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Abstract

A solution based on coupled mode expansions is presented for the 3D problem of acoustic scattering from a radially

layered penetrable cylindrical obstacle in a shallow-water plane-horizontal waveguide. Each cylindrical ring is

characterized by a general, vertical sound speed and density profile (ssdp), the ocean environment around the obstacle

can be also considered horizontally stratified with a depth-arbitrary ssdp, and the bottom is assumed to be rigid. The total

acoustic field generated by an harmonic point source is represented as a normal-mode series expansion. The expansion

coefficients are calculated exploiting the matching conditions at the cylindrical interfaces, which results in an infinite linear

system. The system is appropriately truncated and numerically solved by using a recursive relation, which involves the

unknown coefficients of two successive rings. Results concerning the transmission loss outside and inside obstacles

consisting of three cylindrical rings are given for a typical depth-dependent ocean sound-speed profile. The presented

solution can serve as a benchmark solution to the general problem of 3D acoustic scattering from axisymmetric

inhomogeneities in ocean waveguides at low frequencies.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades, a large number of both analytical and numerical methods have been developed
dealing with the solution of acoustic propagation problems in ocean environments (see, for example, reviews
[1,2]). The three-dimensional sound propagation and scattering in geometrically inhomogeneous ocean
waveguides where backscattering is important (e.g. including obstacles or/and presenting steep bottom
inhomogeneities) remains a subject of active research in underwater acoustics. The presence of strong
discontinuities of the acoustic parameters in the horizontal direction renders most of the approximate
techniques inapplicable, while the appropriate methods seems to be those which are based on the full-
wave (Helmholtz) equation in conjunction with full matching conditions. Examples of these methods are
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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coupled-mode expansions, domain transformation techniques and boundary integral equations. Relevant
references can be found in Refs. [3–6].

The present work focuses on the 3D scattering from azimuthally symmetric features by using the method of
coupled modes. A first attempt concerning the treatment of the acoustic scattering from a penetrable
cylindrical seamount using coupled modes has been undertaken by Evans [7], who extended his stepwise
coupled-mode method [8] to three dimensions without providing numerical results. A relative work, using the
coupled-mode approach but concerning elastic wave field computations, is that of Strange and Friederich [9],
where scattering from a cylindrical elastic inclusion in a bounded elastic waveguide is considered. Based on
Evans’ works, coupled-mode solutions for the problem of 3D acoustic scattering from an axisymmetric
seamount in shallow water have been presented for both impenetrable and penetrable cases [10,11]. Using a
coupled mode method, Fawcett [12] presented results for 3D acoustic scattering from a finite cylinder in free
space and embedded between two half-spaces, while more recently Athanassoulis et al. [13] studied the
acoustic scattering from localized 3D scatterers. Recently, the problem of ambient noise scattering by a
cylindrically symmetric seamount at low frequencies motivated Evans [14] to develop a stepwise coupled mode
procedure for computing the total and scattered field, while an approach for modeling the scattering from
azimuthally symmetric bathymetric features, appropriate for small mounds and indentations on the sea floor
at high frequencies and seamounts, shoals and basins at low frequencies, is described in Ref. [15].

Analytical solutions to the above class of problems are always highly desirable, since they provide physical
insight and serving as benchmarks for numerical methods and models. Such representative solutions can be
found in Refs. [5,16–18]. Recently, Cai et al. [19] considered multiple scattering of acoustic waves in a planar
horizontal waveguide by finite-length cylinders. This work, in which an analytically exact solution was
obtained via the normal mode method for an isovelocity environment and scatterers with the same uniform
properties, is focused on the comparison with the two-dimensional case, and especially on the band gap
phenomenon and the mode interaction and mixing.

In the present work, which is a generalization of Refs. [5,18,20] to a more complex scattering configuration,
numerical results are given for the 3D acoustic scattering from a cylindrically multi-layered, penetrable, island-
type obstacle in an ocean waveguide with perfectly reflecting boundaries. The organization of the paper is the
following. In Section 2 the mathematical formulation of the problem is described. In Section 3 the analytical
solution of the problem concerning the 3D scattering from a single penetrable scatterer of constant acoustic
properties in an isovelocity ocean waveguide is recalled. In Section 4 an infinite system of equations is derived
for the unknown coefficients of the series expansions representing the pressure fields outside and inside the
obstacle. In Section 5 numerical results concerning the transmission loss outside and inside cylindrical
obstacles consisting of three radial layers are presented. The main features of the present work, conclusions
and discussion are given in Section 6.

2. Mathematical formulation of the problem

Let us consider the following environment. A vertical cylindrical obstacle is surrounded by a horizontally
stratified ocean of total constant depth H. The obstacle consists of N � 1 concentric rings of external radius rj,
j ¼ 1; . . . ;N � 1 (the number 1 denoting the inner cylinder and the number N � 1 the outer cylindrical ring),
and each one of them contains an arbitrary number of horizontal layers. The ocean waveguide is confined
between a rigid (perfectly reflecting) bottom and a pressure-release sea surface. The cylindrical obstacle can be
extended from the bottom up to the sea surface and all its interfaces are acoustically penetrable. The
geometrical domains occupied by the acoustic materials in the N � 1 rings and the surrounding water are
denoted by Dj, j ¼ 1; . . . ;N � 1, and DN , respectively. Somewhere in DN a point source of unit strength is
located, emitting monochromatic sound waves of angular frequency o. A cylindrical–polar coordinate system
is introduced, with z-axis the axis of the cylinder pointing downward and origin at the intersection of z-axis
with the sea surface. The source point is denoted by rs ¼ ðrs; zs; 0Þ and the generic field point is represented by
r ¼ ðr; z; yÞ. The acoustic properties (pressure p, sound speed c and density r) of the media in the rings and the
water are denoted with the subscripts j ¼ 1; . . . ;N � 1, and N, respectively. The ðc; rÞ-profiles in both water
and cylindrical rings are assumed to be range independent, that is cj ¼ cjðzÞ and rj ¼ rjðzÞ, j ¼ 1; . . . ;N � 1.
For the environment described above the cross-section passing through the source and the axis of the obstacle
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Fig. 1. The geometrical configuration of the studied environment at a cross-section passing through the source and the axis of the

