
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 320 (2009) 221–234

www.elsevier.com/locate/jsvi
Vibration control of cantilevered Mindlin-type plates

Tao Chena,�, Chao Hub,c, Wen-Hu Huangb

aCollege of Science, Harbin Engineering University, Harbin 150001, China
bDepartment of Aerospace Engineering and Mechanics, Harbin Institute of Technology, Harbin 150001, China

cSchool of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Received 1 February 2007; received in revised form 28 May 2008; accepted 17 July 2008

Handling Editor: J. Lam

Available online 5 October 2008
Abstract

The cantilevered structure in aerospace engineering is modeled as plates. Based on the Mindlin’s theory of thick plates,

the wave/mode control approach is presented to research the active vibration control of the cantilever plate. In the

proposed control approach, the independent modal space control and the wave control are designed and applied to

suppress vibration. The vibrational behavior of plate systems can be expressed in terms of waves of both propagating and

near-field types. A propagating wave incident upon the line discontinuities gives rise to reflected and transmitted waves of

both kinds whose amplitudes may be found from the reflection and transmission coefficients. Since the generalized

displacement is continuous, considering the equilibrium of the locations of the wave controllers, the wave reflection and

transmission coefficients are calculated. The wave controller is designed, and is intended to absorb the vibration energy,

especially at higher frequencies. So the flexural vibration of the plate is suppressed. Vibrations of the Mindlin plate per unit

disturbance are investigated. The particular controllers considered are the optimal PD/FIR feedback wave controller and

modal controller designed using the optimal control approach. At last, numerical results are analyzed and discussed.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The cantilevered structure is commonly used as elements in the construction of a large number of structures
such as spacecraft and large space structures. All these structures have flexible extensions which are made as
light and slender as possible due to heavy penalties attached to excessive weight. Such slender elements lack
the necessary damping properties of being able to function effectively under dynamic loads. In outer space,
solar wind and orbital maneuver may make the plate produce vibration, and the vibration will last for a long
time. It will have effect on the normal operation of spacecraft, even its lifetime [1,2]. In order to damp out
excessive vibrations and improve the performance of structures, conventional approaches of additional
passive damping treatments are not often implemented on these systems because of weights or other
constraints. So there has been an increasing interest in active vibration control [3–6]. In active vibration
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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control, desirable performance characteristics are achieved through the application of control forces to
a structure.

Vibration can be described in a number of ways, and the most common descriptions are in terms of modes
and wave motion. Modal control can suppress vibration of structure through adjusting the feedback gain after
state-space equation is established. In the modal approach, the response is described in terms of the undamped
modes of vibration of the structure. A finite number of these modes are retained. The control is applied so as
to modify the eigenstructure of the system. In modal active vibration control, the aim is to control the
characteristics of the modes of vibration, i.e., their damping factors, natural frequencies. There are a number
of modal control design methods, two of the most widely used approaches being pole placement and optimal
control. However, wave-control approach describes the motion of structure through wave motion equation,
and structural vibration is regarded as the waves propagating along different directions. Modal control aims
to control the global behavior of the structure, whereas wave control aims to control the flow of vibration
energy through the structure. In independent modal space control, the control of the entire infinity of modes
requires in principle an infinite number of actuators and sensors, and the higher modes are inevitably
uncertain, so complexity and robustness problems may arise, however, wave designs are based on the local
properties of the structure, and are inherently much less sensitive to system properties and more robust than
global models of structures, especially at higher frequencies. Mei et al. described the wave-control approach,
and verified its realizability [7]. The experiment results show that wave control alters the detail of the
implementation. For example, in the design of the wave control, near fields were ignored, although these can
deteriorate the performance. In a similar way, if the propagating waves are incident from both sides of the
control location, then they can interfere and the performance may again deteriorate. The wave controllers that
were implemented, however, were guaranteed to be stable. So there are no consequences for closed-loop
stability. These problems could be avoided in a number of ways, for example, by implementing wave
controllers which sense both displacement and rotation or by the suitable application of two or more wave
controllers. Optimal controllers are usually non-causal. This reflects the implicit time delays involved in the
propagation of waves from one point in a structure to another. Time-domain implementations are, therefore,
causal approximations to the optimums and are usually implemented using causal FIR filters.

