÞ ¼ aodAod ðhod ; L̄;oÞ
XZ

j¼1

ð1þ aod ðjÞÞ Ld modðyoj ; 2pÞ �
2p
Z
ðj � 1Þ � jod

� �
(10)

Since the outer ring is fixed the outer race contact angle is

yoj ¼
2p
Z
ðj � 1Þ þ oc � t (11)

where aod is the amplitude modulation due to relative motion of the load zone respect to inner race,
Aodðhod ; L̄;oÞ is the mean impulse amplitude due to point defect with depth of hod, aod(j) is the
amplitude modulation due to the jth rolling element, jod is the initial angular offset of the defect to first
rolling element.

4.3. Rolling element defect

When there is a defect on the ball surface, the defect impacts two times per revolution of the ball about its
own axis, one for inner ring and another for outer ring. Assuming that the response is different for contact on
the inner and outer race, but is the same each time the defect contacts a particular race, there will be a
periodicity based on the rotation of the rolling element. The generated impulse due to ball defect during
contact with inner and outer ring is expressed as below

Rid ðtÞ ¼ airdAirdðhbd ; L̄;oÞLd ðmodðyb; 2pÞ � jbd Þ (12)

Rod ðtÞ ¼ aordAordðhbd ; L̄;oÞLdðmodðyb; 2pÞ � p� jbd Þ (13)

And the total vibration generated due to rolling element defect can be expressed as

RdðtÞ ¼ Rid ðtÞ þ Rod ðtÞ (14)

where aird and aord are the amplitude modulation due to relative motion of the load zone respect to cage for
inner and outer race, respectively.

Airdðhbd ; L̄;oÞ and Aordðhbd ; L̄;oÞ are the mean impulse amplitude for inner and outer race.
jbd is the initial angular offset of the defect to the inner race at yb ¼ 0.

5. Linear analysis of stability

The classical Floquet Theory is applied to the system of nonlinear differential Eqs. (5) and (6) to determine
the linear stability of the bearing system. Consider

_UðtÞ ¼ F ðt;UðtÞ;sÞ (15)

where s is the bifurcation parameter and U(t) and F defined as

UðtÞ ¼ x y _x _y
� �T

(16)
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F ¼

_x

_y

�
1

m
c _xþ K

PZ
j¼1

ljd
1:5
j cos yj

 !

�
1

m
c _yþ K

PZ
j¼1

ljd
1:5
j sin yj

 !

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(17)

The solution ~UðtÞ of Eq. (15) is assumed to oscillate at the varying compliance frequency, so it has the
period of T ¼ 1/Ovc where Ovc ¼ ZOvc is the varying compliance frequency, so that:

~UðtÞ ¼ ~Uðtþ TÞ (18)

Substitution of the assumed solution (18) into Eq. (15) and introducing u(t) as the perturbation of the
periodic solution yields

_~UðtÞ þ _uðtÞ ¼ F ðt; ~UðtÞ þ uðtÞ; aÞ (19)

The Linearized perturbation equation can be determined by expanding F as the Taylor series expansion and
considering just the linear terms:

_uðtÞ ¼ AðtÞuðtÞ (20)

where AðtÞ ¼ qF=q ~UðtÞ which is a periodic function of period T. The elements of matrix A is given in
Appendix C. By classical Floquet theory, any fundamental matrix U, which is defined as a non-singular matrix
satisfying

_UðtÞ ¼ AðtÞUðtÞ (21)

Can be given as

UðtÞ ¼ PðtÞ expðtRÞ (22)

P(t) is a non-singular matrix of periodic functions with the same period T, and R is a constant matrix, whose
eigenvalues are the characteristic exponents of dynamical system (20). If the fundamental matrix is normalized
such that U(t0) ¼ I, the monodromy matrix of the system (20) can be calculated as

~MT ¼ expðTRÞ ¼ Uðt0ÞUðt0 þ TÞ (23)

The monodromy matrix ~MT does not depend on the initial time t0 [26]. The eigenvalues of monodromy
matrix give the Floquet multiplier of the system which can be used to determine the linear stability of the
periodic solutions as follows [27]:
(a)
 if all the multipliers are located within the unit circle, the system is stable,

(b)
 if one of the multipliers leaves the unit circle through �1, this indicates period multiplying bifurcations,