cylindrical obstacle.
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is depicted in Fig. 1. The acoustic propagation/scattering problem for the total pressure field in the above
environment is governed by the Helmholtz equations

r2
rpj þ k2

j ðzÞpj ¼ 0; r 2 Dj ; j ¼ 1; . . . ;N � 1, (1)

r2
rpN þ k2

NðzÞpN ¼ �
dðr� rsÞdðz� zsÞdðyÞ

r
; rs; r 2 DN , (2)

accompanied by the boundary conditions at the surface and the bottom of the waveguide

pj ¼ 0; z ¼ 0; j ¼ 1; . . . ;N, (3a)

qpj

qz
¼ 0; z ¼ H; j ¼ 1; . . . ;N (3b)

and the matching conditions expressing continuity of pressure and normal velocity at the cylindrical interfaces

pj ¼ pjþ1; r ¼ rj ; j ¼ 1; . . . ;N � 1, (4a)

1

rjðzÞ

qpj

qr
¼

1

rjþ1ðzÞ

qpjþ1

qr
; r ¼ rj ; j ¼ 1; . . . ;N � 1. (4b)

Possible horizontal stratification in the cylindrical rings and the surrounding water introduces additionally
to the formulation conditions of continuity of pressure and normal velocity at the horizontal interfaces,
similar to Eqs. (4a) and (4b). An appropriate (Sommerfeld) radiation condition, expressing that the pressure
field at infinity ðr�!1Þ behaves like a system of cylindrical outgoing waves, completes the mathematical
formulation of the studied problem.

In the above equations pj ¼ pjðr; z; yÞ is the complex amplitude of the acoustic pressure in Dj, the time
harmonic dependence e�iot being factored out, the Laplacian operator r2

r is given by

r2
r ¼

1

r

q
qr

r
q
qr

� �
þ r

q
qz

1

r
q
qz

� �
þ

1

r2
q2

qy2
, (5)

and kjðzÞ ¼ o=cjðzÞ, j ¼ 1; . . . ;N � 1, kN ðzÞ ¼ o=cN ðzÞ are the wavenumbers in the N � 1 cylindrical rings and
the water, respectively.
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3. The solution for the single penetrable scatterer

Before proceeding to the treatment of the problem formulated in the previous section, the analytical
solution of the problem concerning the 3D scattering from a single penetrable scatterer of constant acoustic
properties ðcb;rbÞ in an isovelocity horizontal ocean waveguide (with constant cw; rw) will be recalled. In this
case, N ¼ 2 and r1 ¼ a is the radius of the single cylindrical scatterer. According to Ref. [18], Eq. (24), the total
pressure field outside the cylindrical scatterer, pw, is represented as the sum of an axisymmetric incident field pi

(the field generated by a point source in the unobstructed waveguide) and a scattered field, psc
w , as follows:

pwðr; z; yÞ ¼ pi þ psc
w ¼

i

4rðzsÞ

X1
n¼1

gnðzsÞH
ð1Þ
0 ðlnRÞgnðzÞ

þ
X1
n¼1

gnðzsÞgnðzÞ
X1
m¼0

emAsc
nmH ð1Þm ðlnrsÞ eH ð1Þm ðlnrÞ cosmy, (6)

where the coefficients Asc
nm are given as

Asc
nm ¼ �

1

rðzsÞ

JmðmnaÞ

2pDnm

þ
i

4
JmðlnaÞ

� �
(7)

and

Dnm ¼ lnaJmðmnaÞH ð1Þ
0

m ðlnaÞ � gmnaJ 0mðmnaÞH ð1Þm ðlnaÞ. (8)

Also, according to Ref. [18], Eq. (23), the pressure field inside the scatterer, pb, is expressed as

pb ¼ �
X1
n¼1

gnðzsÞcnðzÞ
X1
m¼0

em

ffiffiffi
g
p

2prðzsÞDnm

� �
H ð1Þm ðlnrsÞJmðmnrÞ cosmy. (9)

In the above equations, ln, mn are the eigenvalues and gnðzÞ, cnðzÞ are the normalized eigenfunctions of the
normal Sturm–Liouville eigenvalue problem (called hereafter as vertical eigenvalue problem), outside and
inside the scatterer, respectively, obtained from Eqs. (1), (3a) and (3b) after separation of variables, g ¼ rw=rb,
e0 ¼ 1, em ¼ 2, m40, R ¼ ðr2s þ r2 � 2rsr cos yÞ

1=2 is the distance between the source and the field point, a is
the radius of the scatterer, and Jmð�Þ, H ð1Þm ð�Þ are the m-th-order Bessel and first kind Hankel functions. The
prime denotes differentiation with respect to the argument and eH ð1Þm ð�Þ are the normalized Hankel functions
H ð1Þm ð�Þ=H ð1Þm ðlnaÞ.

