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Abstract

Semi-active friction devices are usually designed to dissipate the vibratory energy in a mechanical system by controlling a

dry friction interface. When the normal force applied on the friction interface is controlled by a feedback loop, the design

of an optimized compensator is challenging due to the complexity of the nonlinear behavior of the dry friction. Usually,

with some simplifications, a nonlinear feedback controller can be designed either by the Lyapunov method or by the

feedback linearization approach. This paper investigates the interest of narrow-band filtering and phase shift compensation

in such nonlinear feedback controllers when the system is excited by an external harmonic force. The complex envelope

approach is used to implement the narrow-band filtering with an adjustable phase shift compensation within the nonlinear

controllers. Experiments are conducted to validate the control approaches using a friction device composed of two

piezoelectric stack actuators, each one applying a normal force on a friction pad in order to stop the movement of a mobile

mass excited by a sinusoidal force. The experimental results show that for a proper choice of the phase shift compensation,

the sticking period per cycle is reduced, and consequently the power dissipation is increased.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the limitations of passive measures for reducing noise and vibration at low frequency, smart
structures are becoming increasingly important [1]. They offer several advantages in performance over passive
techniques because they can be perfectly tuned on the undamped mode or the undesirable vibration. On the
other hand, they offer several advantages in implementation over active techniques because they require less
energy, less real-time computation and the closed loop system is usually unconditionally stable [2]. The semi-
active damping has been implemented with success in many automotive and civil engineering applications
especially through viscous friction using electrorheological or magnetorheological fluids [3]. However, semi-
active damping devices using energy dissipation through dry friction have been relatively less investigated.
These devices assume stable friction phenomena, i.e. without self-excited vibrations [4], and are usually
designed to control the dissipation of vibratory energy in a friction device by controlling the normal force
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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applied on the friction contacts [5]. Applications of semi-active dry frictions can be found in large-scale
aerospace structures [6], in the damping of flexible manipulators [7], in bolted joint connections [8], in
automotive industries for the suspensions [9] or for elastic supports [10].

In this work, an approach is presented where dry friction between two surfaces in relative motion is used to
control the vibration in structures by energy dissipation. This could be achieved using a number of devices
with controlled friction interfaces bonded to a vibrating structure [11,12]. The normal force can be
hydraulically or pneumatically generated [13]. However, piezoelectric actuators are well suited for normal
force control because they can both generate large forces and have large bandwidth, allowing to be used for
advanced control strategies [14]. The control strategy presented in this paper was developed for an original
friction device where the normal force on friction pads is controlled by two piezoelectric stacks [15].

In order to optimize the energy dissipation, the normal force has to be perfectly adjusted at any time by
using a controller. However, the design of such feedback controller is challenging due to the complexity of the
nonlinear behavior of the dry friction and the uncertainties on the parameters. In fact, friction phenomena are
described by a large number of friction models with different parameters [11], and the most advanced models
exploit velocity dynamics [14]. The LuGre friction model proposed by Canudas de Wit et al. [16] belongs to
the dynamic velocity class of friction models. This model aims at incorporating all friction nonlinearities (pre-
sliding displacement, Stribeck effect, frictional memory, viscous friction, varying break away force) using only
six parameters. Using this friction model, a nonlinear feedback controller can be designed either by the
Lyapunov method or by the feedback linearization approach [10]. When the dynamics of the friction is
neglected, these controllers naturally lead to nonlinear static feedback laws. However, in such conditions, the
controllers cannot deliver the optimal control of the normal force for maximal energy dissipation. Some
authors propose to improve the controller performance by adding an observer of the internal friction
dynamics; but this approach requires a perfect identification of the friction parameters [17]. On the other hand,
this paper presents an original back box approach which consists to anticipate the sticking in order to avoid
the complicated dynamics of the friction phenomena associated to a low velocity. For this purpose, the
harmonic excitation problem is considered because the advanced control leads to a positive phase shifted
control that can be easily implemented with a phase shift and narrow-band filtering.