In previous investigations, wave control only has been applied to control the wave motion in the one-
dimensional waveguides such as bending waves in beams, axial waves in rods, etc. [8–10]. Less frequently, the
wave control of plate has been investigated. Pan and Hansen [11] discussed the active vibration control of a
semi-infinite plate with one pair of opposite edges simply supported using feedforword control approach.
However, cantilevered plate structure is commonly used in aerospace engineering. In a continuous structure,
vibrations can alternatively be regarded as being the superposition of waves traveling through the structure.
These waves are reflected and transmitted at the structural discontinuities. Active wave control aims to control
the distribution of energy in the structure by either reducing the transmission of waves from one part of the
structure to another or absorbing the energy carried by the waves. Here the disturbance is detected, and a
control force is applied somewhere downstream to cancel the incoming wave or to absorb the energy
associated with it.

At present, in vibration control of the structure, it is seldom modeled as Mindlin plates. Although
Kusculuoglu and Royston [12] investigated vibration control of Mindlin plates, the wave control of Mindlin
plate has not been investigated. In Mindlin’s plate theory, the effects of transverse shear and rotary inertia are
considered, and the deficiencies of the classical thin plate theory are made up. Therefore, when Mindlin’s
theory of thick plates is applied to analyze the vibration problem, the result will be more close to the practical
situation in engineering. In this paper, based on Mindlin’s theory of thick plates, wave/mode control approach
is presented to research active vibration control of a cantilever plate. Wave/mode control strategy of structural
vibration is analyzed and investigated. Control force/sensor feedback wave control and independent modal
space control are considered.

2. Wave motion equations of Mindlin plate and its solution

The structural model of a cantilever plate is considered, as depicted in Fig. 1. According to the Mindlin’s
plate theory, in the orthogonal coordinates, the displacement components at any point in the vibrating plate
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Fig. 1. Modeling of the rectangular plate.
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are denoted as ux, uy, and uz. They can be expressed as [13]

ux ¼ zcxðx; y; tÞ; uy ¼ zcyðx; y; tÞ; uz ¼ wðx; y; tÞ, (1)

where w is the lateral displacement of plates, the quantities cx and cy are, respectively, the cross-sectional
rotations in the x and y directions of the deformed median surface. The expressions of bending moment,
torsional moment and shearing force in plates are written as

Mx ¼ D
qcx

qx
þ v

qcy

qy

� �
; My ¼ D

qcy

qy
þ v

qcx

qx

� �
; Mxy ¼Myx ¼

ð1� vÞ

2
D

qcy

qx
þ

qcx

qy

� �
, (2a)

Qx ¼ C
qw

qx
þ cx

� �
; Qy ¼ C

qw

qy
þ cy

� �
, (2b)

where D is the bending stiffness of plates, D ¼ Eh3/12(1�n2), C ¼ kGh, h the height of the plate, k is the
shearing coefficient with k ¼ p2/12, G the shear modulus, and n the Poisson ratio.

According to the equilibrium of torque and force in the cantilever plate, the following can be obtained:

qMx

qx
þ

qMyx

qy
�Qx ¼ rI

q2cx

qt2
, (3a)

qMxy

qx
þ

qMy

qy
�Qy ¼ rI

q2cy

qt2
, (3b)

qQx

qx
þ

qQy

qy
þ p ¼ rh

q2w
qt2

, (3c)

where r is the mass density of the plate, p the external disturbance, and I the area moment of inertia with
I ¼ h3/12.

Substituting Eq. (2) into Eq. (3), the coupled differential equations for vibration of a Mindlin’s plate can be
obtained:

D
q2cx

qx2
þ
ð1� vÞ

2

q2cx

qy2
þ
ð1þ vÞ

2

q2cy

qx qy

" #
� C

qw

qx
þ cx

� �
¼ rI

q2cx

qt2
, (4a)

D
q2cy

qy2
þ
ð1� vÞ

2

q2cy

qx2
þ
ð1þ vÞ

2

q2cx

qx qy

" #
� C

qw

qy
þ cy

� �
¼ rI

q2cy

qt2
, (4b)