(c)
 if one of the multipliers leaves the unit circle through +1, this could indicate bifurcations, possibly

including a saddle node,

(d)
 if a pair of complex conjugate multipliers is leaving the unit circle, a Hopf, or a secondary Hopf

bifurcation could occur.
6. Numerical results

The governing equations of motion introduced in previous section are solved numerically using the modified
Newmark time integration technique [22] and the response of the system was obtained. The overall contact
deformation of the jth rolling element, dj, was updated to include the effect of each defect as
dj ¼ x cos yj+y sin yj�(g+I(t)). As introduced in previous sections I(t) is the impulse function corresponding
to each defect. The transient vibrations of the system were eliminated by introducing an appropriate damping
to achieve the steady-state response of the system. For a given mass 0.6 kg and Wy ¼ 6N in the present study,
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the damping coefficient was chosen to be 200Nm/s. As it was mentioned before when the bearing rotates the
loaded zone will change as a function of time resulting in parametric excitations. In parametrically excited
systems, it is always difficult to estimate the frequency content of the response in advance. This information is
needed to determine the time step in the Newmark time integration method. Hence, in calculations the time
step was chosen to be Dt ¼ 10�5. For fast convergence, the following initial conditions were applied to the
system under investigation: initial displacements are (x0 ¼ 1 mm, y0 ¼ 1 mm) and the initial velocities set to be
ð _x0 ¼ 0; _y0 ¼ 0Þ.

6.1. System under investigation

In the present study, the analysis applied to a 6205-2RSL JEM SKF deep-groove ball bearing. The bearing
specifications including bearing geometry, defect frequencies and size of each defect are listed in Tables 1–3.
This bearing used as motor shaft support at the drive end of a 2 hp, three-phase induction motor (left)
(Reliance Electric 2HP IQPreAlert motor). There is also another bearing at the fan end of the motor which
was not studied in this work. Single point faults were introduced to the test bearings using electro-discharge
machining with fault diameters of 7mil (1mil ¼ 0.001 in). Digital data were collected at 12,000 samples per
second. The test stand is shown in Fig. 3. All data related to the bearing and the system under investigation
belongs to Case Western Reverse Lab. and is with permission of Dr. Kenneth A. Loparo. More details about
experimental setup are reported in Ref. [5].

To assure the validity of the proposed model, a number of simulated results compared with experimental
data. The results of this comparison are reported in the next section. The experimental setup is a complex
system which contains interaction between different parts of the system, particularly defective bearings. The
analytical model developed in this work is a simple model to study the principle features of a defective bearing.
This model does not take into account the interaction between two bearings.

6.2. Experimental validation

In this step of study, the simulation results of a defective rolling element bearing at the ‘‘drive end’’
containing single point defects on inner race, outer race and rolling elements are compared to experimental
data. In order to reduce the effect of the noise on the gathered experimental data an orthogonal wavelet
denoising was performed according to the procedure developed in Ref. [28]. After that, the frequency
Table 1

Dimensions of derive end bearing (deep-groove ball bearing type 6205-2RSL JEM SKF) in mm

Z 2�Ri 2�Ro d D

9 25 52 8 39

Table 2

Defect frequencies in Hz (for shaft speed 1750 rev/minE29.17Hz)

obpi obpo oc ob

157.94 104.56 11.62 68.74

Table 3

Size and depth of defects (in mil ¼ 0.001 in)

Inner race Outer race Rolling element

Size 7 7 7

Depth 7 7 7
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Fig. 3. The test stand, picture by permission of Dr. Kenneth A. Loparo, Case Western Reverse Lab.
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spectrum of the denoised signal can be produced using the conventional fast Fourier transform (FFT) to
obtain frequency components in details.

Figs. 4a–d show the displacement and velocity response of a normal bearing without any defects. The
response of the system reaches to steady state after a period of time. In Figs. 4e and f the original signal and
the denoised signal are shown, respectively. The frequency spectrum of the denoised signal and those obtained
from the velocity response of the proposed model are shown in Figs. 4g and h, respectively. As it can be seen in
these two figures, corresponding spectrums included the expected frequency at the varying compliance
frequency (104.56Hz). The frequency spectrum of experimental data have a peak at 106Hz and in the
frequency response obtained from the proposed model, a peak occurs at 105.3Hz. Since the results obtained
from the experiment are all reported in mV it is not possible for authors to compare the response amplitude of
the proposed model and experimental data. This frequency was detected both in horizontal and vertical
frequency spectra of the velocity of the system but the amplitude of the horizontal spectrum are much higher
than the vertical spectrum which is not clear in Fig. 4h. As a result, comparison of frequency content of
analytical model and experimental test confirms the successful modeling of the effect in this analysis. There are
also some other frequencies which are related to the operating frequency (1750 rev/minE29.17Hz) of the
system and the interaction between drive end and fan end bearings. The varying compliance frequency
and ball passing outer race frequency of the fan end bearing are, respectively, 89.05 and 144.28Hz.
These frequencies are also appeared in the spectrum of experimental data which were not discussed in this
analysis. But if we import the specification of this bearing in our model we can compute these frequency
contents as well.