The filtering operation is implemented in the feedback loop within the formalism of complex envelopes. This
is a signal processing tool widely used in communications to perform narrow-band signal processing [18].
Complex envelopes can be used to implement narrow-band controllers working with harmonic signals [19].
Such an approach was successfully implemented for the active control of pulsed flow [20], for the active
control of unstable shear layer [21], for the active damping of a low damped mode [22], and for the
decentralized active control of periodic panel vibration [23]. For the semi-active friction devices, this signal
processing tool is attractive as it allows to easily assess the effect of narrow-band filtering and phase shift
compensation in nonlinear feedback controllers.

The paper is organized as follows; Section 2 presents the modelling of the semi-active friction device while
Section 3 is related to the two feedback laws designed either by the Lyapunov method or the feedback
linearization approach. The phase shift compensation is then added to the feedback laws and implemented
using the complex envelope approach. In Section 4, experimental control results are presented for a clamped-
free beam excited by a sinusoidal force.
2. Modelling of the semi-active friction device

2.1. Modelling of the mechanical components

Fig. 1 presents a simplified representation of the semi-active friction device used in this work. A harmonic
excitation force, F exc, is applied to a moving mass. A friction pad generates the friction force, F f ðtÞ at the
contact interface. A constant normal force FN is applied at the interface. The dynamics of the system is
modelled by a single degree-of-freedom mass–spring–damper system subjected to the friction force given by

F exc � b _x� kx� Ff ¼ m €x, (1)
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Fig. 1. Mechanical model of the semi-active friction device.
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where m is the moving mass, x the relative displacement of the moving mass, k the equivalent stiffness and b

the equivalent viscous damping coefficient.
The LuGre model friction model allows a representation of the friction force including rate-dependent

effects such sliding bristles (the microscopic contact elements in the model). The representation of the rate-
dependent effects is based on an internal friction variable z which can be interpreted as an average deflection
of the bristles. The friction force is given as

Ff ¼ FN ðs0zþ s1 _zþ s2 _xÞ, (2)

where FN is the normal force, s0 and s1 are, respectively, the stiffness and the damping coefficient of the
bristles, and s2 is the viscous damping coefficient. A relaxation dynamics of the internal variable z is modelled
with a nonlinear ordinary differential equation:

_z ¼ _x�
j _xj

gð _xÞ
z, (3)

where the function g is the steady-state friction force as an algebraic function of the relative sliding velocity _x:

gð _xÞ ¼
1

s0
F c þ ðFs � FcÞ exp �

_x2

v2s

� �� �
, (4)

where F c is the Coulomb friction force, F s is the stiction force, and vs is the Stribeck velocity. The function
gð _xÞ decreases monotonically from gð0Þ when _x increases and this corresponds to the Stribeck effect [16,24].

As long as the system do not exhibit significant rate-dependent effects, it is possible to neglect the bristle
dynamics, _z ¼ 0. Consequently, the LuGre friction model is simplified to a static friction law:

Ff ¼ F Ncð _xÞ (5)

with cð _xÞ ¼ s0gð _xÞ sgnð _xÞ þ s2 _x. The symmetry �cð _xÞ ¼ cð� _xÞ should be noted. The classical Coulomb’s
friction law with equal static and dynamic friction coefficient is obtained by considering two simplifications:
neglected the damping of bristles (s2 � 0) and no Stribeck effect (vs � 0).

2.2. Modelling of the piezoelectric actuation

During relative motion, a normal force is applied to induce friction force at the contact interface between
the moving mass and the friction pads. In the semi-active device, piezoelectric actuators are used to apply the
normal force. Each actuator consists of a number of piezoelectric layers in a stack. It is assumed that the
electric field is applied only in the thickness direction of the piezoelectric elements [25]. In this case, the linear
constitutive equations are:

e3 ¼ sE
33s3 þ d33E3,

D3 ¼ d33s3 þ �T3 E3, (6)



ARTICLE IN PRESS
P. Buaka Muanke et al. / Journal of Sound and Vibration 320 (2009) 16–28 19
where e3, s3, D3 and E3 are, respectively, the strain, stress, electrical displacement (electrical charge per unit
area) and the electric field (voltage per unit length). In addition, sE

33, d33 and �T3 are, respectively, the
elastic compliance (the inverse of the elastic modulus), the piezoelectric strain constant and the permittivity of
the material.