We note here that the above normal mode expansions are valid for all values of kja, j ¼ 1; 2. However, it is
well known that for large values of kja the m-summation in Eqs. (6) and (9) is quite laborious, since many
azimuthal terms have to be retained in order for the corresponding series to converge. A study of the
azimuthal convergence of this series in the simple case of impenetrable soft/hard vertical inclusion is presented
in Ref. [21], where results up to ka ’ 1000 were obtained. Specifically, for kjaX1, the creeping wave series
obtained from the above equations by applying Sommerfeld–Watson transformation techniques (see, for
example, Refs. [22,23]) can be used in order for the series to converge substantially faster, especially in the
shadow zone behind the vertical cylinder. Such an application needs particular investigation and it is left to be
carried out in a future work.

4. Series expansion of the acoustic pressure

Applying the method of separation of variables and decomposing the total pressure fields inside and outside
the cylindrical obstacle into the incident field and the scattered field, the acoustic field in the cylindrical rings,
p1, fpj ; j ¼ 2; . . . ;N � 1g, and the surrounding water, pN , can be written in the form of normal-mode series
expansions as follows (see also Refs. [5,18]):

p1ðr; z; yÞ ¼
X1
n¼1

g1
nðzÞ

X1
m¼0

emds;nmA1
nmJ1

nmðrÞ cosmy, (10)
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pjðr; z; yÞ ¼
X1
n¼1

gj
nðzÞ

X1
m¼0

emds;nm½A
j
nmH1j

nmðrÞ þ Bj
nmH2j

nmðrÞ� cosmy; j ¼ 2; . . . ;N � 1, (11)

pNðr; z; yÞ ¼ s
X1
n¼1

gN
n ðzsÞH

ð1Þ
0 ðl

N
n RÞgN

n ðzÞ þ
X1
n¼1

gN
n ðzÞ

X1
m¼0

emds;nmAN
nmH1N

nmðrÞ cosmy, (12)

where

s ¼
i

4rðzsÞ
, (13)

ds;nm ¼ H ð1Þm ðl
N
n rsÞg

N
n ðzsÞ, (14)

H1j
nmðrÞ ¼

H ð1Þm ðl
j
nrÞ

H ð1Þm ðl
j
nrjÞ

, (15a)

H2j
nmðrÞ ¼

H ð2Þm ðl
j
nrÞ

H ð2Þm ðl
j
nrjÞ

, (15b)

Jj
nmðrÞ ¼

Jmðl
j
nrÞ

Jmðl
j
nrjÞ

, (15c)

lj
n are the eigenvalues and gj

nðzÞ the normalized eigenfunctions of the vertical eigenvalue problem in the j

cylindrical ring, H ð2Þm ðl
j
nrÞ are the m-th-order second kind Hankel functions, and fAj

nm; j ¼ 1; . . . ;Ng and
fBj

nm; j ¼ 2; . . . ;N � 1g are appropriate constants to be determined. All other coefficients and quantities have
been defined in Section 3. Hankel functions of the second kind in Eq. (11) model the incoming waves in the
intermediate rings 2; . . . ;N � 1. Note that, in the special case j ¼ N we consider rj ¼ rN�1.

As can be seen from Eqs. (15a)–(15c), the pressure field is formulated using scaled Hankel and Bessel
functions relative to a nearby interface in order to avoid numerical overflow problems, associated with the
phenomenon of exponential dichotomy (see also Section 5.1).

Exploiting the matching conditions (4a) and (4b), linear systems of equations are obtained, permitting the
calculation of the coefficients Aj

nm and Bj
nm. Before proceeding to the construction of these systems, we recall

the orthonormality conditions for the vertical eigenfunctions fgj
nðzÞ; j ¼ 1; . . . ;NgZ H

0

1

rjðzÞ
gj

nðzÞg
j
nðzÞdz ¼

1; n ¼ n;

0; nan

(
(16)

and the Graf’s addition theorem for the Hankel functions (see, e.g., Ref. [24])

H
ð1Þ
0 ðlnRÞ ¼

X1
m¼0

emH ð1Þm ðlnrsÞJmðlnrÞ cosmy. (17)

We start with the implementation of the matching conditions for two intermediate cylindrical rings.
Substituting Eq. (11) into Eqs. (4a) and (4b), and using property (16) and the orthonormality of the azimuthal
eigenfunctions cosmy, we obtain the following system of equations:

Aj
nm þ Bj

nm ¼
X1
n¼1

eCj;jþ1
nn;m Ajþ1

nm H1jþ1
nm ðrjÞ þ Bjþ1

nm H2jþ1
nm ðrjÞ

� �
, (18a)

Aj
nmq1;j

nmðrjÞ þ Bj
nmq2;j

nmðrjÞ ¼
X1
n¼1

eCj;jþ1
nn;m Ajþ1

nm Q1jþ1
nm ðrjÞ þ Bjþ1

nm Q2jþ1
nm ðrjÞ

� �
, (18b)



ARTICLE IN PRESS
A.M. Prospathopoulos et al. / Journal of Sound and Vibration 319 (2009) 1285–13001290
where

eCj;jþ1
nn;m ¼

ds;nm

ds;nm

~cj;jþ1
nn , (19a)

eCj;jþ1
nn;m ¼

ds;nm

ds;nm

ĉj;jþ1
nn , (19b)

q‘;jnmðrÞ ¼
H ð‘Þ

0

m ðl
j
nrÞ

H ð‘Þm ðl
j
nrÞ

; ‘ ¼ 1; 2, (20)

Q1jþ1
nm ðrjÞ ¼ q1;jþ1

nm ðrjÞH1jþ1
nm ðrjÞ, (21a)

Q2jþ1
nm ðrjÞ ¼ q2;jþ1

nm ðrjÞH2jþ1
nm ðrjÞ. (21b)

In the above equations (19), the quantities

~cj;jþ1
nn ¼

Z H

0

1

rjðzÞ
gjþ1

n ðzÞg
j
nðzÞdz, (22a)

