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Abstract

A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit

cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a hysteresis structural nonlinearity.

Both stable and unstable LCOs can be calculated to any desired degree of accuracy and their stabilities are determined by

the theory of Poincaré map. Thus, the present method is capable of detecting complex aeroelastic responses such as

periodic motion with harmonics, period-doubling, saddle-node bifurcation, Neimark–Sacker bifurcation and the

coexistence of limit cycles. The dynamic response is quite different from that of an aeroelastic system with freeplay

structural nonlinearity. New phenomena are observed in that the emanating branches from period-doubling bifurcations

are not smooth and the bifurcation of a LCO may lead to the simultaneous coexistence of all period-2n LCOs.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the dynamic behavior of aircraft structures is crucial in flutter analysis since it provides useful
information in the design of aircraft wings and control surfaces. Concentrated structural nonlinearities can
have significant effects on the aeroelastic responses of aerosurfaces even for small vibrational amplitudes.
There are three types of nonlinearities in concentrated nonlinear structures, namely cubic, freeplay and
hysteresis stiffnesses. The former two types have been extensively studied by many investigators. Aeroelastic
systems with cubic stiffness have been successfully analyzed by using the describing function [1], harmonic
balance method [2], the center manifold and the principle of normal form [3]. The describing function method
[4], the rational polynomial approximation [5] and the point transformation (PT) method [6] were applied to
analyze the aeroelastic system with a freeplay model. Trickey et al. [7] investigated both local and global
stability of an airfoil with a freeplay nonlinearity based on both experimental and numerical studies. A survey
of different types of nonlinearity and their effect on aeroelastic behavior can be found in Refs. [8,9].
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.07.019

ing author. Tel.: +852 27888671; fax: +852 27888561.

ess: makchung@cityu.edu.hk (K.W. Chung).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.07.019
mailto:makchung@cityu.edu.hk


ARTICLE IN PRESS
K.W. Chung et al. / Journal of Sound and Vibration 320 (2009) 163–183164
Compared to the study of cubic and freeplay nonlinearities, much less literature has been found on the study
of hysteresis nonlinearity. A comprehensive survey can be found in Ref. [10]. The main drawback of using
harmonic balance methods to investigate freeplay and hysteresis nonlinearities is that the second derivative of
an approximate solution obtained by such methods is continuous while that of the exact solution is
discontinuous at the switching points where changes in linear subdomains occur. Such inconsistency between
the exact and the approximate solutions may lead to serious error in the prediction and analysis. To overcome
this drawback, Liu et al. [6,10] employed the PT method which can track the system behavior to the exact
point where the change in linear subdomains occurs. However, the PT method is not capable of finding
unstable periodic solutions and thus is not suitable for performing parametric continuation.

On the other hand, nonlinearities of hysteresis type are common in many different areas of science
and technology, including physics, biology, mechanics and electronics. The phenomenon of hysteresis has
been recently attracting the attention of many investigators. Practical models of hysteresis can be found in
Refs. [11,12]. The folding mechanism of many chaotic circuits is based on hysteresis nonlinearity [13].

In view of the above situation, we consider developing a general method for the study of limit cycle
oscillation (LCO) of aeroelastic system with hysteresis nonlinearity, which may also be extended to investigate
other models of hysteresis. Chung et al. [14] applied a perturbation-incremental (PI) method to study LCOs
and bifurcation of an aeroelastic model with freeplay nonlinearity. The PI method is a semi-analytical and
numerical process which incorporates salient features from both the perturbation method and the incremental
approach. Both stable and unstable LCOs can be calculated accurately. The continuation curves thus give a
full picture of the global bifurcation.

In this paper, we extend the PI method to the continuation and bifurcation analysis of an aeroelastic model with
hysteresis nonlinearity. In fact, the method can also be applied to any piecewise-linear system with hysteresis
nonlinearity. The paper is organized as follows. A brief description of an aeroelastic model with hysteresis
nonlinearity is given in Section 2. In Section 3, we discuss the solution type of LCO in each linear region. The PI
method is described in Section 4. Bifurcation analysis is discussed in Section 5, followed by conclusions in Section 6.
2. The mathematical model

Fig. 1 shows a sketch of a two-degree-of-freedom (2-dof) airfoil motion in plunge and pitch. The plunge deflection
is denoted by h, positive in the downward direction, and a is the pitch angle about the elastic axis, positive nose up.
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Fig. 1. Schematic of airfoil with 2 dof motion.
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The elastic axis is located at a distance ahb from the mid-chord, while the mass center is located at a distance xab

from the elastic axis, where b is the airfoil semi-chord. Both distances are positive when measured towards the
trailing edge of the airfoil. The aeroelastic equations of motion for linear springs have been derived by Fung [15].
For nonlinear restoring forces, the coupled bending–torsion equations for the airfoil can be written as follows:

m €hþ S €aþ Ch
_hþ ḠðhÞ ¼ pðtÞ, (1)