For practical application, it is convenient to transform Eq. (6) such that physical (measurable) quantities
appear. These physical quantities are the displacement w, the force F, the applied voltage UN and the electrical
charge Q [26]. With the area of the actuator A and the thickness of each layer h, the following transformations
are then introduced:

e3 ¼
w

nh
; s3 ¼

F

A
; E3 ¼

UN

h
; D3 ¼

Q

A
. (7)

If F ext is the external force applied on a piezoelectric stack actuator with n thin layers of piezoelectric material,
the strain is given by

w

nh
¼ sE

33

F ext

A
þ d33

UN

h
. (8)

Eq. (8) can be rewritten in the following form:

F ext ¼ kpztw� Fpzt, (9)

where kpzt ¼ A=ðnhsE
33Þ and Fpzt ¼ kpztnd33UN ¼ GpztUN are, respectively, the stiffness of the stack actuator

and the force generated by the piezoelectric stack actuator with Gpzt ¼ kpztnd33.
A preload force F0 is applied to ensure the contact between the surfaces of the moving mass and the

frictions pads. The preload results in compression of the equivalent stiffness of the actuator kpzt and of the
device itself ke; the external force measured is then given by

FN ¼ F0 þ DF u (10)

with u 2 ½�1;þ1�. DF ¼ ðke=ðke þ kpztÞÞGpztUN is a modulation term for the preload force F 0 which depends
on the piezoelectric stack actuator characteristics, the maximal voltage applied (UN ) and the stiffness of the
device itself, ke. The maximal normal force is given for the command u ¼ 1, and the minimal normal force for
the command u ¼ �1. However, in order to maintain the contact on the friction pads (FN40 when u ¼ �1),
the preload must respect the condition F04DF . For the development of the control strategies, the contact
between the surfaces is assumed with a null preload force (F 0 ¼ 0), and then the command can only be
positive: u 2 ½0;þ1�. In fact, with an experimental setup, the preload force cannot perfectly ensure contact
without the introduction of an undesirable residual constant friction force.

2.3. Trade-off for maximal dissipated energy

The energy dissipated during one cycle corresponds to the work done by the friction force during this cycle
and, in the case of harmonic force excitation with period T, is given by the product of the colocated dual
variables associated with the mass: the force, Ff , and the velocity, _x:

Pd ¼
1

T

I xðt0þTÞ

xðt0Þ

F f dx ¼
1

T

Z t0þT

t0

_xðtÞFf ðtÞdt. (11)

From Eq. (5), it is possible to control the dissipated power of the device through the normal force applied on
the friction pads. But, when the excitation force is harmonic of constant amplitude, the dissipated energy by
the friction phenomena reaches an extremal value for an optimal constant normal force on the pads [27]. In
order to explain this, let us first consider a constant and a large normal force. This induces a large friction
force which opposes a high resistance which in turn reduces the relative displacement amplitude. In the worst
case, a too high constant normal force will cancel the energy dissipation by sticking off the surfaces. On the
other hand, a small constant normal force induces a small friction force but the relative displacement has a
greater amplitude. Again, in the worst case, a too low constant normal force will release the contact which will,
in turn, lead to the cancellation of the friction force. So, to obtain maximal dissipated energy with constant
normal force control, a trade-off must be achieved between the need to have a large friction force and the need
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to have a large relative displacement. In this work, the large bandwidth offered by piezoelectric actuation is
exploited to generate a fast time-varying normal force, and then to maximize the energy dissipated.
3. Design of the feedback law

3.1. Nonlinear state space model

In order to allow the design of a feedback law with the Lyapunov method, the system has to be written in
the state-space form given as

_x ¼ fðxÞ þ gðxÞu (12)

with x the state vector, u the command signal, and the smooth vector functions f : Rn ! Rn and g : Rn ! Rn

defined in Rn.
The friction force expressed by Eq. (5) becomes, with the command of the normal force (Eq. (10)):

Ff ð _x; uÞ ¼ F0cð _xÞ þ DF cð _xÞu. (13)

Hence, the state vector of the system is x ¼ ½x1 x2�
T with x1 ¼ x and x2 ¼ _x.