ĉj;jþ1
nn ¼

ljþ1
n

lj
n

Z H

0

1

rjþ1ðzÞ
gjþ1

n ðzÞg
j
nðzÞdz, (22b)

are the coupling coefficients expressing the interchange of energy between the cylindrical rings. Both vertical
modes and the corresponding projection integrals in Eqs. (22) are independent of the azimuthal order m, and
thus, they are calculated only once for each value of vertical index n in each cylindrical subdomain Dj ; see
Fig. 1. The function H ð‘Þ

0

m ðl
j
nrÞ appearing in Eq. (20) denotes the first derivative of the corresponding Hankel

function with respect to the argument.
System (18a) and (18b) allows the coefficients Aj

nm, Bj
nm to be expressed in terms of Ajþ1

nm , Bjþ1
nm as follows:

Aj
nm ¼

X1
n¼1

EI;j
nn;mðrjÞA

jþ1
nm þ

X1
n¼1

EII;j
nn;mðrjÞB

jþ1
nm , (23a)

Bj
nm ¼

X1
n¼1

EIII;j
nn;mðrjÞA

jþ1
nm þ

X1
n¼1

EIV;j
nn;mðrjÞB

jþ1
nm , (23b)

where

Ei;j
nn;mðrjÞ ¼ S

q‘;jnmðrjÞeCj;jþ1
nn;m Hkjþ1

nm ðrjÞ � eCj;jþ1
nn;m Qkjþ1

nm ðrjÞ

Dq
j
nmðrjÞ

, (24)

Dqj
nmðrjÞ ¼ q2;j

nmðrjÞ � q1;j
nmðrjÞ ¼

H
ð2Þ
m�1ðl

j
nrjÞ

H ð2Þm ðl
j
nrjÞ
�

H
ð1Þ
m�1ðl

j
nrjÞ

H ð1Þm ðl
j
nrjÞ

. (25)

The triplet ðS; ‘;kÞ takes the values ð1; 2; 1Þ for i ¼ I, ð1; 2; 2Þ for i ¼ II, ð�1; 1; 1Þ for i ¼ III, and ð�1; 1; 2Þ
for i ¼ IV.

We proceed with the implementation of the matching condition for the first (inner) cylindrical interface.
Substituting Eqs. (10), (11) into Eqs. (4a) and (4b), and working similarly with the case of the two intermediate
cylindrical rings, we obtain

A1
nm ¼

X1
n¼1

EI;1
nn;mðr1ÞA

2
nm þ

X1
n¼1

EII;1
nn;mðr1ÞB

2
nm, (26a)

0 ¼
X1
n¼1

EIII;1
nn;mðr1ÞA

2
nm þ

X1
n¼1

EIV;1
nn;mðr1ÞB

2
nm. (26b)
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where

EI;1
nn;mðr1Þ ¼

eC1;2
nn;mH12nmðr1Þ, (27a)

EII;1
nn;mðr1Þ ¼

eC1;2
nn;mH22nmðr1Þ, (27b)

EIII;1
nn;mðr1Þ ¼

eC1;2
nn;mH12nmðr1Þ � pnmðr1Þ

eC1;2
nn;mQ12nmðr1Þ, (27c)

EIV;1
nn;mðr1Þ ¼

eC1;2
nn;mH22nmðr1Þ � pnmðr1Þ

eC1;2
nn;mQ22nmðr1Þ, (27d)

and

pnmðr1Þ ¼
Jmðl

1
nr1Þ

J 0mðl
1
nr1Þ

. (28)

Finally, in order to implement the matching condition for the last (outer) cylindrical interface, we substitute
expressions (11) and (12) into Eqs. (4a) and (4b) and take into account Graf’s theorem (Eq. (17)). Working
similarly with the above two cases we obtain

AN�1
nm ¼

X1
n¼1

EI;N�1
nn;m ðrN�1ÞA

N
nm þ

X1
n¼1

EII;N�1
nn;m ðrN�1ÞB

N
nm, (29a)

BN�1
nm ¼

X1
n¼1

EIII;N�1
nn;m ðrN�1ÞA

N
nm þ

X1
n¼1

EIV;N�1
nn;m ðrN�1ÞB

N
nm, (29b)

where the coefficients Ei;N�1
nn;m ðrN�1Þ can be calculated from Eqs. (24) and (25), setting

H1N
nmðrN�1Þ ¼ 1; i ¼ I; III, (30a)

H2N
nmðrN�1Þ ¼ sJmðl

N
n rN�1Þ; i ¼ II; IV, (30b)

Q2N
nmðrN�1Þ ¼ sJ 0mðl

N
n rN�1Þ; i ¼ II; IV. (30c)

Eqs. (23a), (23b), (26a), (26b) and (29a), (29b) constitute an infinite system, called the system S, which has
to be solved for fAj

nm; j ¼ 1; . . . ;Ng and fBj
nm; j ¼ 2; . . . ;N � 1g. Observing the aforementioned equations one

can note that the azimuthal index m serves as an independent parameter, i.e. system S can be solved for each
m independently, as in the case of a single cylindrical penetrable obstacle [18]. In the course of the numerical
calculations the system S for each m is truncated to a finite one, retaining only n ¼ nw terms (see Section 5.1).
Thus, the finite system for a fixed m can be written in a matrix form as follows:

aj

bj

" #
¼

EI;j EII;j

EIII;j EIV;j

" #
ajþ1

bjþ1

" #
, (31)

where

aj ¼

A
j
1m

..

.

Aj
nwm

26664
37775; bj ¼

B
j
1m

..

.