C
q2w
qx2
þ

q2w
qy2
þ

qcx

qx
þ

qcy

qy

� �
¼ rh

q2w
qt2
� p. (4c)
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Eq. (4) can be depicted by the matrix form, namely,

M
q2n
qt2
� Kn ¼ f, (5)

where,

M ¼

rI 0 0

0 rI 0

0 0 rh

2
664

3
775; K ¼

D
q2

qx2
þ

1� v

2
D

q2

qy2
� C

1þ v

2
D

q2

qx qy
�C

q
qx

1þ v

2
D

q2

qx qy
D

q2

qy2
þ

1� v

2
D

q2

qx2
� C �C

q
qy

�C
q
qx

�C
q
qy

0

2
6666666664

3
7777777775
,

n ¼ cx cy w
h iT

; f ¼ ½ 0 0 p �T.

The displacement can be discretized such that

nðx; y; tÞ ¼
X1
i¼1

X1
j¼1

ni;jðx; yÞqi;jðtÞ, (6)

where ni;jðx; yÞ ¼ Cxi;xjðx; yÞ Cyi;yjðx; yÞ W i;jðx; yÞ
h iT

, and qi,j(t) denotes the modal coordinates.
Substituting Eq. (6) into Eq. (5), one obtains

M
X1
i¼1

X1
j¼1

ni;j

q2qi;j

qt2
� K

X1
i¼1

X1
j¼1

ni;jqi;j ¼ f, (7)

where ni,j(x, y) is the mode shape and it should satisfy the following homogeneous differential equation:

Mni;jo
2
i;j þ Kni;j ¼ 0. (8)

Substituting Eq. (8) into Eq. (7), one obtains

X1
i¼1

X1
j¼1

Mni;j

q2qi;j

qt2
þ
X1
i¼1

X1
j¼1

Mo2
i;jni;jqi;j ¼ f. (9)

The equation of motion can then be written in terms of the modal coordinates by multiplying by nr,s(x, y)
and integrating over the plate structure, namely,ZZ

O

X1
i¼1

X1
j¼1

nTr;sMni;j

q2qi;j

qt2
dxdyþ

ZZ
O

X1
i¼1

X1
j¼1

o2
i;jn

T
r;sMni;jqi;j dxdy ¼

ZZ
O

nTr;sfðx; y; tÞdxdy. (10)

Here the mode shapes are assumed to be normalized such thatZZ
O

nTr;sMni;j dxdy ¼ di;rdj;s; i; j; r; s ¼ 1; 2; . . . . (11)

So, we have

q2qi;jðtÞ

qt2
þ o2

i;jqi;jðtÞ ¼ fr;sðtÞ; f r;sðx; y; tÞ ¼

ZZ
O

nTr;sf ðx; y; tÞdxdy. (12)

The spatial variations W(x, y), Cx(x, y), and Cy(x, y) are expressed as a series of products of the x- and
y-functions. The variations of W(x, y) andCx(x, y) along the x direction and of W(x, y) andCy(x, y) along the
y direction can be directly related to appropriate Timoshenko beam functions. On the other hand, the
variation of Cx(x, y) along y and the variation of Cy(x, y) along x cannot, at first sight, be directly related to
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any beam function. A way out of this difficulty was provided by studying the eigenvectors of finite strip
solutions of Mindlin plate vibration for a rectangular plate [14]. The variation of Cx(x, y) along y is of a shape
very similar to that of the variation of W(x, y) along y and similarly Cy(x, y) and W(x, y) are of a shape very
similar along x. Sets of beam displacement functions are assumed in the free–free and clamped–free directions
of a rectangular plate, with products of these functions giving the assumed displacement at any point on the
plate. So the spatial variations of the three fundamental quantities are taken to be of the following forms [15]:

wðx; y; tÞ ¼
X1
i¼1

X1
j¼1

aijwiðxÞwjðyÞqi;jðtÞ, (13a)

cxðx; y; tÞ ¼
X1
i¼1

X1
j¼1

bijjiðxÞwjðyÞqi;jðtÞ, (13b)

cyðx; y; tÞ ¼
X1
i¼1

X1
j¼1

cijwiðxÞjjðyÞqi;jðtÞ, (13c)

where wi(x) and ji(x) are assumed to be free–free Timoshenko beam modes along the x direction, and wj(y)
and jj(y) are assumed to be clamped–free Timoshenko beam modes along the y direction. aij, bij, and cij can be
determined by Ritz method, and hence yield the natural frequencies and mode shapes [16].