The nonlinear system described by Eq. (12), is now written in terms of the vector functions:

f ¼

x2

�
k

m
x1 �

b

m
x2 �

F0

m
cðx2Þ

2
4

3
5 and g ¼

0

�
DF

m
cðx2Þ

2
4

3
5. (14)

3.2. Application of the Lyapunov method

A smooth scalar function V ðxÞ : Rn ! R is said to be a Lyapunov function for the system if V ðxÞX0 and
has continuous partial derivatives, and _Vp0. When a Lyapunov function exists, the point x ¼ 0 is stable. In
the case presented herein, the total mechanical energy of a system defined as

V ðxÞ ¼
1

2
xT

k 0

0 m

� �
x (15)

is a candidate Lyapunov function.
The time derivative of V ðxÞ along any trajectory of the system is the dissipated power of the system and is

given by the following expression:

_V ðxÞ ¼ Lf V ðxÞ þ LgV ðxÞu, (16)

where the two new scalar functions, Lf V ðxÞ ¼ rV ðxÞfðxÞ and LgV ðxÞ ¼ rV ðxÞgðxÞ, are called the Lie
derivatives of V ðxÞ with respect to fðxÞ and gðxÞ [28]. The gradient defined by a row-vector of elements
ðrV ðxÞÞj ¼ qV ðxÞ=qxj , is equal to rV ðxÞ ¼ ½k m�x for this problem. This leads to the following expression:

Lf V ðxÞ ¼ �bx2
2 � F0x2cðx2Þ,

LgV ðxÞ ¼ �DF x2cðx2Þ. (17)

By considering the symmetry property of cðxÞ, it follows that Lf V ðxÞp0 and LgV ðxÞp0. Hence, the
mechanical system is dissipative, Lf V ðxÞo0 and LgV ðxÞo0 when x2a0 ( _xa0). On the other hand, whatever
is x1 (the displacement x), there is no dissipation of mechanical energy ( _V ðxÞ ¼ 0) without velocity (x2 ¼ 0)
(Fig. 2).

A special case occurs when the damper sticks. This happens when x2 ¼ 0 and _x2 ¼ 0 and, in this case, there
is no energy dissipation ( _V ðxÞ ¼ 0), and the displacement, x1 ¼ F f ð0; uÞ=k, can be non-zero because F f ð0; uÞ is
multi-valued, then it is possible for the damper to remain stuck.
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Fig. 2. Scheme of the mechanical system and the nonlinear closed-loop system with phase shift compensation.
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3.2.1. Bang– bang controller

In order to maximize energy dissipation, it is necessary to get the maximal value of � _V ðxÞ associated with a
large command u ¼ Umaxp1, but to avoid the special case _V ðxÞX0 when the damper sticks, associated with a
small command u ¼ UminX� 1 (when _V ðxÞ ¼ 0), or when energy is given to the system (when _V ðxÞ40).
Hence, the bang–bang controller applies the maximal force when _xa0, and the minimal one when _x ¼ 0 to
prevent the sticking or to release the stuck damper. However, due to noises on the measured velocity and the
Stribeck effect, it is preferable to release the normal force when a minimal velocity threshold _xmin is reached.
Hence, the bang–bang controller includes a ‘‘dead zone’’ for _x 2 ½� _xmin;þ _xmin�:

u ¼
Umax if j _xj4 _xmin;

Umin if j _xjp _xmin;

(
(18)

where _xmin is a minimal velocity threshold defined by the user. It is important to note that the control law (18)
is discontinuous and consequently will generate ‘‘chattering’’ (high-frequency switching) in the neighborhood
of the switching point ( _xmin).

3.2.2. Feedback linearization

The nonlinear system described in Eq. (12) with Eq. (14), is expressed in the controllability canonical form
(also called companion form) because _x2 ¼ f 2ðxÞ þ g2ðxÞu and _x1 ¼ x2. For such form, the nonlinearities can
be cancelled with a nonlinear feedback law if g2ðxÞa0:

u ¼
1

g2ðxÞ
ðv� f 2ðxÞÞ, (19)

to obtain the simple input–output relation _x2 ¼ v. Hence, a linear state feedback can be applied u ¼ �Kx with
K ¼ ½Kp Kd �. However, this approach requires a perfect knowledge of the functions cðx2Þ and the parameters
used in f 2ðxÞ and g2ðxÞ.