In Figs. 5a–d the displacement and velocity response for bearing with a single point defect on outer race are
plotted. The size and depth of the defect are listed in Table 3. Although the response looks complex, it is still
periodic. Fig. 5e shows the original signal obtained from an experiment on an outer race damaged bearing.
Fig. 5f illustrates the gathered signal from the experimental test after denoising procedure. In Figs. 5g and h
the frequency spectrum of the gathered signal and the simulated response are compared to each other. As it
can be seen in these figures, the dominant frequency of the corresponding spectrums is the ball passing outer
race frequency (104.56Hz). It was explained in previous sections that even perfect bearings generates vibration
at varying compliance frequency, ovc which is equal to ball passing outer race frequency. But in the presence
of a local defect this frequency will be excited strongly which increases the amplitude of the vibration. The
difference between a normal bearing without any defect and a defective one including local defects on outer
race can be distinguished by comparing the vibration level of the response of the system at varying compliance
frequency. From Figs. 4h and 5h it can be seen that the amplitude of the vibration (57 mm/s) at
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bearing and (h) FFT for normal bearing model.
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this frequency (104.56Hz) is considerably higher than the amplitude of the vibration for a normal bearing
(1.36 mm/s).

For an inner race defect the displacement and velocity response of the system is shown in Figs. 6a–d. The
same procedure is applied to the original signal gathered from experimental analysis and the denoised signal
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which are shown in Fig. 6e and f, respectively. The fast Fourier transform of the denoised signal is shown in
Fig. 6g. The frequency spectrum contains a dominant peak very close to ball passing inner race frequency
(157.94Hz). This figure shows a peak at 158Hz. There is also a smaller peak around the varying compliance
frequency (104.56Hz). This peak is appeared in the frequency spectrum at 106Hz. Fig. 6h is the frequency
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spectrum of the velocity response obtained from the proposed model. As it can be seen there is a dominant
peak at 157.2Hz which is almost near the ball passing inner race frequency.

At the end of this section, the effect of rolling element defect was studied. The displacement and velocity
time response of the system are illustrated in Figs. 7a–d. The original and denoised signals corresponding to
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the bearing with a local defect on rolling elements are shown in Figs. 7e and f, respectively. The frequency
spectra for the experimental and the simulated response of the system are compared to each other in Figs. 7g
and h. In this case, there is a dominant peak around twice of ball spin frequency (137.48Hz) in both spectra.
This frequency was appeared in Fig. 7g at 138Hz while in Fig. 7h it was appeared at 137.3Hz. The varying
compliance frequency is also appeared in the frequency spectrum of the system under investigation.
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The above study shows that the main contributions of the frequency spectra obtained by the proposed
model are in accordance with reported experimental spectra for various defect conditions.

6.3. Stability analysis

In this work, taking the shaft speed as a parameter of study, the effect of radial internal clearance in rolling
element bearings contain local surface defects on raceways and rolling elements is studied. The dynamic model
developed in this study used for investigation of instability and the route to chaos in the dynamic response of
the system as the operating speed of the system is changed. The steady-state response of the rotor bearing
system was obtained and the peak-to-peak response of the horizontal and vertical displacement plotted by
numerical integration. The appearance of different regions of periodic, periodic doubling and chaotic behavior
of the system for various local surface defects at different radial clearances would be discussed in this section.
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Fig. 8 shows the peak-to-peak displacement response of a bearing system without any defect in horizontal
and vertical directions for three classes of radial internal clearance is shown for comparison. Fig. 9 illustrates
the projection of phase trajectories for various radial clearances of a normal bearing rotor system. It can be
seen from these figures that a continuous change in rotational speed of the shaft changes the shape of the
chaotic motion.