So, based on Timoshenko beam theory, the ith mode shape of general displacement along x direction can be
expressed as [17]

wiðxÞ ¼ a1 cosðk11xÞ þ a2 sinðk11xÞ þ a3 cosðk12xÞ þ a4 sinðk12xÞ, (14a)

jiðxÞ ¼ d1 cosðk11xÞ þ d2 sinðk11xÞ þ d3 cosðk12xÞ þ d4 sinðk12xÞ, (14b)

where k11 and k12 are the wave numbers of propagating waves and near-field waves along the x direction,
respectively. ai and di determined by satisfying the boundary condition are the mode coefficients, respectively.
ai and di are given in the appendix.

Following the work of Carvalho [5], we obtain

k2
11;12 ¼

1

2
k4
0

h2

12
1þ

24ð1þ nÞ
p2

�
ffiffiffiffi
D
p

� �� �
, (15)

where D ¼ fk4
0ðh

2
	
12Þ½1þ 24ð1þ nÞ=p2�g2 � 4k4

0½k
4
0h

4
ð1þ nÞ=6p2 � 1� and k0 ¼ (rho2/D)1/4 is the wave

number of elastic waves.
Equation satisfying the boundary conditions of beam is given by

k2
11 �

rho2

C

� �2

k2
11 þ k2

12 �
rho2

C

� �2

k2
12

" #
sinðk11aÞ sinðk12aÞ þ 2k11k12

rho2

C
� k2

12

� �

�
rho2

C
� k2

11

� �
cosðk11aÞ cosðk12aÞ þ 2k11k12

rho2

C
� k2

12

� �
k2
11 �

rho2

C

� �
¼ 0. (16)

Similarly, the jth mode shape of the general displacement along the y direction can be expressed as

wjðyÞ ¼ b1 cosðk21yÞ þ b2 sinðk21yÞ þ b3 cosðk22yÞ þ b4 sinðk22yÞ, (17a)

jjðyÞ ¼ c1 cosðk21yÞ þ c2 sinðk21yÞ þ c3 cosðk22yÞ þ c4 sinðk22yÞ, (17b)

where k21 and k22 are wave numbers of propagating waves and near-field waves along y direction, respectively.
bi and ci determined satisfying the boundary condition are the respective mode coefficients bi and ci are given
in the appendix.



ARTICLE IN PRESS
T. Chen et al. / Journal of Sound and Vibration 320 (2009) 221–234226
Considering the cantilever beam, equation satisfying the boundary conditions of beam is given by

k2
21 �

rh

C
o2

� �2

þ k2
22 �

rh

C
o2

� �2
" #

k21k22 cosðk21bÞ cosðk22bÞ

þ ðk2
21 þ k2

22Þ k2
21 �

rh

C
o2

� �
k2
22 �

rh

C
o2

� �
sinðk21bÞ sinðk22bÞ

� 2k21k22 k2
21 �

rh

C
o2

� �
k2
22 �

rh

C
o2

� �
¼ 0. (18)

The maximum kinetic energy of the vibrating plate is expressed as

Tmax ¼
1

2

ZZ
O

½rhW 2 þ rIðc2
x þ c2

xÞ�dxdy, (19)

The maximum stain energy of the vibrating Mindlin plate is written as

P ¼
1

4

ZZ
O

fDð1þ vÞðGx þ GyÞ
2
þ 2CðG2

yz þ G2
xzÞ þDð1� vÞ½ðGx � GyÞ

2
þ G2

yx�gdxdy, (20)

where Gx ¼ qcx=qx, Gy ¼ qcy=qy, Gyx ¼ qcy=qxþ qcx=qy, Gxz ¼ cx þ qw=qx, and Gyz ¼ cy þ qw=qy.
According to the variational principle, the natural frequencies of the plate are expressed as

o2 ¼ P=Tmax. (21)