S €hþ Ia €aþ Ca _aþ M̄ðaÞ ¼ rðtÞ, (2)

where the symbols m, S, Ch, Ia and Ca are the airfoil mass, airfoil static moment about the elastic axis,
damping coefficient in plunge, wing mass moment of inertia about elastic axis, and torsion damping
coefficient, respectively. ḠðhÞ and M̄ðaÞ are the nonlinear plunge and pitch stiffness terms, and pðtÞ and rðtÞ are
the forces and moments acting on the airfoil, respectively. By a suitable transformation as described in
Refs. [6,16,17], the airfoil motion without any external forces can be rewritten into a system of eight first-order
ordinary differential equations:

x01 ¼ x2,

x02 ¼
X8
i¼1

a2ixi þ j d0
ō

U�

� �2

Gðx3Þ � c0
1

U�

� �2

Mðx1Þ

" #
,

x03 ¼ x4,

x04 ¼
X8
i¼1

a4ixi þ j c1
1

U�

� �2

Mðx1Þ � d1
ō

U�

� �2

Gðx3Þ

" #
,

x05 ¼ x1 � �1x5,

x06 ¼ x1 � �2x6,

x07 ¼ x3 � �1x7,

x08 ¼ x3 � �2x8, (3)

where the 0 denotes differentiation with respect to the non-dimensional time t defined by t ¼ Ut=b with U

being the free-stream velocity. The coefficients j; a21; . . . ; a28, a41; . . . ; a48, c0, c1, d0, d1, �1 and �2 are related to
the system parameters and their expressions are given in Appendix A. The structural nonlinearities are
represented by the nonlinear functions Gðx3Þ and Mðx1Þ. In this paper, we investigate system (3) for a
hysteresis damper in pitch and a linear spring in plunge, i.e. Gðx3Þ ¼ x3. The hysteretic damper consists of a
linear elastic spring and a coulomb damper with amplitude constraint in two directions. For detailed
description of such damper, see p. 15 of Ref. [11] or p. 97 of Ref. [18]. The hysteresis stiffness Mðx1Þ is
described by the line segments I–V as shown in Fig. 2.

Notice that I, III and V are bidirectional while II and IV are unidirectional. The boundary of the hysteresis
is composed of two freeplays following specified directions. If the traveling path is along the upper branch of
the hysteresis, i.e. I! II! III with x1 increasing, then Mðx1Þ is given by

Mðx1Þ ¼

x1 þM0 � af ; x1oaf ";

Mf x1 þM0 � af Mf ; af px1paf þ d ";

x1 þM0 � af � dð1�Mf Þ; x14af þ d ";

8><
>: (4a)

where " represents the motion in the increasing x1 direction. M0, Mf , af and d are constants. On the other
hand, if the traveling path is along the lower branch, i.e. III! IV! I with x1 decreasing, then

Mðx1Þ ¼

x1 �M0 þ af þ dð1�Mf Þ; x1o� af � d #;

Mf x1 �M0 þ af Mf ; �af � dpx1p� af #;

x1 �M0 þ af ; x14� af #;

8><
>: (4b)

where # represents the motion in the decreasing x1 direction. Without loss of generality, let af ¼M0 � ðd=2Þ
ð1�Mf Þ. Then, in Eqs. (4a) and (4b), we have x1 þM0 � af ¼ x1 �M0 þ af þ dð1�Mf Þ and
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Fig. 2. General sketch of a hysteresis stiffness.
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x1 þM0 � af � dð1�Mf Þ ¼ x1 �M0 þ af . In a concise form, Eqs. (4a) and (4b) can be rewritten as

Mðx1Þ ¼
x1 þ

Mf�1

2
ðjx1 � af j � jx1 � af � djÞ; x1 "; ð4a0Þ

x1 þ
Mf�1

2
ðjx1 þ af þ dj � jx1 þ af jÞ; x1 # : ð4b0Þ

8<
:

Furthermore, when the traveling path is along II (IV, resp.), x2 ¼ x01 may become zero. If x1 changes direction
at, say, point H (K, resp.), x01 becomes negative (positive, resp.). Then, Mðx1Þ switches to line segment V which
is parallel to both I and III. Let a1 be the abscissa of H which is the intersection point of line segments II
and V. The equation of line segment V is given by

Mðx1Þ ¼ x1 þM0 � a1 þMf ða1 � af Þ; a1 � 2af � dpx1pa1 "# , (4c)

where af pa1paf þ d. The hysteresis model described in Eqs. (4a)–(4c) is more general than that defined in
Ref. [10], since Mf a0 and Mðx1Þ is also defined inside the hysteresis loop.

Fig. 2 shows the four main regions Rj ðj ¼ 1; 2; 3; 4Þ which correspond to the following linear subsystems
and associate with line segments i ¼ I; II; III; IV, respectively,

ðIÞ X 0 ¼ AX þ F 1; x1oaf "# , (5a)

ðIIÞ X 0 ¼ BX þ F2; af px1paf þ d " , (5b)

ðIIIÞ X 0 ¼ AX � F 1; x14� af "# , (5c)

ðIVÞ X 0 ¼ BX � F2; �af � dpx1p� af # . (5d)

The elements of A;B and F i ði ¼ 1; 2Þ are determined by the system parameters of the coupled aeroelastic
equations, and they are given by

A ¼
A1 A2

A3 A4

 !
; B ¼

B1 A2

A3 A4

 !
(6)
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and F1 ¼ ðM0 � af ÞF , F 2 ¼ ðM0 � af Mf ÞF , where Ai ði ¼ 1; 2; 3; 4Þ, B1 and the vector F are defined in
Appendix B with b ¼ 1.

Unlike the freeplay model, the number of linear regions created in the phase space X 2 R8 due to a LCO
may not be fixed. It may happen that the trajectory of a LCO changes direction when moving along line
segment II or IV. Then, a new linear region R5 is created corresponding to the linear subsystem

ðVÞ X 0 ¼ AX þ F 3; a1 � 2af � dox1oa1 "# , (5e)

where F3 ¼ ½M0 � a1 þMf ða1 � af Þ�F and a1 is the abscissa of the intersection point of line segments II and V
such that af pa1paf þ d.