Bj
nwm

26664
37775; j ¼ 1; . . . ;N, (32a)

Ei;j ¼

E
i;j
11ðrjÞ � � � E

i;j
1nw
ðrjÞ

..

. . .
. ..

.

E
i;j
nw1
ðrjÞ � � � Ei;j

nwnw
ðrjÞ

26664
37775; j ¼ 1; . . . ;N; i ¼ I; . . . ; IV, (32b)
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taking into account that

b1 ¼ 0, (33a)

bN ¼ 1. (33b)

Repeated application of the recursive relation (31) yields

a1

b1

" #
¼

RI RII

RIII RIV

" #
aN

bN

" #
, (34)

where

RI RII

RIII RIV

" #
¼

EI;1 EII;1

EIII;1 EIV;1

" #
� � �

EI;N�1 EII;N�1

EIII;N�1 EIV;N�1

" #
. (35)

Combination of Eqs. (33a), (33b) and (34) implies

a1 ¼ RIaN þ RII1 (36a)

0 ¼ RIIIaN þ RIV1 (36b)

Matrix aN is calculated from Eq. (36b) and then, taking into account Eq. (33b), matrices aj and bj are
calculated by backward use of the recursion relation (31). Note that the values of b1, computed using Eq. (34),
should be sufficiently close to zero, while their magnitudes serve as an indicator for the success of solving
Eq. (36b).

The analysis presented above has been verified against the analytical solution of a simplified propagation/
scattering problem, which is described in the Appendix.

5. Numerical results

In this section, numerical aspects of the studied problem are considered and low-frequency results
demonstrating the 3D effects of a radially-layered cylindrical obstacle in an ocean waveguide are presented.
The numerical examples illustrated herein are representative of the multi-parametric character of the problem
and the complexity of the provided solution.

5.1. Numerical considerations

The general analysis made in Ref. [18] concerning the truncation of the n vertical terms in the sum of the
pressure field for the problem of 3D scattering from a single cylindrical obstacle also applies to the problem of
a radially layered cylindrical structure. In the numerical examples of this section the pressure field has been
calculated by retaining only the propagating modes, i.e. the terms corresponding to real positive eigenvalues of
the vertical eigenvalue problem. Furthermore, their number is the same throughout the cylindrical rings of the
scatterer and the water column due to the low frequency of the studied environment.

As concerns the truncation of the m azimuthal terms in the sum of the pressure field, the same number of
terms, mmax, was used globally (i.e. throughout the obstacle and the surrounding water) in order to achieve
convergence of the double series expressing the scattered field outside the obstacle and the total field inside the
obstacle. Following the rationale of works [18,21], a lower bound of mmax is derived by imposing
mmax4mN

crðn ¼ 1Þ ¼ lN
1 rN , where mN

cr is the critical value separating the azimuthal-propagating from the
azimuthal-evanescent modes (i.e. terms decaying exponentially with respect to the index m) in Nth ring. Then,
an additional number of azimuthal terms is used, such as a satisfactory convergence of the pressure field to be
achieved near the vicinity of the interfaces, where the maximum number of azimuthal terms is required.

The phenomenon which dominates the numerical calculations of the studied problem is that of exponential
dichotomy: the solution contains both Hankel functions of the first and second kind. For a fixed order m and
large arguments, H ð1Þm ðlnrÞ decay exponentially, while H ð2Þm ðlnrÞ grow exponentially; that is forward and
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backscattered energies are involved in the solution. Trying to resolve both rapidly growing and decaying
waves over many wavelengths causes considerable numerical difficulties, which prompts for formulating
the pressure field (11) and (12) with the normalized Hankel functions (15a) and (15b). This also indicates
that wide cylindrical rings, except the inner and the outer, do not permit of a straightforward numerical
treatment.

Similar comments have been made in a work presenting a coupled-mode solution for acoustic propagation
in a cylindrically symmetric ocean with stepwise depth variations [8]. In that work, the environment is
considered to be azimuthally symmetric with respect to the source and thus, only Hankel functions of zeroth
order appear in the solution. The present study deals with a fully 3-D environment, which means that the
pressure field strongly depends on the azimuth; the dependence is expressed in the solution by the order m of
the Hankel functions. This additional parameter increase the difficulty of the numerical calculations, which
calls for a special treatment.

The nature of the numerical difficulties mentioned above is related to the recursive-type method used for
solving the problem, which is quite analogous to the propagator matrix method, used in seismic wave
propagation. Also, the present numerical stability problem is similar to the one encountered in seismic waves,
when applying the Thomson–Haskell propagation matrix. This problem could be overcome offering extension
of the applicability of the 3D obtained solution to higher frequencies by various techniques. One approach,
proposed by Evans [25], is based on the decoupling of the coupled modes in the recursive-type method.
Another possibility is through a direct global matrix approach for setting up the system of equations, as
proposed by Schmidt [26] and Ricks and Schmidt [27] for solving radiation/scattering from spherically
stratified shells and cylindrically layered shells, respectively. A detailed comparison of direct global matrix
approach to propagation matrix approach can be found in Ref. [3]. An effective solution to this problem could
also be obtained by extensive investigation of the interplay between the large order and the large argument
asymptotic approximations of the Hankel functions. (See also Section 4 in Ref. [7]).