Upon introducing the state vector xi;jðtÞ ¼ ½qi;jðtÞ; _qi;jðtÞ�
T, Eq. (12) is rewritten in state-space form as

_xi;jðtÞ ¼ Āi;jxi;jðtÞ þ B̄i;j f i;jðtÞ. (22)

Here

Āi;j ¼
0 1

�o2
i;j 0

" #
B̄i;j ¼

0

1

� �
. (23)

3. Independent modal space control

Independent modal space control is now implemented by applying state-space control to the noncontrolled
structure. The optimal control design approach is used. The performance index of each mode is represented as

Ji;j ¼

Z 1
0

ðxT
i;jQi;jxi;j þ f T

i;jRi;j f i;jÞdt, (24)

where Qi,j and Ri,j are positive semidefinite and positive weighting matrices. The ith modal control force may
be written as

f i;j ¼ �R�1i;j B̄
T
i;jPi;jxi;j , (25)

where the Riccati gain matrix Pi,j is the solution to the algebraic Riccati equation.

�Pi;jĀi;j � Ā
T

i;jPi;j �Qi;j þ Pi;j B̄i;jR
�1
i;j B̄

T
i;jPi;j ¼ 0. (26)

4. Feedback wave control

4.1. Wave transmission and reflection at the line discontinuities

Vibrations can be regarded as the superstition of the waves traveling through the structure. Wave
controllers may be applied at the line parallel to the x direction where the structure is uniform. The point
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discontinuities on the beam now become the line discontinuities [18]. In this paper, collocated force/sensor
negative feedback control is assumed to be applied. In the frequency domain, the wave-control force is
given by

F ðoÞ ¼ �HwðoÞwðoÞ, (27)

where Hw(o) is the transfer function of the controller. Note that the amplitudes of any incident near fields are
neglected.

A set of positive-going propagating waves are incident on the control location along y and gives rise to the
reflected and transmitted waves, as shown in Fig. 2. Consider a plate lying in the x�y plane. Line
discontinuities are parallel to the x direction. Wave control is applied at the position of y ¼ 0. The generalized
displacements x�(x, y) and x+(x, y) of the plate in the regions yp0 and yX0 are given by

x�ðx; yÞ ¼

w�

cx�

cy�

2
64

3
75 ¼

aþ

bþ

cþ

2
64

3
75X ðxÞ expðik21yÞ þ

a�

b�

c�

2
64

3
75X ðxÞ expð�ik21yÞ þ

a�N

b�N

c�N

2
64

3
75X ðxÞ expðk22yÞ, (28a)

xþðx; yÞ ¼

wþ

cxþ

cyþ

2
64

3
75 ¼

dþ

eþ

f þ

2
64

3
75X ðxÞ expðik21yÞ þ

dþN

eþN

f þN

2
64

3
75X ðxÞ expð�k22yÞ, (28b)

where the time dependence exp(iot) has been suppressed. The terms exp(ik21y) and exp(�ik21y) represent the
propagating and energy-carrying waves, whereas exp(�k22y) and exp(k22y) represent near-field waves carrying
no energy. The aim of the wave control is to absorb the energy associated with the propagating waves.

Since the plate is continuous, furthermore, by considering the equilibrium at the position of y ¼ 0, one has

wþðx; 0Þ ¼ w�ðx; 0Þ, (29a)

cxþðx; 0Þ ¼ cx�ðx; 0Þ, (29b)

cy�ðx; 0Þ ¼ cyþðx; 0Þ, (29c)

Myþðx; 0Þ ¼My�ðx; 0Þ, (29d)

Myxþðx; 0Þ ¼Myx�ðx; 0Þ, (29e)

Qyþðx; 0Þ �Qy�ðx; 0Þ ¼ Hwþ, (29f)

where sign � and + denote the corresponding mechanical quantity in the regions yp0 and yX0, respectively.
From Eqs. (2b), (29c), and (29f), the following can be obtained:

qwþðx; 0Þ

qy
�

qw�ðx; 0Þ

qy
¼

Hwþðx; 0Þ

C
. (30a)
transmitted waveincident wave

w

o y

H(�)