A simplified solution can be considered under assumptions. The first one is that F0 � 0 (no friction effect
when u ¼ 0); consequently, f 2ðxÞ ¼ ½�k=m� b=m�x is linear. The second one is that s2 � 0 (the damping of
bristles is neglected) and the third one is that vs � 0 (no Stribeck effect). Under these assumptions,
g2ðxÞ � �ðDF=mÞs0F c sgnðx2Þ. Hence, the nonlinear feedback law only concerns g2ðxÞ, and is for u 2 ½0;þ1�
(because F0 � 0):

u ¼ Kpb sgnð _xÞxþ Kdbj _xj. (20)

In this case, the dynamics of the controlled system is governed by

€x ¼ �
k

m
þ bKp

� �
x� bKd _x. (21)
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It appears that the feedback gain Kp modifies the resonant frequency and the feedback gain Kd introduces a
damping effect. Due to the limited available effort (u 2 ½0; 1�) the input saturate for j _xj41=Kd . Hence, the
practical simplified feedback law is given with Kp ¼ 0 (because there is no need to tune the resonant frequency:

u ¼
1 if j _xj41=Kd ;

Kd j _xj if j _xjp1=Kd :

(
(22)

For Kd !1, the feedback law, Eq. (22), becomes analogous to the bang–bang controller described by
Eq. (18), without the dead-zone, i.e. _xmin ¼ 0.

3.3. Phase compensation for a sinusoidal motion

This section describes a pre-processing approach, implemented as a filter introduced in the feedback loop, in
order to correct two major problems associated impairing the performance of nonlinear controllers:
unobserved dynamics and sensitivity to noise.

When neglecting the dynamics of the friction, the bang–bang controller and the feedback linearization
controller lead to the implementation of a nonlinear static feedback laws: the normal force is a nonlinear
function of the mass velocity. However, delays and phase shift in the feedback loop occur in practice and arise
from the internal dynamics of the electronic components (sensor pre-amplifiers, PZT amplifiers, anti-aliasing
filters, data sampling). These various dynamic behaviors can be isolated and characterized easily. However,
the neglected complex dynamics at the dry friction interface is more difficult if not impossible to characterize.
As they both rely on a perfect knowledge of the dynamics of the system, the bang–bang and feedback
Lyapunov controllers cannot provide the optimal control of the normal force because part of the dynamics
was neglected in the design process. However, it may be possible to improve the performance of the nonlinear
controllers by adding an observer of the internal friction dynamics and by compensating the effects of the
electronic components; but such an approach requires a challenging identification of the six LuGre model
parameters [17]. Again, such an approach will perform optimally if and only if the nonlinear model of
the friction captures all the dynamics. As an alternative, this paper addresses an original black box approach
(not based on any model): a compensator is added in the loop in order to anticipate the sticking of the friction
pads. In general terms, the idea is to generate the command to release the normal force before the sticking is
observed. Consequently the sticking cannot occur, and there is no need to control the dynamics of the bristles.
However, the anticipation of the sticking is a challenging problem with a feedback controller because only
the past velocity measurements can be used to generate the present normal force command. However,
when the disturbance is periodic with period T, the anticipation is equivalent to perform a positive phase
shift control. Hence, in the context of this paper, and for the purpose of the demonstration, the harmonic
excitation problem is considered because it leads to a positive (advance) phase shift in the loop at the
frequency of the excitation.

The method to avoid the ‘‘chattering’’ with the control law given by Eq. (18) consists to filter the velocity
signal prior to the generation of the control signal. In order to ensure power dissipation on the friction pads,
the velocity must be periodic. A narrow-band filtering centered on the frequency on excitation should
dramatically reduce the sensitivity to noise, and consequently limit ‘‘chattering’’ to a minimum level.
Moreover, such narrow-band filtering can also be applied to the velocity used in the control law given by
Eq. (22) in order to avoid added noise on the input signal when a large gain is used.