5.2. Examples

In underwater acoustic applications the transmission loss (TL) of a pressure field is often a more useful
quantity than the pressure itself. Therefore, in this section, results concerning the transmission loss of the
acoustic field are presented for a ‘‘triple-ring scatterer’’ environment, utilizing the matching conditions on the
interfaces of all three types of cylindrical regions (inner cylinder—intermediate ring, two successive
intermediate rings, last obstacle ring—surrounding water). In the present work, the transmission loss is
defined as

TL ¼ �20 log
PðrÞ

P0ðjrj ¼ 1mÞ
, (37)

where PðrÞ is the pressure modulus at a distance jrj from the source, and P0ðjrj ¼ 1mÞ ¼ 1=4p is the modulus of
the free-space Green’s function at a distance of 1m from the source. The values of the unaltered parameters
configuring the geometry of the environment are chosen as follows: depth of the waveguide and height of the
cylindrical scatterer H ¼ 250m, source depth zs ¼ 50m, distance between source and axis of the cylindrical
scatterer rs ¼ 1000m, radii of the cylindrical rings of the scatterer r1 ¼ 50m, r2 ¼ 80m and r3 ¼ 100m.

Three cases corresponding to cylindrical obstacles with different acoustic structure (OBS1–OBS3) are
demonstrated and compared. The composition (rings 1–3) of the scatterers is (moraine, hard, soft) for
OBS1, (water, hard, soft) for OBS2 and (moraine, water, hard) for OBS3. The corresponding acoustic
properties (sound speed c in m/s, density r in g=cm3) of the materials are (1510, 1) for water, (1520, 1.4) for
soft, (1677, 1.83) for hard and (1950, 2.1) for moraine. All the results presented in this section were obtained
by using the depth-dependent sound-speed profile in water, c4ðzÞ, depicted in Fig. 2, and a corresponding
density r4 ¼ 1 g=cm3.

A low frequency of 10Hz has been chosen for the acoustic source, the non-dimensional wavenumbers
varying from k1r1 ¼ 1:61 to k3r3 ¼ 4:13. For this source frequency, corresponding to a wavelength of 152m
for maxfc4ðzÞg ¼ 1520m=s, the effect of the depth variation of the sound speed profile c4ðzÞ is not expected to
be visible, while the scatterer with diameter 2� r3 ¼ 200m will be perceptible by the acoustic waves. In order
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Fig. 2. The depth-dependent sound-speed profile used for the TL calculations.

Fig. 3. TL at f ¼ 10Hz calculated on a vertical slice passing through the source and the axis of the obstacles. (a) OBS1, (b) OBS2, (c)

OBS3, (d) without obstacle. The geometrical parameters of the environment are: waveguide depth H ¼ 250m, source depth zs ¼ 50m,

distance between source and axis of the cylindrical scatterer rs ¼ 1000m, radii of the cylindrical rings of the scatterer r1 ¼ 50m, r2 ¼ 80m

and r3 ¼ 100m.
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to achieve satisfactory convergence for the pressure field a lower bound of 5 azimuthal terms was derived by
imposing mmax4mN

crðn ¼ 1Þ ¼ lN
1 rN (see Section 5.1) and 4–5 additional azimuthal terms (i.e. a total of 9–10)

were finally used in the calculations.
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In Figs. 3a–c, TL is presented on a vertical slice passing through the source and the axis of the cylindrical
obstacles OBS1 (Fig. 3a), OBS2 (Fig. 3b) and OBS3 (Fig. 3c). In Fig. 3d, TL of the axisymmetric field in the
unobstructed waveguide is presented. To comment on the figures more conveniently, the cross sections of the
scatterer rings are called columns and ordered with respect to the distance from the source, R, starting from
the insonified side of the scatterer; thus, the cross section of ring 3 from R ¼ 900 to 920m is the first column,
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Fig. 4. TL at f ¼ 10Hz calculated on a horizontal plane passing through the source point for OBS1 (a,b), OBS2 (c,d) and OBS3 (e,f) at

z ¼ 50m (a,c,e) and z ¼ 150m (b,d,f). The geometrical parameters of the environment as in Fig. 3.
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the adjacent cross section of ring 2 from R ¼ 920 to 950m is the second column, etc., the cross section of ring 3
from R ¼ 1080 to 1100m is the last (fifth) column. The TL pattern in the insonified region up to about 750m
away from the source presents similarities in all four cases, while an oscillatory form of the TL patterns for the
obstacle cases is observed due to the interaction of the incident and backscattered field. Similarities are also
observed in the TL pattern for all the cases behind the obstacle; the TL level is highest for the OBS1-case and
lowest for the case of the obstacle absence, as expected. The energy paths are not very well formed due to the
low frequency of the source. The structure of OBS1 (Fig. 3a) causes trapping of energy in the first three
columns, followed by a distinct shadow zone. As concerns OBS2 (Fig. 3b), shadow areas of high TL level are
observed in the water core, an indication of energy absorption by the two first columns. Energy is trapped
between the obstacle axis and the interface at 1080m because of the backscattering from the last two columns.
The sound seems to penetrate the last column and escape to the surrounding water mainly at depths from 120
to 150m and secondarily close to the bottom of the waveguide. In OBS3 (Fig. 3c) the second water column
allows a part of the acoustic energy to enter the very hard core, while an energy trapping is clearly observed in
the fourth water column due to the blocking effect of the two adjacent hard columns.