Now, the peak-to-peak displacement response of a bearing system with single point defect on inner race,
outer race and rolling elements would be studied. The peak-to-peak response and phase trajectories are plotted
in horizontal and vertical directions for three classes of radial internal clearance. Considering the response
over a large range of rotational speed, 500–5000 rev/min, the motion may be simply categorized at any
particular speed to various regions.

Fig. 10a shows the response of a bearing system with single point defect on inner raceway with small radial
clearance (5 mm). The response of the system indicates the characteristics of a softening nonlinear system. It
contains peaks accompanied by jump phenomena and transition stages. The motion is completely chaotic at
low speeds up to 1000 rev/min but as the speed increases the stability returns to the system and the transition
stages grow off. In these regions, i.e. 1450–1600 or 2300–3200 rev/min, the motions is quasi-periodic because
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of the net structure of the phase trajectories and there are period doubling bifurcations. At the end of each
stage, i.e. 1650 or 3290 rev/min, the fold bifurcation take places and the jump in the response of the system
occurs. Because of this bifurcation, the motion leads to instability after which chaos suddenly appears. As
speed increases the stability returns in next transition stage through period doubling bifurcations. At high
shaft speeds the time responses show beating and chaotic behavior. The corresponding phase trajectories to
the bearing with a single point fault on inner race and radial internal clearance of 5 mm is shown in Figs. 11a
and b.
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The response of the system for radial clearance of 13 mm is shown in Fig. 10b. The phase trajectories for this
case are plotted in Figs. 11c and d. Two regions of unstable response can be distinguished in this figure in
which the chaotic motion may be preceded on one side by a cascade of period doubling bifurcations. At speed
1700 rev/min the stability returns to the system and up to 2100 rev/min the motion is quasi-periodic and there
are period doubling bifurcations. As a dominant effect of increasing the radial clearance, the jump phenomena
do not appear in the response as investigated for small clearances. The amplitude modulation in the frequency
response indicates the system undergoing Hopf bifurcations, i.e. 2200 and 3100 rev/min, through which the
quasi-periodic motion loses stability. In this case, the eigenvalues of the monodromy matrix leave the unit
circle in the complex plane. The cascade of period doubling bifurcations gives way to chaotic solutions in these
regions. As speed increases the chaotic response weakens to give way to quasi-periodic solutions. From 3000
to 5000 rev/min there are quasi-periodic responses which the stability of the system increases along the speed.
The amplitude of the vibrations decreases after 4400 rev/min.

For a large radial clearance of 30 mm the response of a defective bearing containing a single point defect on
its inner raceway is shown in Fig. 10c. The response pattern is quite different in comparison with two last
cases. There are three speed ranges in which the periodic solution loses stability. The phase diagrams for a
number of selected speeds are shown in Figs. 11e and f. The first speed range as depicted in Fig. 10c is from
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500 up to 2500 rev/min. It has period doubling bifurcations. From speed 1400 up to 2000 rev/min the motion is
quasi-periodic because of the net structure of phase trajectories. As speed increases up to 2500 rev/min the
stability returns and the motion leads to periodic solutions. In the second speed range 2700–3700 rev/min the
phase trajectories of the system have fractal structure which indicates the chaotic behavior of the system.
After that, the stability returns and the motion becomes quasi-periodic. In the third region from 4000 to
5000 rev/min the quasi-periodic motion loses stability by the way of boundary crisis route to chaos.