F

reflected wave

Fig. 2. Schematic diagram of feedback control.
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From Eqs. (2a), (4c), (29b), and (29d), the following can be obtained:

q2wþðx; 0Þ
qy2

�
q2w�ðx; 0Þ

qy2
¼ 0. (30b)

When the time harmonic loading is imposed, one obtains

q3wþðx; 0Þ

qy3
�

q3w�ðx; 0Þ
qy3

¼
Hwþrho2

C2
. (30c)

Substituting Eq. (28) into Eq. (30) gives

1

ik21

" #
aþ þ

1 1

�ik21 k22

" #
A� ¼

1 1

ik21 �H=C �k22 �H=C

" #
Dþ, (31a)

k2
21

ik3
21

" #
aþ þ

k2
21 �k2

22

�ik3
21 �k3

22

" #
A� ¼

k2
21 �k2

22

ik3
21 þHrho2=C2 k3

22 þHrho2=C2

" #
Dþ, (31b)

Here,

Dþ ¼
dþ

dþN

" #
¼

t1

t2

" #
aþ; A� ¼

a�

a�N

" #
¼

r1

r2

" #
aþ, (32)

where t1 and t2 are the transmission coefficients, r1 and r2 are the reflection coefficients.
Substituting Eq. (32) into Eq. (31), and letting H̄ ¼ H=Ck21, rho2=C ¼ 2h2k4

0=ð1� nÞp2, one obtains

1þ r1 þ r2 ¼ t1 þ t2; i� ir1 þ
k22

k21
r2 ¼ ði� H̄Þt1 �

k22

k21
þ H̄

� �
t2, (33a)

1þ r1 �
k2
22

k2
21

r2 ¼ t1 �
k2
22

k2
21

t2; i� ir1 �
k3
22

k3
21

r2 ¼
2H̄h2k4

0

ð1� nÞp2k2
21

þ i

 !
t1 þ

2H̄h2k4
0

ð1� nÞp2k2
21

þ
k3
22

k3
21

 !
t2. (33b)

So the reflection and transmission coefficients can be expressed as

r1 ¼ ðgp2k3
22o� gvp2k3

22o� 2gh2k22k4
0oÞi=fðk21 � k22iÞðp2ð�1þ vÞðgk2

21o

þ k2
22ð1þ i� goÞ þ k21k22ð1� iþ igoÞÞ � 2gh2k4

0og, (34)

t1 ¼ fp2ð�1þ vÞðð1� iÞðk2
21k22 þ k3

22Þ þ gk3
21oÞ � 2gh2k21ok4

0g=fðk21 � k22iÞ

�ðp2ð�1þ vÞðgk2
21oþ k2

22ð1þ i� goÞ þ k21k22ð1� iþ igoÞÞ � 2gh2k4
0og. (35)

In this paper, the controller is designed to absorb incident vibrational energy by adding optimal damping to
the structure. Supposing H̄ðoÞ ¼ ð1þ iÞog, the power carried in a propagating wave is proportional to the
square of the wave amplitude. Thus the power reflected and transmitted per unit incident power is
PðgÞ ¼ jr1j

2 þ jt1j
2. If the support dissipates no energy at discontinuities, namely, H̄ðoÞ is real, the power

reflected and transmitted per unit incident power is PðgÞ ¼ jr1j
2 þ jt1j

2 ¼ 1. In this case, the performance index
of optimal control is to make the dissipated energy at discontinuities the maximum. In other words, the
optimal control gain g can be found by assuming that a wave is incident on onside of the control location and
then by designing the control gain so as to maximize the absorb incoming energy, namely to minimize
jr1j

2 þ jt1j
2.
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So the power reflected and transmitted per unit incident power is given by