3. LCO and solution type

Consider the hysteresis model shown in Fig. 2. Let the Z � Y plane represent the eight-dimensional phase
space, where Z ¼ fx1g and Y ¼ fx2; . . . ;x8g. We first of all consider a LCO traveling only in the four main
regions Rj ðj ¼ 1; 2; 3; 4Þ. Let Z1, Z2, Z3 and Z4 denote the switching subspaces Z ¼ �af � d, Z ¼ af , Z ¼

af þ d and Z ¼ �af , respectively, where the linear systems change (see Fig. 3(a)). The system response can be
predicted by following a general phase path. Assuming that a motion initially starts at a point X 1 in one of the
switching subspaces (say Z1) as shown in Fig. 3(a), the trajectory travels in Ri ði ¼ 1; 2; 3Þ, hits Ziþ1 at X iþ1

and eventually hits Z1 again at X 5. The points X i ði ¼ 1; . . . ; 5Þ are called switching points as they are located
in the switching subspaces. We note that the points X 1 and X 5 define a Poincarè map in Z1. The trajectory
becomes a LCO if X 5 coincides with X 1 (see Fig. 3(b)). Since the system of equations in each region is strictly
linear, the exact solutions in Ri can be obtained analytically. Therefore, for a given point X 1 in Z1, X 5 can be
determined analytically.

Next, we consider the case when the trajectory of a LCO changes direction at H in Fig. 2 when
moving along line segment II. In the phase space shown in Fig. 3(c), the trajectory intersects tangentially
a new switching subspace Z5, given by Z ¼ a1 at X 6. A new region R5 is created corresponding to the
traveling path along line segment V. If the trajectory does not move as far back as to point K which is
the intersection of line segments IV and V, it stays in R5 and hits Z5 again at X 7. Thus, a change of
direction along II or IV creates a new switching subspace and gives arise to a harmonic component
in a LCO.

Finally, we consider the analytic expression of trajectory in each linear region starting with R2 which
corresponds to the linear subsystem (5b). Note that detðBÞ ¼ 0 and rankðBÞ ¼ 7.

Proposition 1. If F2 in Eq. (5b) is non-zero, then the system of equations

BX þ F2 ¼ 0 (7)

has no solution.

Proof. Let X ¼ ðx1; . . . ;x8Þ
T. From Appendices A and B for the definition of matrices B;F2 and Eq. (7)

above, we have x2 ¼ x4 ¼ 0, x5 ¼ x1=�1, x6 ¼ x1=�2, x7 ¼ x3=�1, x8 ¼ x3=�2 and

b21 þ a25=�1 þ a26=�2 b23 þ a27=�1 þ a28=�2

b41 þ a45=�1 þ a46=�2 b43 þ a47=�1 þ a48=�2

 !
x1

x3

 !

¼ ðMf af �M0Þj
1

U�

� �2 �c0

c1

 !
, (8)

where b21, b23, b41 and b43 are the corresponding elements of the matrix B ¼ ðbikÞ. The determinant of the 2� 2
matrix in (8) is zero. Furthermore,

b21 þ a25=�1 þ a26=�2 �c0

b41 þ a45=�1 þ a46=�2 c1

�����
����� ¼ ðc1d0 � c0d1Þðc5 þ c6=�1 þ c7=�2Þ, (9)
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Fig. 3. Phase portrait of the aeroelastic system (3) with hysteresis structure: (a) general trajectory; (b) period-one LCO; (c) trajectory

where the traveling path branches off from II to V.
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where ci and di are defined in Appendix A. Since c1d0 � c0d1 ¼ �1=ja0 and c5 þ c6=�1 þ c7=�2 ¼ 2=m, the
expression of Eq. (9) is non-zero. Therefore, Eq. (8) and, equivalently, Eq. (7) have no solution. This
completes the proof. &

The consequence of Proposition 1 is that a linear combination of eight independent vectors is required to describe
a trajectory in R2 (and R4). This is different from the freeplay model studied in Ref. [14] in which a trajectory in R2

travels in a seven-dimensional submanifold. In the following, we replace the non-dimensional time t by t.

Proposition 2. Let vi ði ¼ 1; . . . ; 7Þ and v8 be the eigenvectors of B corresponding to the non-zero eigenvalues li

and the zero eigenvalue l8 ð¼ 0Þ, respectively. Then, a solution of Eq. (5b) is expressed as

rðtÞ ¼
X7
i¼1

pivi þ tp8v8 þ
X8
i¼1

ki e
li tvi, (10)
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where ki ði ¼ 1; . . . ; 8Þ are arbitrary constants depending on initial condition and

ðp1 . . . p8Þ
T
¼ ð�l1v1 . . . � l7v7 v8Þ

�1F2. (11)

Proof. Since rankðBÞ ¼ 7, a solution of Eq. (5b) can be expressed in the form

rðtÞ ¼ pþ tp8v8 þ
X8
i¼1

ki e
li tvi, (12)

where ki 2 R, p8 2 R and p is a constant vector in the subspace spanned by vi ði ¼ 1; . . . ; 7Þ. Thus, we let
p ¼

P7
i¼1pivi. Differentiating Eq. (12) with respect to t and substituting it into Eq. (5b), we obtain, after

simplification,

p8v8 ¼
X7
i¼1

pilivi þ F2,

which implies Eq. (11). This completes the proof. &

The analytic expression of trajectory in region R4 is the same as Eq. (10) with F2 in Eq. (11) replaced
by �F 2.