In the case of an outer race defect, the response is shown in Fig. 12. Here also the stiffness softening
characteristic of the system at small clearances is quite apparent. It can be seen from Fig. 12a that response
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Fig. 12. Peak-to-peak displacement response of a bearing system with single point defect on outer raceway: (a) g ¼ 5 mm, (b) g ¼ 13mm
and (c) g ¼ 30 mm.
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contains jump phenomena and transition stages. It was also observed that except around the jump regions the
response curve is similar to those obtained from a normal bearing. The most important route to unstable
periodic solutions along transition stages is period doubling. The jump phenomena occur through fold
bifurcation in an interior crisis route to chaos. The sudden increase in the size of a chaotic attractor occurs
while the chaotic attractor collides with periodic orbits in the interior of its basin. The interior crisis route to
chaos induces intermittency in the system which leads to a permanent jump between two chaotic attractors.
These are regions of multivalued solutions which it is difficult to find all periodic solutions by numerical
integrations. The eigenvalues of the monodromy matrix cross from +1. Another pattern of transition
response is periodic in waveform which occurs almost at high operational speeds which can be detected in
Figs. 13a and b. The response for radial clearance of 13 mm is illustrated in Fig. 12b. Two regions can be
identified which have unstable periodic motion. The response is almost similar to those obtained for inner race
defect at this clearance. Here also two regions of unstable periodic response can be identified, i.e. from 500 to
1700 rev/min and also from 2100 to 3500 rev/min, but as depicted in Figs. 13c and d the orbits are fairly
structured while for inner race defects the phase plot shows that more dense orbits points are surrounded by
less dense points. Fig. 12c shows the response curve in the presence of outer race defect for large radial
clearance g ¼ 30 mm. The response contains a region of high amplitude solution in the speed range of 500 up to
2600 rev/min. As the speed increase from 500 up to 1400 rev/min the stability of the system increases and there
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are period doubling bifurcations. From 1400 to 2500 rev/min the motion becomes quasi-periodic because of
the net structure of phase trajectory. From 2600 to 3500 rev/min the chaos come out in a quasi-periodic route.
The stability returns to the system in the range of 3800–3950 rev/min. As speed increases from 4000 rev/min,
the collision of chaotic attractors with periodic orbits on their basin boundaries lead to sudden destruction of
chaotic attractors and the boundary crisis route give way to chaos. The projection of phase trajectories for
selected speeds is shown in Figs. 13e and f.

Now, the stability and the nature of the solution in presence of a single point defect on one of the rolling
elements would be discussed. Fig. 14a shows the response curve for small value of radial clearance g ¼ 5 mm.
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Fig. 14. Peak-to-peak displacement response of a bearing system with single point defect on rolling elements: (a) g ¼ 5mm, (b) g ¼ 13mm
and (c) g ¼ 30 mm.



ARTICLE IN PRESS
A. Rafsanjani et al. / Journal of Sound and Vibration 319 (2009) 1150–11741170
As it can be seen the response here also contains successive jump phenomena and transition stages. It can be
seen that the response is similar to what was detected in the case of inner race defect at this clearance but the
peaks in which jump occurs shifted to left in this figure. The basic route to chaos in small clearances is interior
crisis. The nature of the motion in transition stages is quasi-periodic which is apparently can be identified from
the projection of phase trajectories illustrated in Figs. 15a and b. In the regions far from jump peaks, the
stability increases as speed increases. In Figs. 14b and c the peak-to-peak response is shown for radial internal
clearances of 13 and 30 mm, respectively. As it can be seen from Fig. 14b there are two regions in which the
motion is quasi-periodic and chaotic. Up to 1700 rev/min, the chaotic behavior in low speeds weakens through
a period doubling route. In the speed range 1700–2000 rev/min the stability increases and the phase trajectories
become fairly structured which indicates response reaches to periodic solution but it is not quite periodic.
The second chaotic region starts at 2050 rev/min through Hopf bifurcation and the peak-to-peak response
shows amplitude modulation. As speed increase up to 3000 rev/min the phase trajectory shows fractal
structure which indicates chaotic motion. After that the stability returns to the system and the projection
of phase trajectories change to net structure which is the representative of quasi-periodic solution.
In Fig. 14c it was shown that for large clearance g ¼ 30 mm, there are period doubling bifurcations up to
1700 rev/min. The region from 1700 to 2000 rev/min has unstable response due to Hopf bifurcations. It results
in an amplitude modulation and quasi-periodic response. At 2050 rev/min the Hopf bifurcation occurs and
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again the peak-to-peak response goes up. The stability returns to the system at 2650 rev/min. As speed
increases the chaotic response can be seen from 2900 to 3700 rev/min through a period doubling bifurcation
route. The response changes to quasi-periodic from 3800 to 4200 rev/min. The chaotic response appears from
4200 rev/min. There are boundary crisis route to chaos in this region. The phase trajectories correspond to
radial clearance g ¼ 30 mm are plotted in Figs. 15e and f.

7. Conclusion

In this paper the effect of local surface defects on the stability and the dynamic response of a rolling element
bearing rotor system were investigated using an analytical model. The response of the bearing system was
compared with those obtained from experiments. The accordance of the frequency components obtained from
the mathematical model with those appeared in the frequency spectrum of the experimental data verifies the
validity of the proposed model. It was investigated that the defect frequencies are slightly different from
calculated values as a consequence of slipping and skidding in the rolling element bearings.