In order to clearly demonstrate the 3D character of the acoustic field for the studied environment, TL
graphs on a horizontal plane at depths (i) z ¼ 50m (the source depth) and (ii) z ¼ 150m are provided for the
three different-structured obstacles OBS1, OBS2 and OBS3. In Figs. 4a–f, TL is presented in a frame
700m� 800m, extended 100m in front and 400m behind the center of the obstacles and placed symmetrically
to the source–obstacle axis, i.e. the line connecting the source and the center of the obstacles. The expected
symmetry of the acoustic field with respect to the source–obstacle axis is obviously observed. A common
feature appearing in all figures is the side lobes of level 45–55 dB, varying in form and position with respect to
the depth and the obstacle structure. The intense differences of the TL pattern on the ðr; yÞ-plane around all
three obstacles presented at the depths of 50 and 150m reveal the complexity of the combined effect of the
sound propagation and the multiple backscattering from the interfaces of penetrable scatterers with various
acoustic properties.
Fig. 5. TL at f ¼ 10Hz calculated on a vertical slice passing through the source and the axis of the cylindrical scatterers: (a) a soft

seamount composed by three cylindrical rings of radii r1 ¼ 50m, r2 ¼ 80m and r3 ¼ 100m (maximum radius), (b) a soft cylinder of radius

r1 ¼ r2 ¼ r3 ¼ 100m, modeling a steep cylindrical island, (c) without obstacle. The geometrical and physical parameters of the

environment and the source data are the same as in Fig. 3.
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The previous example, presented in Figs. 3 and 4, focuses on the study of azimuthal matching between the
different modal series expansions of the acoustic field on the various subdomains, given by Eqs. (10)–(12), on
the vertical interfaces (the cylindrical surfaces ranging from z ¼ 0 to H) separating the latter ring-type
subdomains. This particular example represents physically the case of 3D scattering by a multi-layered sharp
island (with vertical walls) in the ocean acoustic waveguide.

In order to further demonstrate the applicability of our method to 3D acoustic scattering by more general
axisymmetric obstacles, we present in Fig. 5a the scattering field by a soft seamount in the same as before
waveguide, as obtained by the present method. Again, the incident field is generated by a harmonic
point source with frequency 10Hz, located at 50m depth (below the free surface). The present axisymmetric
obstacle represents a homogeneous soft seamount-type obstacle, with density r ¼ 1:4 g=cm3 and sound speed
c ¼ 1520m=s, modelled as a three-ring element with radii r1 ¼ 50m, r2 ¼ 80m, r3 ¼ 100m (maximum radius),
and vertical discontinuity (stratification) at the depths of 70, 130, and 190m, respectively; see Fig. 5a. For
comparison, we present in Fig. 5b the scattering field by a homogeneous soft vertical cylinder extending
from the top to the bottom of the same waveguide, located at the same position and having the same
maximum radius. Also, in Fig. 5c the propagation in the same unobstructed waveguide is presented.
We clearly observe in this figure that, on the plane passing through the point source and the centerline
of the scatterers, the seamount permits the radiation of more acoustic energy in the downwave direction
than the vertical island, which blocks the energy on this plane as it is naturally expected. This fact is especially
true at the top part of the waveguide (depths less than 70m) that remains unobstructed in the case of the
seamount.
6. Conclusions

In this paper acoustic field computations for the problem of 3D scattering from a penetrable radially layered
cylindrical obstacle in a shallow-water environment are presented using coupled-mode series expansions of the
pressure field. Exploitation of the matching conditions on the cylindrical interfaces results in an infinite linear
system for the expansion coefficients. The system is appropriately truncated and numerically solved. Results
concerning the transmission loss outside and inside obstacles, consisting of three cylindrical rings, are given for
a typical depth-dependent ocean sound-speed profile. The non-dimensional wavenumbers krj vary from about
1.5 to 4, where rj is the radius of the j ring of the cylindrical obstacle.

Since the presented solution considers multi-layered cylindrical scatterers (both in the vertical and radial
direction), it could serve as a benchmark for modeling 3D acoustic scattering from sufficiently realistic
axisymmetric inhomogeneities in ocean waveguides. Examples of problems dealing with 3D acoustic scattering
in ocean waveguides, which can be treated using the analysis presented herein, are the scattering from (i)
cylindrical obstacles with quasi-continuous variation of the acoustic properties, (ii) a group of cylindrical discs
with the same axis of symmetry and radial variation of sound speed and density, (iii) an axisymmetric obstacle
with a fluid-filled cavity, and (iv) a cylindrically symmetric eddy or a cylindrically symmetric bathymetric
feature such as a seamount. Although the assumptions of an ideal free-surface and ideal bottom boundaries
have been made in this work, the solution can be extended to penetrable ocean waveguides by replacing
only the eigenvalues and eigenfunctions of the vertical eigenvalue problems with new ones, calculated by
appropriate techniques.

As concerns the directions of future work, additional research effort can be further spent on the azimuthal
convergence of the double series expressing the scattered field outside the obstacle and the total field inside the
obstacle, as well as on the systematic investigation of the multi-parametric character of the problem.
Furthermore, the applicability of the coupled-mode solution could be extended to higher frequencies by (i)
controlling the phenomenon of exponential dichotomy, i.e. the involvement of waves simultaneously decaying
and growing with range in the solution, which causes numerical difficulties on handling higher frequencies
over distances extending to many wavelengths (this could be achieved using various techniques/approaches
such as decoupling algorithm [25] or a direct global matrix approach [26]); (ii) a detailed investigation of
combined large-order and large-argument asymptotic approximations of the Hankel functions. Some of these
enhancements are currently under study.
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Appendix. Verification of present analysis by means of a simplified case

Let us consider the environment of Section 2 with N ¼ 3, assume that the three ðc;rÞ-profiles are constant
and set c1ðzÞ ¼ cb, r1ðzÞ ¼ rb, c3ðzÞ ¼ c2ðzÞ ¼ cw and r3ðzÞ ¼ r2ðzÞ ¼ rw. This actually means that the
cylindrical interface at r2 is an artificial one.

For the environment described above, it will be shown that (i) expression (10) for the pressure field in the
inner ring is identical with Eq. (9), corresponding to the pressure field inside a single penetrable cylindrical
obstacle, and (ii) expressions (11) and (12) for the pressure field in rings 2 and 3, respectively, are identical with
Eq. (6), corresponding to the pressure field in the water surrounding a single penetrable cylindrical obstacle.