In order to advance the velocity signal in the feedback loop and to filter the velocity measurement, it is
proposed herein to use a narrow-band filter implemented with a complex envelope method [19]. The complex
envelope is a complex function of time, and it is the generalization of the phasor concept [18]. Such
compensator performs the demodulation of the velocity signal _xðtÞ in order to obtain its instantaneous phasor
(complex envelope) _X ðtÞ 2 C of the sinusoid at the frequency o0:

_X ðtÞ ¼

Z 1
0

hðtÞ _xðt� tÞ expð�io0ðt� tÞÞdt, (23)

where hðtÞ is a low-pass filter impulse response.
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The phase shift operation is applied on this complex signal to generate the instantaneous phasor (complex
envelope) of the command _X rðtÞ 2 C by a multiplication:

_X rðtÞ ¼ G _X ðtÞ, (24)

where G ¼ expðiFÞ is a complex gain and F the desired phase shift. Finally, the compensated signal is
generated by modulation of the sinusoid at the frequency o0:

_xrðtÞ ¼ Reð _X rðtÞ expðþio0tÞÞ, (25)

where Reð�Þ denotes the real part of ð�Þ. By considering the Fourier transform of Eqs. (25), (23), and (24), it can
be demonstrated that the proposed compensator is equivalent to a narrow-band compensator centered on the
central frequency o0:

_xrðoÞ
_xðoÞ

¼ �Ghðo� o0Þ � G�hð�o� o0Þ, (26)

where G� is the conjugate of G. With this compensator, the velocity signal is narrow-band filtered. Eq. (25)
shows that the proposed controller is a useful and simple way to advance and to filter the measured velocity by
setting the phase shift, F, at the excitation frequency, o0.
4. Experimental validation of the semi-active device

4.1. Presentation of the device

To validate the semi-active device concept, a prototype was designed and fabricated [15]. Fig. 3 shows the
semi-active device prototype which has the overall dimensions of 8:5 cm� 5:0 cm� 10:0 cm for a total weight
of 1.20 kg. The device includes two flexible phosphorus–bronze alloy blades with 0.41mm thickness which are
attached to the moving mass made of stainless steel. The two flexible blades are clamped to the rigid frame. On
each side of the moving mass, friction pads made from car brakes material are assembled. During relative
displacement of the mass, normal forces, provided by preload and two piezoelectric stack actuators on both
sides of the moving mass, induce friction force at the interface contact between moving mass and frictions pads
surfaces. To ensure that this normal force remains perpendicular to the motion of the moving mass and to
correct possible misalignment due to the motion (coming, for example, from slight deviated blades), balls are
inserted between the friction pads and the piezoelectric actuators. The PZT stack actuators used to apply the
normal force are BM532 elements from Sensor Technology Limited and consist of 78 layers, each layer having
Fig. 3. The semi-active friction device: force sensor (1), accelerometer (2), piezoelectric actuator (3), friction pad (4), and moving mass (5).
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0.25mm thickness. The maximal free displacement is about 9 mm for an applied voltage of 200V. The maximal
force (1200N) is generated in completely clamped conditions (blocking force).

4.2. Experimental setup

The device presented in Section 4.1 is connected to a beam. An electromagnetic shaker with a power
amplifier is used to provide the excitation force at the frequency f ¼ 60Hz with an amplitude of 10N. This
force is measured using a force sensor. The preload is set to F0 ¼ 70N. The maximal voltage applied to the
piezoelectric actuator is UN ¼ 200V. Two accelerometers are used for the measurement of the relative
acceleration between the moving mass and the friction pads.

The signals obtained from the force sensor and accelerometers are conditioned with charge amplifiers and
then filtered by an elliptic low-pass filter with a cut-off frequency of 600Hz (eighth order, 8 poles, and 6 zeros)
from Frequency Devices, as an anti-aliasing filter. A Butterworth filter (eighth order, 8 poles) is used for
filtering shaker and PZT stack actuators control signals.

The controllers are developed within MATLAB/Simulink and implemented on dSPACE boards for real
time signal processing; visualization and data acquisition are performed under the ControlDesk software. The
velocity signal is numerically computed, on-line and in real-time in the dSPACE system, by numerical high-
pass filtering and integration of the measured acceleration. The high-pass filtering is necessary to avoid any
drift of the estimated velocity.