The linear stability analysis of the system indicates the existence of stable and unstable regimes in the
response of the system. This analysis shows that in most range of shaft speeds, the system is not depended on
initial conditions but strongly affected by the parameters of the system particularly radial internal clearance
and surface defects. According to the results of the current simulation, the important routes to chaotic motion
can be categorized as following:

For small radial clearance the basic route to chaos is interior crisis and jump phenomena though fold
bifurcations. There are transition stages in which the period doubling is the usual route to instability and
quasi-periodic solutions. The nonlinearity bends the frequency response to the left which indicates softening
characteristic of the system. The bending of the frequency response leads to multivalued amplitudes and hence
the jump phenomena. The location of defect at small clearance affects the frequency at which the jump occurs.
For outer race defect the peaks occurs at low shaft speeds while in the case of inner race and rolling element
defect the response contain several peaks as speed increases. The peak frequencies are different in each case.

For normal and large clearances the motion is quite unstable and in most speed ranges the system
undergoing the quasi-periodic and chaotic motion. In this case the regions of unstable periodic motion would
be extended. For normal clearances period doubling bifurcations and Hopf bifurcations are the usual routes to
unstable periodic solutions while for large clearances the boundary routes to chaos also occurs especially at
high speeds. The chaotic nature of motion rises up in the presence of rolling element defects while the outer
race defect has minimal effect on unstable routes to chaos. It can be observed especially at high-speed ranges.

The current study gives designers a powerful tool for prediction of the trends of instability in rolling element
bearing rotor systems in the presence of local surface defects. The proposed model can be used for design,
predictive maintenance and also condition monitoring of machines.
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Appendix A

For a bearing with a stationary outer race, the defect frequencies are given by the following expressions [23]:
The rotational speed of the cage

oc ¼
o
2

1�
d

D
cos a

� �
(A.1)

The outer race defect frequency

obpo ¼ Zoc ¼
Zo
2

1�
d

D
cos a

� �
(A.2)
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The inner race defect frequency

obpi ¼ Zðo� ocÞ ¼
Zo
2

1þ
d

D
cos a

� �
(A.3)

The ball spinning frequency

ob ¼
o
2

D

d
�

d

D
cos2 a

� �
(A.4)

Appendix B

According to Hertzian theory, the geometry of a point contact is described by four radii of curvature. By
definition, convex surfaces have positive radii and concave surfaces have negative radii. For a rolling element
bearings are defined as

For inner race contact

R1x ¼ r; R1y ¼ r; R2x ¼
R

cos a
� r; R2y ¼ �Ri (B.1)

And for outer race contact

R1x ¼ r; R1y ¼ r; R2x ¼ �
R

cos a
þ r

� �
; R2y ¼ �Ro (B.2)

The reduced radius of curvature Rred is defined as

1

Rred
¼

1

Rx

þ
1

Ry

(B.3)

where

1

Rx

¼
1

R1x

þ
1

R2x

;
1

Ry

¼
1

R1y

þ
1

R2y

(B.4)

The equivalent modulus of elasticity is defined by the following relation:

2

Eeq
¼

1� n21
E1
þ

1� n22
E2

(B.5)

In which E1 and E2 are the modulus of elasticity of the inner and the outer race and n1 and n2 are the
Poisson’s ratio, respectively. In the case of a dry point contact, the nonlinear contact stiffness is obtained from
the Hertzian solution

K ¼
peEeq

3k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Rred

k

r
(B.6)

where k and e denote the first and second kind of elliptic integral and e is the ellipticity parameter. To avoid
numerical integration the following approximation formula used in calculations:

k ¼ 1:5277þ 0:6203 ln
Ry

Rx

� �
(B.7)

� ¼ 1:0003þ 0:5968
Rx

Ry

� �
(B.8)

e ¼ 1:0339
Ry

Rx

� �0:6360

(B.9)
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Appendix C

The elements of matrix A can be calculated as

A ¼

0 0 1 0

0 0 0 1

Axx Axy �c=m 0

Ayx Ayy 0 �c=m

2
66664

3
77775 (C.1)

where

Axx ¼ �
1

m

qf x

qx
¼ �

3K

2m

XZ

j¼1

gjd
1=2
j cos2 yj (C.2)

Axy ¼ Ayx ¼ �
1

m

qf x

qy
¼ �

1

m

qf y

qx
¼ �

3K

2m

XZ

j¼1

gjd
1=2
j cos yj sin yj (C.3)

Ayy ¼ �
1

m

qf y

qy
¼ �

3K

2m

XZ

j¼1

gjd
1=2
j sin2 yj (C.4)
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