Since detðAÞa0 in the regions R1, R3 and R5, a trajectory rðtÞ in these regions is simply expressed
analytically as

rðtÞ ¼ uþ
X8
i¼1

ki e
li tvi, (13)

where ki 2 R, li and vi are the eigenvalues and the corresponding eigenvectors of A, respectively. The constant
vector u is equal to �A�1F 1, A�1F 1 and �A�1F3 if rðtÞ is in regions R1, R3 and R5, respectively.

4. The perturbation-incremental (PI) method

The main idea of the PI method is to convert a LCO to an equilibrium point of a Poincaré map in a
switching subspace and consider a system of variational equations of the map for parametric continuation.
Same as in Refs. [6,14], the non-dimensional velocity U� is mainly used as the bifurcation parameter. The
procedure of the PI method is divided into two steps. The first step is to obtain an initial solution for the
continuation of the bifurcation parameter in the second step. A matrix dimension reduction technique is
employed to speed up the computations involved in the second step.

4.1. Perturbation step

For a smooth dynamical system, small LCO can be obtained through Hopf bifurcation. However, Hopf
bifurcation theorems cannot be applied to a piecewise-linear system due to its low differentiability. Nevertheless, a
piecewise-linear system can undergo bifurcations which have similarities (but also discrepancies) with the Hopf
bifurcation [19]. System (3) with hysteresis nonlinearity defined in Eqs. (4a)–(4c) is a symmetric piecewise-linear
system. A system of the form X 0 ¼ F ðX Þ with X 2 Rn is symmetric if it satisfies the condition F ð�X Þ ¼ �F ðX Þ.
A LCO is symmetric if X ðtþ T=2Þ ¼ �X ðtÞ where T is the period. An initial symmetric LCO may be obtained in
the following way.

We first consider a symmetric periodic solution traveling only in R5 which corresponds to line segment V
passing through the origin as shown in Fig. 4(a). From Eq. (4c), the abscissa of H is given by

a1 ¼ af þ
d
2
. (14)

The necessary condition for the existence of periodic solution in the linear subspace R5 is that a pair of
eigenvalues of matrix A become pure imaginary (say l ¼ �io, o40) at a specific value of the bifurcation
parameter U�. Let u1 � iu2 be the corresponding eigenvectors. The calculation of initial periodic solution
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below is similar to that for the freeplay model in Ref. [14]. A periodic solution spanned by u1 and u2 in R5 can
be expressed as

rðtÞ ¼ ðp1 þ ip2Þðu1 þ iu2Þe
iot þ ðp1 � ip2Þðu1 � iu2Þe

�iot � A�1F3, (15)

where p1; p2 2 R and a1 in F 3 is given in Eq. (14). Let Z1 and Z2 be the switching subspaces Z ¼ �a1 and
Z ¼ a1, respectively (see Fig. 4(a)). If the linear subspace spanned by u1 and u2 intersects both Z1 and Z2, then
there exists a unique periodic solution intersecting tangentially these two switching subspaces with maximal
amplitude. Let rð0Þ and rðT=2Þ be the switching points at Z1 and Z2, respectively, where T is the period. From
Eq. (15) and the fact that the tangent at rð0Þ is orthogonal to the Z-axis, we have

p1u11 � p2u21 ¼ �
a1
2
;

p2u11 þ p1u21 ¼ 0;

8<
:

x1

M(x1)

V

α1

H

−α1

Z

Y

α1−α1

R5

r(Τ/2)r(0)

x1

M(x1)

V’

α1+ε

II

Z

Y

R4

IV

V”

α1-ε

R2

R5’

R5”

Fig. 4. (a) Periodic solution with maximal amplitude in the linear subspace spanned by u1 and u2 and (b) symmetric LCO traveling from

regions created by a perturbation from the critical value.



ARTICLE IN PRESS
K.W. Chung et al. / Journal of Sound and Vibration 320 (2009) 163–183 171
which imply

p1 ¼
�a1u11

2ðu2
11 þ u2

21Þ
and p2 ¼

a1u21

2ðu2
11 þ u2

21Þ
, (16)

where ui1 ði ¼ 1; 2Þ are the first components of ui. As the bifurcation parameter is varied from the critical
value, a symmetric LCO traversing four regions as shown in Fig. 4(b) may suddenly appear. For small �, the
LCO is tangential to both the switching subspaces Z ¼ �a1 � � and Z ¼ a1 þ �.

4.2. Parameter incremental step—a Newton–Raphson procedure

Contrary to the freeplay nonlinearity, the parameter incremental step for the hysteresis nonlinearity needs
to take into account the unidirectional condition of line segments II and IV of Mðx1Þ, and the fact that a
trajectory may travel in R5 which corresponds to line segment V. Assume that a LCO contains n switching
points X i ði ¼ 1; 2; . . . ; nÞ (see Fig. 5). Let riðtÞ ði ¼ 1; 2; . . . ; nÞ be the segment of LCO between X i and X iþ1

with X nþ1 ¼ X 1 traveling in region Rpi
ðpi 2 f1; 2; 3; 4; 5gÞ. From Eqs. (10), (11) and (13), riðtÞ may be

expressed in the following analytical form:

riðtÞ ¼ upi
þ
X8
j¼1

kij e
lpi j tvpij, (17)

where kij 2 R, lpij and vpij are the eigenvalues and eigenvectors, respectively, of matrices A if pi ¼ 1; 3; 5 and B

if pi ¼ 2; 4, and

upi
¼

�A�1F 1 if pi ¼ 1;

CF 2 if pi ¼ 2;

A�1F1 if pi ¼ 3;

�CF 2 if pi ¼ 4;

�A�1F 3 if pi ¼ 5

8>>>>>><
>>>>>>:

(17a)

with C ¼ ðvpi1 vpi2 . . . vpi7 tvpi8Þð�lpi1vpi1 � lpi2vpi2 . . . � lpi7vpi7 vpi8Þ
�1. We note that upi

is a function of t

only if pi ¼ 2; 4. If t in riðtÞ counts only the time traveled in Rpi
with traveling time ti from X i to X iþ1, we have

X i ¼ rið0Þ ¼ ri�1ðti�1Þ; i ¼ 1; 2; . . . ; n, (18)
Xi-1 Xi+2

X1

Z

Y

Xn

−αf −δ αf+δ
αf

−αf

Xi

Xi+1

R4

R5

R2R1

R3

Fig. 5. A general LCO.
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with subscript ‘0’ replaced by ‘n’ (i.e. r0ðt0Þ ¼ rnðtnÞ). This replacement of subscript ‘0’ by ‘n’ will also be
adopted in subsegment formulae derived from Eq. (18). Substituting Eq. (17) into Eq. (18), we obtain

X i ¼ upi
jt¼0 þ

X8
j¼1

kijvpij ¼ upi�1
jt¼ti�1

þ
X8
j¼1

kði�1Þje
lpi�1 j ti�1vpi�1j ; i ¼ 1; 2; . . . ; n. (19)

The period of a LCO is given by T ¼
Pn

i¼1ti.
In solving Eq. (18) for X i’s, the unknowns in a switching point at the boundary of R5 are different from

those of a switching point at the intersection of two main regions. The first component of a latter switching
point is constant while the other seven components are unknowns to be determined in the incremental step. In
the general LCO of Fig. 5, let X i and X iþ1 be the switching points at the boundary of R5. Since the trajectory
branches off to line segment V at X i and gets back to line segment II at X iþ1, the second component of X i is
zero and both X i and X iþ1 have the same first component. Therefore, the first component of these two
switching points is an unknown although they have also an average of seven unknowns. To consider the
continuation in U�, a small increment of U� to U� þ DU� in Eq. (19) corresponds to small changes of the
following quantities:

X i ! X i þ DX i; kij ! kij þ Dkij ; upi�1
! upi�1

þ Dupi�1
and ti�1! ti�1 þ Dti�1.

To obtain a neighboring solution, Eq. (19) is expanded in Taylor’s series about an initial solution. Linearized
incremental equations are derived by ignoring all the nonlinear terms of small increments as below:

X i þ DX i ¼ upi
jt¼0 þ

X8
j¼1

kijvpij þ
X8
j¼1

Dkijvpij

¼ upi�1
jt¼ti�1

þ
X8
j¼1

kði�1Þj e
lpi�1 j ti�1vpi�1j þ Dupi�1

þ
X8
j¼1

Dkði�1Þj e
lpi�1 j ti�1vpi�1j

þ Dti�1

X8
j¼1

lpi�1jkði�1Þj e
lpi�1 j ti�1vpi�1j ; i ¼ 1; 2; . . . ; n. (20)

Let q be the eighth component of the column vector

ð�lpi�11vpi�11 � lpi�12vpi�12 . . . � lpi�17vpi�17 vpi�18Þ
�1F2.

It follows from Eq. (17a) that Dupi�1
in Eq. (20) is given by

Dupi�1
¼

Dti�1qvpi�18
; if pi�1 ¼ 2;

�Dti�1qvpi�18
; if pi�1 ¼ 4;

0; otherwise:

8><
>: (20a)

As the bifurcation parameter U� varies, the number n of switching points of a LCO may become quite large
after several bifurcations. To solve Eq. (20) in an efficient way for large n, a matrix dimension reduction
technique described in Ref. [14] is used, which is a part of the PI method for non-smooth systems.

In Fig. 3, the switching points of a trajectory in a particular switching subspace define a Poincaré map. The
eigenvalues of the first derivative of a Poincaré map evaluated at a fixed point determine the stability of a
LCO. The details are given in Section 4 of Ref. [14]. For a general LCO with n switching points, the Jacobian
matrix of the Poincaré map is the product of n matrices which follows from the chain rule. For freeplay
nonlinearity, the dimension of each matrix is 7� 7. However, for the hysteresis nonlinearity, the dimension of
a matrix may be different. In Fig. 5, consider the trajectory in region R5 with boundary switching point X i and
X iþ1. We note that X i has seven unknowns since the second component is zero and X iþ1 has eight unknowns.
Therefore, the dimension of the matrix corresponding to this trajectory segment is 7� 8. In Fig. 5, we may
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assume that X iþ2 has seven unknowns and the first component is a constant. Then, the dimension of the
matrix corresponding to this trajectory segment is 8� 7. Therefore, the dimension of the matrix corresponding
to the trajectory segment from X i to X iþ2 is still 7� 7. The overall calculation of the Jacobian matrix for
stability is more or less the same as that in Ref. [14].

5. Results and discussions

To compare with the previous results obtained in Ref. [10], the system parameters under consideration are
chosen as

m ¼ 100; ah ¼ �0:5; xa ¼ 0:25; zx ¼ za ¼ 0; ga ¼ 0:5 and ō ¼ 0:2.