4.3. Bang– bang controller

With the bang–bang controller given by Eq. (18), with the compensator given by Eq. (26), the maximal
voltage Umax is adjusted from 0V to þ160V with steps of 5V. The dead zone is adjusted with
_xmin ¼ 0:002m=s. Fig. 4 presents the dissipated power versus the control parameters: the maximal command,
Umax is normalized and is adjusted from 0 to 0.8 with steps of 0.025, the phase shift, F is adjusted between
0 and 2p rad. Without the phase shift compensation (F ¼ 0 rad), the dissipated power increases from 30 to
100mW when Umax varies from 0 to 0.4; after the value of 0.4, corresponding to Umax ¼ 80V, the dissipated
power dramatically decreases. When the phase shift in the feedback loop varies, the dissipated power is
0.14
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Fig. 4. Power dissipated as a function of the phase angle F and actuator control parameter Umax with the bang–bang controller.
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modulated with a periodicity of p. The maximal dissipated power of 130mW is obtained at Umax ¼ 0:40 and
F ¼ 1:2 rad. Hence, a positive phase shifted control allows to optimize the dissipated power by 30%.
This results clearly shows, that to obtain a large dissipated power, it is necessary to make a compromise
between a large normal force which leads to a small displacement or a small normal force which leads to a
large displacement. This result is consistent with similar results obtained by controlling a constant normal
force [27].

4.4. Feedback linearization

4.4.1. Optimal tuning

For the case of the feedback linearization controller given by Eq. (22), with the compensator given by
Eq. (26), Fig. 5 presents the dissipated power versus the control parameters: the derivative gain Kd and the
phase shift F. Without control, Kd ¼ 0, the dissipated power is 60mW.

Without the phase shift compensation (F ¼ 0 rad), the dissipated power increases from 60 to 102.5mW
when the derivative gain Kd varies from 0 to 32; after, it decreases when the derivative gain Kd is superior than
32. Hence, it is preferable to adjust the derivative gain Kd at 32, or slightly less than 32, but not larger than this
value.

When the phase shift in the feedback loop varies between 0 and 2p rad, the dissipated power is modulated
with a periodicity of p because the control force is a function of the velocity modulus. In the best case, when
the derivative gain Kd is close to 32, the dissipated power varies between 102.5mW (without phase shift) and
132.5mW (with an optimal phase shift of F ¼ 1:2 rad or F ¼ 1:2þ p rad). Finally, the maximal dissipated
power of 132.5mW is obtained for the optimal values of Kd ¼ 32 and F ¼ 1:2 rad.

4.4.2. Instability of the feedback loop

Without phase shift compensation, i.e. for F ¼ 0 rad, the closed-loop becomes unstable for KdX36: a self-
oscillation occurs at 5Hz. Fig. 6 presents the instability of the actuator command for Kd ¼ 36. The reason for
this instability is the narrow-band filtering obtained by the fourth order low-pass filtering filter with a cut-off
frequency at 6Hz since it introduces a �180� phase shift at 6Hz. With the phase shift it is possible to stabilize
this feedback loop with the value F ¼ p=2 rad when Kd436. However, the compensator was not introduce in
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Fig. 5. Power dissipated as a function of the derivative gain Kd and phase angle F.
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the loop to stabilize it. Hence, in order to increase the gain margin, without the tuning of a phase shift, the
low-pass filter is replaced by a second order elliptic filter with an higher cut-off frequency at 95Hz.
Experimental results validated that a large value of the derivative gain can now be used without risk of
instability.
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4.4.3. Analysis of the system

With the second order elliptic filter introduced in the previous section, Fig. 7 presents a typical result
obtained with a derivative gain Kd of 200. The velocity, the voltage on the actuators, and the normal control
force are presented for the cases without phase shift compensation, F ¼ 0 rad, and with an optimal phase shift
compensation of F ¼ 0:5 rad. Due to the preload of 70N, the normal force is modulated between 70 and 90N
by the actuator voltage. It clearly appears that the measured normal force is perfectly in-phase with the voltage
control applied to the PZT stack.

For the case F ¼ 0 rad, the velocity shows a significant sticking time per cycle: the velocity is close to zero from
t ¼ 0:357 to 0.360 s, for example. The end of sticking is due to the release of the normal force: at time t ¼ 0:360 s,
the normal force is close 72N, for example. On the other hand, for the case F ¼ 0:5 rad, there is no sticking time
per cycle. The impact of the phase shift compensation on the dissipated power is clearly visible in Fig. 8 which
presents the velocity versus the displacement, because the area of drawn by such curves is the dissipated power.
Without phase shift compensation, for F ¼ 0 rad, the sticking limits the dissipated power. The sticking disappears
when a F ¼ 0:5 rad phase shift compensation is applied; the dissipated power is then increased by 25%.