The following relations have to be taken into account in the algebraic manipulations:

JmðxÞ ¼
H ð1Þm ðxÞ þH ð2Þm ðxÞ

2
, (38a)

WfH ð1Þm ðxÞ;H
ð2Þ
m ðxÞg ¼ �

4i

px
, (38b)

WfH ð1Þm ðxÞ; JmðxÞg ¼ �WfH
ð2Þ
m ðxÞ; JmðxÞg ¼ �

2i

px
, (38c)

where W is the symbol of the Wronskian.
Also, Graf’s addition theorem (see Eq. (17)) is used for transforming the axisymmetric field in the

unobstructed waveguide pi (see Eq. (12)) into a double series expansion.
In the case of an isovelocity environment, as the one studied here, the coupling coefficients (22a) and (22b)

are vanished for nan. Consequently, Eqs. (26a), (26b) and Eqs. (29a), (29b) take the form

A1
nm ¼ EI;1

nmðaÞA
2
nm þ EII;1

nm ðaÞB
2
nm,

0 ¼ EIII;1
nm ðaÞA

2
nm þ EIV;1

nm ðaÞB
2
nm, (39)

and

A2
nm ¼ EI;2

nmðbÞA
3
nm þ EII;2

nm ðbÞB
3
nm,

B2
nm ¼ EIII;2

nm ðbÞA
3
nm þ EIV;2

nm ðbÞB
3
nm, (40)

respectively. Given that l2n ¼ l3n ¼ ln, and setting g ¼ rw=rb, mn ¼ l1n, a1
n ¼ mna, a2

n ¼ lna and bn ¼ lnb,
the coefficients fEi;j

nm; i ¼ I; . . . ; IV; j ¼ 1; 2g, the general form of which is given in Section 4, are expressed
as follows:

EI;1
nmðaÞ ¼

ffiffiffi
g
p H ð1Þm ða

2
nÞ

H ð1Þm ðbnÞ
,

EII;1
nm ðaÞ ¼

ffiffiffi
g
p H ð2Þm ða

2
nÞ

H ð2Þm ðbnÞ
,

EIII;1
nm ðaÞ ¼ �

Dð1Þnmffiffiffi
g
p

a1
nH ð1Þm ðbnÞJ

0
mða

1
nÞ
,

EIV;1
nm ðaÞ ¼ �

Dð2Þnmffiffiffi
g
p

a1
nH ð2Þm ðbnÞJ

0
mða

1
nÞ
,

EI;2
nmðbÞ ¼ 1,

EII;2
nm ðbÞ ¼

s
2

H ð1Þm ðbnÞ,
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EIII;2
nm ðbÞ ¼ 0,

EIV;2
nm ðbÞ ¼

s
2

H ð2Þm ðbnÞ, (41)

where

Dð‘Þnm ¼ a2
nJmða

1
nÞH

ð‘Þ
m

0
ða2

nÞ � ga1
nJ 0mða

1
nÞH

ð‘Þ
m ða

2
nÞ; ‘ ¼ 1; 2 (42)

and

g ¼ rw=rb; s ¼
i

4rðzsÞ
. (43)

Using expressions (41) for E-coefficients and given that B3
nm ¼ 1 (see Eq. (33b)), we obtain

A1
nm ¼ �

ffiffiffi
g
p

2prwDð1Þnm

Jmða
1
nÞ, (44a)

A2
nm ¼ �

s
2

H ð1Þm ðbnÞ
Dð2Þnm

Dð1Þnm

, (44b)

A3
nm ¼ sH ð1Þm ðbnÞ

DJ
nm

Dð1Þnm

, (44c)

B2
nm ¼

s
2

H ð2Þm ðbnÞ, (44d)

where

DJ
nm ¼ a2

nJmða
1
nÞJ
0
mða

2
nÞ � ga1

nJ 0mða
1
nÞJmða

2
nÞ. (45)

Introducing expression (44a) into Eq. (10), and setting g1
nðzÞ ¼ cnðzÞ, we obtain the pressure field p1 in the

inner cylinder of the obstacle

p1 ¼ �
X1
n¼1

X1
m¼0

emds;nm

ffiffiffi
g
p

2prwDð1Þnm

" #
JmðmnrÞcnðzÞ cosmy, (46)

which, taking into account Eq. (14), is found to be identical with the pressure field inside a single cylindrical
obstacle, given by Eq. (9).

Similarly, introducing expressions (44b), (44d) into Eq. (11) and Eq. (44c) into Eq. (12), and setting
g2

nðzÞ ¼ g3
nðzÞ ¼ gnðzÞ, we obtain the pressure fields in the outer cylindrical ring of the obstacle, p2, and the

surrounding water, p3,

p2 ¼ �
s
2

X1
n¼1

X1
m¼0

emds;nm

Dð2Þnm

Dð1Þnm

H ð1Þm ðlnrÞ �H ð2Þm ðlnrÞ

" #
gnðzÞ cosmy, (47)

p3 ¼ pi � s
X1
n¼1

X1
m¼0

emds;nm

DJ
nm

Dð1Þnm

H ð1Þm ðlnrÞgnðzÞ cosmy. (48)

After some algebra, the coefficients Asc
nm in Eq. (7) can be expressed as

Asc
nm ¼ �s

DJ
nm

Dð1Þnm

. (49)

Introducing Eq. (49) into Eq. (6), it is proved that the pressure field given by Eq. (6), is identical with the
pressure field in the surrounding water p3, as expected.

Finally, making appropriate algebraic manipulations, we result in p2 � p3.
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