The pitch angle is hysteretic with Mðx1Þ defined in Eqs. (4a)–(4c) such that M0 ¼ 0:5, Mf ¼ 0 and d ¼ 1:0�.
It follows that af ¼M0 � ðd=2Þð1�Mf Þ ¼ 0. The plunge is linear with Gðx3Þ ¼ x3. The linear flutter
speed U�L ¼ 6:2851 is determined by solving the aeroelastic system for M0 ¼ d ¼ af ¼ 0. To obtain an initial
guess from the perturbation step, we observe that, for U� ¼ U�L, a pair of pure imaginary eigenvalues
l ¼ �oi ¼ �0:084i occur in matrix A and the corresponding eigenvectors u1 � iu2 up to a scalar are given
by u1 ¼ ð0:0208;�0:0022; 0:0404;�0:0063; 0:3404; 0:0865; 0:8868, 0:1893ÞT and u2 ¼ ð0:0257; 0:0017; 0:0745;
0:0034;�0:0631; 0:0616; 0; 0:1954ÞT. It follows from Eq. (16) that p1 ¼ �4:7471 and p2 ¼ 5:8777. The traveling
time between the two switching point is T=2 ¼ p=o ¼ 37:38.

For the incremental step, we choose the size of the increment DU� to be 0.01. A Hopf-like bifurcation occurs
at U�1 ¼ U�L (label 1) where an unstable symmetric LCO is born. The continuation curve of the symmetric
LCO is shown in Fig. 6(a). Initially, one eigenvalue of the first derivative DP is outside the unit circle near þ1.
When U� decreases below U�2 ¼ 0:6853U�L (label 2), the LCO traverses the four main regions. A saddle-node
bifurcation occurs at U�3 ¼ 0:67892265U�L (label 3) where an eigenvalue enters the unit circle at þ1. The
enlarged diagram of this region is depicted in Fig. 6(b) which shows a short interval of stable LCO.
A symmetry-breaking bifurcation occurs at U�4 ¼ 0:67892272U�L (label 4) and the LCO becomes unstable
again. At U�5 ¼ 0:678976U�L (label 5), a harmonic appears in the LCO as its traveling path in Mðx1Þ branches
off from line segment II to line segment V and the trajectory travels in a new linear region R5. A phase portrait
of the unstable LCO with harmonic at U� ¼ 0:7U�L is depicted in Fig. 7. The period, stability and initial
switching point X 1 of this LCO with harmonic are given in Table 1. The harmonic disappears at U�6 ¼

0:715U�L (label 6). As U� increases beyond the symmetry-breaking bifurcation at U�7 ¼ 0:8152U�L (label 7),
the LCO becomes stable again. Its amplitude continues to grow without a bound as U� tends to U�L. A phase
portrait of the stable LCO at U�8 ¼ 0:85U�L is shown in Fig. 8 and is compared to the result obtained
by using the Runge–Kutta method. They are in good agreement. The dots in Fig. 8 represent the position
of the LCO at different time obtained from the PI method. The information of this stable LCO is given
in Table 2.

Next, we consider the emanating curve arising from one of the asymmetric LCOs born at U�4. On the
emanating curve shown in Fig. 9(a), two short intervals of stable LCOs are found near the symmetry-breaking
bifurcations. An enlarged diagram near U�4 is depicted in Fig. 9(b). Period-doubling bifurcation occurs at the
other end of the intervals where U�8 ¼ 0:679U�L (label 8) and U�11 ¼ 0:8127U�L (label 11). At U�9 ¼ 0:6853U�L
(label 9) and U�10 ¼ 0:7452U�L (label 10), the LCO intersects tangentially the switching subspace
Z ¼ af þ d ¼ 1. It will either enter or leave main region III for a small change of U�. A sudden change of
direction in the continuation curve is observed at label 10. This normally occurs when the traveling path of
a LCO swops between line segment I or III and line segment V. The asymmetric LCO at label 9 is shown in
Fig. 10. It contains a harmonic and its information is given in Table 3. We note that the LCO has an
eigenvalue of 4955 which magnitude is very large. In fact, when a LCO corresponds to a sharp turning point
on a continuation curve, it always has an eigenvalue with large magnitude.

Emanating curves arising from period-doubling bifurcation at U�8 and U�11 are shown in Fig. 11(a) (also in
Fig. 9(b)) and Fig. 11(b), respectively. There are two short intervals of period-doubling sequences leading to
chaos. The one near label 11 was reported in Ref. [10]. Sharp turning points are observed on the period-2 and
period-4 emanating branches which are very close to each other. For instance, in Fig. 11(b), these points are at
U�12 ¼ 0:81152U�L (label 12) and U�13 ¼ 0:81135U�L (label 13) for the period-2 and period-4 emanating
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branches, respectively. It is interesting to note that as maxðx1Þ decreases to 1, the asymmetric period-2n

emanating branches arising from period-doubling bifurcation at labels 8 and 11 all join to labels 9 and 10,
respectively. This means that when a period-1 LCO enters into main region III from region V at the first time,
complicated dynamics suddenly occur which include the coexistence of all period-2n LCOs and the onset of
chaos. Such phenomenon and a sudden change of direction in the continuation curve are not observed in a
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Table 1

The period, stability and initial switching point of the LCO with harmonic at U� ¼ 0:7U�L

Type of motion: period-1 (symmetric with harmonic) Period: 105.6

Initial switching point: ð�1 � 0:1150 � 10:47 0:1788 � 2:662 � 2:389 � 119:8 � 35:48Þ
Eigenvalues of Poincaré map: 2.126, 0.3322, 0.0082, 0.0061, 0.0003, 0, 0
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Fig. 8. Stable symmetric LCO at U� ¼ 0:85U�L. —, Runge–Kutta method; �, perturbation-incremental method.