5. Conclusions

We have presented an original nonlinear feedback loop to control a device designed to dissipate the
vibratory energy by controlling a dry friction force. Experimental setup was an original device composed of
friction pads acting on a mobile component; the normal force on the pads are under control of piezoelectric
stack actuators characterized by a large bandwidth. The results have shown that it exists an optimal tuning of
the feedback loop parameters which are the amplitude and the phase shift for the bang–bang controller, and
the derivative gain and the phase shift for the feedback linearization controller. In both cases, it exists a proper
choice of the phase shift compensation that can improve the power dissipation. It is however worth noticing
that the two nonlinear control strategies presented are based on a simplified model of the friction phenomena;
but the phase shifted normal force allows to anticipate the sticking and consequently allows to optimize the
friction dissipation. Consequently, the proposed nonlinear feedback laws with phase shift control are good
candidates to improve the control of friction dampers.

Acknowledgments

This work was supported by the National Science and Engineering Research Council (NSERC) and by the
Network of Centres of Excellence AUTO21, Canada.



ARTICLE IN PRESS
P. Buaka Muanke et al. / Journal of Sound and Vibration 320 (2009) 16–2828
References

[1] S. Hurlebaus, L. Gaul, Smart structure dynamics, Mechanical Systems and Signal Processing 20 (2) (2006) 255–281.

[2] C. Fuller, S. Elliot, P. Nelson, Active Control of Vibration, Academic Press, London, 1996.

[3] N. McClamroch, H. Gavin, Electrorheological dampers and semi-active structural control, Proceedings of 34th Conference on

Decision and Control, New-Orleans, LA, 1994, pp. 3528–3533.

[4] N. Hoffmann, Linear stability of steady sliding point contacts with velocity dependent and Lugre type friction, Journal of Sound and

Vibration 301 (2007) 1023–1034.

[5] D. Karnopp, M. Crosby, R. Harwood, Vibration control using semi-active force generators, Journal of Engineering for Industry 96 (2)

(1974) 619–626.

[6] J. Lane, Control of Dynamic Systems Using Semi-active Friction Damping, PhD Thesis, Georgia Institute of Technology, 1992.

[7] J. Lane, S. Dickerson, Contribution of passive damping to the control of flexible manipulators, Proceedings of ASME Computers in

Engineering, Las Vegas, NV, 1984, pp. 175–180.

[8] L. Gaul, R. Nitsche, Friction control for vibration suppression, Mechanical Systems and Signal Processing 14 (2) (2000) 139–150.

[9] A. Ferri, B. Heck, Semi-active suspension using dry friction energy dissipation, Proceedings of the 1992 American Control Conference,

Chicago, IL, 1992, pp. 31–35.

[10] M. Lorenz, B. Heimann, J. Tschimmel, V. Hartel, Applying semi-active friction damping to elastic supports for automotive

applications, Proceedings of IEEE ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 2003.

[11] B. Armstrong-Hélouvry, P. Dupont, C. Canudas de Wit, A survey of models, analysis tools and compensation methods for the

control of machines with friction, Automatica 30 (7) (1994) 1083–1138.

[12] O. Durmaz, W.C. Clark, D. Bennett, S. Paine, Jeffrey, M. Samuelson, Experimental and analytical studies of a novel semi-active

piezoelectric coulomb damper, Proceedings of SPIE Smart Structures and Materials 2002: Damping and Isolation, San Diego, CA,

2002, pp. 258–273.

[13] C.W. Stammers, T. Sireteanu, Vibration control of machines by using of semi-active dry friction damping, Journal of Sound and

Vibration 209 (4) (1997) 671–684.

[14] P. Dupont, P. Kasturi, A. Stokes, Semi-active control of friction dampers, Journal of Sound and Vibration 202 (2) (1997) 203–218.

[15] P. Buaka, Development of a Semi-active Device for Attenuation of Vibrations in Mechanical Structures by Energy Dissipation with

Dry Friction, PhD Thesis, Université de Sherbrooke, 2005 (in French).
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