K.W. Chung et al. / Journal of Sound and Vibration 320 (2009) 163–183 175
two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity [14]. Stable period-2 and
period-4 LCOs with harmonic at U� ¼ 0:8116U�L and U� ¼ 0:8114U�L are shown in Fig. 12(a and b),
respectively. They are in good agreement with those obtained from the Runge–Kutta method. Their
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Table 2

The period, stability and initial switching point of the LCO at U� ¼ 0:85U�L

Type of motion: period-1 (symmetric) Period: 82.78

Initial switching point: ð�1 � 0:1469 � 6:546 � 0:4946 13:15 � 1:914 24:90 � 15:35Þ
Eigenvalues of Poincaré map: �0:0955þ 0:1477i; �0:0955� 0:1477i; 0:0400; 0:04614; 0:0231; 0; 0
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information are given in Tables 4 and 5. A trajectory at U� ¼ 0:81U�L obtained from numerical simulation is
depicted in Fig. 12(c). This shows a short interval of period-doubling sequence leading to chaos. Emanating
branches from both asymmetric LCOs are shown in Fig. 13.
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Table 3

The period, stability and initial switching point of the LCO at U�9 ¼ 0:6853U�L

Type of motion: period-1 (asymmetric with harmonic) Period: 112.1

Initial switching point: ð�1 � 0:0987 � 9:813 0:2719 � 3:460 � 2:472 � 134:7 � 34:41Þ
Eigenvalues of Poincaré map: 4955, 0.4291, 0.0072, 0.0052, 0, 0, 0
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6. Conclusion

A perturbation-incremental (PI) method has been developed to investigate the dynamic response of a
self-excited two-degree-of-freedom aeroelastic system with structural nonlinearity represented by a hysteresis
stiffness. Since the first derivative of an approximate LCO obtained from the PI method is piecewise
continuous which agrees qualitatively with the exact solution, it provides an accurate prediction of the
switching points in the switching subspaces where the changes in linear subdomains occur. The present
method is also able to compute unstable LCOs and, thus, gives a full picture of the global bifurcation.

A comparison of the dynamic response due to hysteresis and freeplay nonlinearities is discussed below:
(I)
 Similarities

(i) The stable intervals of period-doubling sequences leading to chaos are very narrow.
(ii) In the continuation curves, most LCOs are unstable.
(II)
 Differences

(i) For the hysteresis nonlinearity, a new region is created when the traveling path branches off from line
segment II or IV to line segment V. Therefore, the number of regions traversed by a LCO is not fixed.
However, for the freeplay nonlinearity, the number of regions is always three.

(ii) Although the rank of matrix B is 7 for both types of nonlinearities, a trajectory with the hysteresis
nonlinearity travels in the eight-dimensional space R2 or R4 while that with the freeplay nonlinearity
travels in a seven-dimensional subspace of R2 [14].

(iii) For the hysteresis nonlinearity, the period-2n emanating branches are not smooth due to the crossing
of a LCO between region R1 or R3 and region R5. Furthermore, all the period-2n emanating branches
join to the sharp turning point where the asymmetric LCO traverses into R1 or R3 for the first time
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(see labels 9 and 10 in Fig. 9(a)). However, such dynamic behavior does not occur in an aeroelastic
system with freeplay nonlinearity.

(iv) For the hysteresis nonlinearity, Neimark–Sacker bifurcation is not observed. However, such
bifurcation is found in the freeplay nonlinearity.
From point (iii) above, when maxðx1Þðminðx1Þ, resp.) of a LCO is increased (decreased, resp.) beyond þ1
(�1, resp.), all period-2n LCOs come into co-existence. To the best of our knowledge, we are not aware of any
piecewise-linear system which exhibits such behavior in the bifurcation of a limit cycle. However, similar
phenomenon occurs in a homoclinic bifurcation when the Jacobian of the fixed point of a homoclinic
orbit contains double real determining eigenvalue [20,21]. A determining eigenvalue is the one closest to the
imaginary axis. Further investigation is needed to see whether the dynamics behind these two phenomena is
the same.
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Table 4

The period, stability and initial switching point of the LCO at U� ¼ 0:8116U�L

Type of motion: period-2 (asymmetric with harmonic) Period: 192.3

Initial switching point: ð�1 � 0:1820 � 6:471 � 0:5894 13:22 � 1:458 65:50 � 14:07Þ
Eigenvalues of Poincaré map: �0:8041;�0:3702; 0:0005; 0:0002; 0; 0; 0

Table 5

The period, stability and initial switching point of the LCO at U� ¼ 0:8114U�L

Type of motion: period-4 (asymmetric with harmonic) Period: 384.9

Initial switching point: ð�1 � 0:1812 � 6:458 � 0:5881 13:22 � 1:466 65:01 � 14:04Þ
Eigenvalues of Poincaré map: �0:8082;�0:1095; 0; 0; 0; 0; 0
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Since a traveling path may branch off from line segment II or IV to line segment V, the flow at a point in
the phase space may not be unique. Therefore, a trajectory may traverse itself. Although we consider a system
of eight ordinary differential equations in this paper, a two-dimensional autonomous piecewise-linear system with
hysteresis nonlinearity can also be defined in a similar way. It is well-known that chaos does not occur in a two-
dimensional autonomous system because a trajectory never traverses itself. In fact, LCO which traverses itself
does exist in a two-dimensional piecewise-linear system with hysteresis nonlinearity [22]. Further study on the
possible existence of period-doubling bifurcation and chaos in such a two-dimensional system is undergoing.

Simultaneous coexistence of all period-2n LCOs are observed in system (3) with hysteresis nonlinearity, but
not with freeplay nonlinearity. Likewise, for the celebrated Chua’s circuit [23], if the bilinear nonlinearity is
replaced by the hysteresis nonlinearity, new bifurcation phenomenon may also occur.

In Refs. [6,10,14] and the present paper, the structural nonlinearity Gðx3Þ is simply chosen as Gðx3Þ ¼ x3. In
fact, it can be a cubic, freeplay or hysteresis stiffness. In that case, system (3) may contain multiple
nonlinearities which are both analytic and non-analytic. The harmonic balance method is usually employed to
investigate the dynamic behavior arising from such nonlinearities. For instance, Narayanan and Sekar [24]
employed a multi-harmonic balancing technique to capture both stable and unstable solutions of a dynamical
system with piecewise linear stiffness and acted on by a flow-induced force with a cubic term. At a switching
point, the second derivative of an approximate solution obtained by the harmonic balance method is
continuous while that of the exact solution is discontinuous. Therefore, a relatively large number of harmonic
terms is required to approximate accurately the exact solution near a switching point. To overcome this
problem for system (3) containing multiple nonlinearities, the solution at different nonlinear regions may be
approximated by different Fourier series. The continuity of the approximate solution and its derivative at the
switching points should be imposed. In this way, the second derivative of an approximate solution is not
continuous at a switching point. This is a modified approach to the harmonic balance method. Although the
number of unknowns are increased in this formulation, the number of harmonic terms for each Fourier series
is less. Further investigation is needed to see whether such formulation is effective.
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Appendix A. Definitions of coefficients

a21 ¼ jð�d5c0 þ c5d0Þ; a41 ¼ jðd5c1 � c5d1Þ,

a22 ¼ jð�d3c0 þ c3d0Þ; a42 ¼ jðd3c1 � c3d1Þ,

a23 ¼ jð�d4c0 þ c4d0Þ; a43 ¼ jðd4c1 � c4d1Þ,

a24 ¼ jð�d2c0 þ c2d0Þ; a44 ¼ jðd2c1 � c2d1Þ,

a25 ¼ jð�d6c0 þ c6d0Þ; a45 ¼ jðd6c1 � c6d1Þ,

a26 ¼ jð�d7c0 þ c7d0Þ; a46 ¼ jðd7c1 � c7d1Þ,

a27 ¼ jð�d8c0 þ c8d0Þ; a47 ¼ jðd8c1 � c8d1Þ,

a28 ¼ jð�d9c0 þ c9d0Þ; a48 ¼ jðd9c1 � c9d1Þ,

where j; ci ði ¼ 0; 1; . . . ; 9Þ and di ði ¼ 0; 1; . . . ; 9Þ are defined by

j ¼
1

c0d1 � c1d0
,

c0 ¼ 1þ
1

m
; c1 ¼ xa �

ah

m
,

c2 ¼
2

m
ð1� f1 � f2Þ; c3 ¼

1

m
½1þ ð1� 2ahÞð1� f1 � f2Þ�,

c4 ¼
2

m
ð�1f1 þ �2f2Þ; c5 ¼

2

m
1� f1 � f2 þ

1

2
� ah

� �
ð�1f1 þ �2f2Þ

� �
,

c6 ¼
2

m
�1f1 1� �1

1

2
� ah

� �� �
; c7 ¼

2

m
�2f2 1� �2

1

2
� ah

� �� �
,

c8 ¼ �
2

m
�21f1; c9 ¼ �

2

m
�22f2,

d0 ¼
xa

r2a
�

ah

mr2a
; d1 ¼ 1þ

1þ 8a2
h

8mr2a
,

d2 ¼ �
1þ 2ah

mr2a
ð1� f1 � f2Þ; d3 ¼

1� 2ah

2mr2a
�
ð1þ 2ahÞð1� 2ahÞð1� f1 � f2Þ

2mr2a
,

d4 ¼ �
1þ 2ah

mr2a
ð�1f1 þ �2f2Þ; d5 ¼ �

1þ 2ah

mr2a
ð1� f1 � f2Þ �

ð1þ 2ahÞð1� 2ahÞð�1f1 � �2f2Þ

2mr2a
,

d6 ¼ �
1þ 2ah

mr2a
�1f1 1� �1

1

2
� ah

� �� �
; d7 ¼ �

1þ 2ah

mr2a
�2f2 1� �2

1

2
� ah

� �� �
,

d8 ¼
1þ 2ah

mr2a
�21f1; d9 ¼

1þ 2ah

mr2a
�22f2,

f1 ¼ 0:165; f2 ¼ 0:335; �1 ¼ 0:0455; �2 ¼ 0:3.
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Appendix B. Definitions of matrices and vectors

A1 ¼

0 1 0 0

a21 � jc0
1

U�

� �2

a22 a23 þ jd0b
ō

U�

� �2

a24

0 0 0 1

a41 þ jc1
1

U�

� �2

a42 a43 � jd1b
ō

U�

� �2

a44

0
BBBBBBBB@

1
CCCCCCCCA
,

A2 ¼

0 0 0 0

a25 a26 a27 a28

0 0 0 0

a45 a46 a47 a48

0
BBB@

1
CCCA; A3 ¼

1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0

0
BBB@

1
CCCA; A4 ¼

��1 0 0 0

0 ��2 0 0

0 0 ��1 0

0 0 0 ��2

0
BBB@

1
CCCA,

B1 ¼

0 1 0 0

a21 � jc0Mf

1

U�

� �2

a22 a23 þ jd0b
ō

U�

� �2

a24

0 0 0 1

a41 þ jc1Mf

1

U�

� �2

a42 a43 � jd1b
ō

U�

� �2

a44

0
BBBBBBBB@

1
CCCCCCCCA
,

F ¼ 0 � jc0
1

U�

� �2

0 jc1
1

U�

� �2

0 0 0 0

 !T

.
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