PðgÞ ¼ fðk2
21 þ k2

22Þðp
4ðv� 1Þ2ð2gk3

21k22oþ g2k4
21o

2 þ k2
21k2

22ð2� g2o2Þ þ k4
22ð2þ g2o2ÞÞ

� 4gh2p2ð�1þ vÞoðk21k22 þ gk2
21o

2 � gk2
22o

2Þk4
0 þ 4g2h4o2k8

0Þg=fp
4ð2ð1þ v2Þk4

21k2
22

þ 2gðv� 1Þ2k5
21k22oþ 2gðv� 1Þ2k3

21k3
22oþ g2ðv� 1Þ2k6

21o
2 þ 2ðv� 1Þk2

21k4
22ð�2þ go

þ gvoÞ þ ðv� 1Þ2k6
22ð2� 2goþ g2o2ÞÞ � 4gh2p2oððv� 1Þðk3

21k22 þ k21k3
22 þ gk4

21o

� k4
22ðgo� 1ÞÞk4

0 � ð1þ vÞk2
21k2

22Þ þ 4g2h4
ðk2

21 þ k2
22Þo

2k8
0g. (36)

Then the frequency response of the optimal controller is given by

H̄oðoÞ ¼ ð1þ iÞog. (37)

4.2. Controller design

The optimal controller of Eq. (37) is non-causal. Hence, a real-time implementation must be some
approximations to this ideal, and here two approaches are described. In the first, proportional-plus-derivative
(PD) feedback control is implemented, with the controller tuned so that it is equal to the optimal controller at
some specific frequencies od. The controller then has the frequency response

HwðoÞ ¼ c1 þ c2ðioÞ, (38)

where c1 ¼ odg and c2 ¼ g. In the second approach, FIR controller is implemented. A causal approximation
can be found by fitting a causal FIR filter to the optimum controller in the least square sense in the frequency
domain. The real and imaginary parts are approximated separately over the frequency range using a least
squares procedure as [7]

H̄wðoÞ ¼ aþ bo2 þ iðcoÞ. (39)

If the wave forces are applied at (xi, y0), then the total wave-control force is
pwðw;x; y; tÞ ¼

Pn
i¼1pwðw; tÞdðx� xiÞdðy� y0Þ. For tuned PD control, this becomes

pwðx; y; tÞ ¼ �½c1wðx; y; tÞ þ c2 _wðx; y; tÞ�
Xn

i¼1

dðx� xiÞdðy� y0Þ. (40)

For causal FIR control, the wave-control force is approximated by

pwðx; y; tÞ ¼ �½awðx; y; tÞ � b €wðx; y; tÞ þ c _wðx; y; tÞ�
Xn

i¼1

dðx� xiÞdðy� y0Þ. (41)

For collocated wave control, and with the control force approximated by Eq. (40) or (41), the equations of
motion can be written in matrix form as

M €qþ C _qþ Kq ¼ FðtÞ, (42)

where FiðtÞ ¼ ½ f 1;1ðtÞ f 1;2ðtÞ . . . f n;nðtÞ �T and M, C, and K are the mass, damping, and stiffness matrices,
respectively. In the absence of the wave-control force, the mass matrix M is an n� n identity matrix, C is an
n� n zero matrix, and K is a diagonal matrix of natural frequencies squared.

Upon introducing the state vector XðtÞ ¼ ½qTðtÞ : _qTðtÞ�T, Eq. (42) is rewritten in state-space form as

_XðtÞ ¼ AXðtÞ þ BFðtÞ, (43)

where the coefficient matrices are

A ¼
0 I

�M�1K �M�1C

� �
; B ¼

0

M�1

� �
. (44)
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5. Numerical examples

In this section, some numerical results will be presented. In what follows, we introduce several dimensionless
parameters: the aspect ratio of the plate a/b ¼ 0.5, the plate thickness ratio h/b ¼ 0.1, Poisson ratio n ¼ 0.30
and ōi ¼ oi=o1 (i ¼ 1,2,y, 9). The first nine nondimensional natural frequencies are given in Table 1. Modal
control is designed to control the first two modes. The optimal control approach is adopted. Let Qi,j ¼ Ri,j ¼ I,
where I is identity matrix.

For simplicity, we only consider a disturbance force and a wave-control force. In Figs. 3 and 5, the unit
disturbance force is applied at the position (xd, yd) ¼ (0.50a, 0.15b) and the PD wave-control force is applied
at (xs, ys) ¼ (0.50a, 0.40b). Numerical results show the response at the position (xs, ys) ¼ (0.50a, 0.70b). In
Figs. 6 and 7, the unit disturbance force is applied at (xd, yd) ¼ (0.50a, 0.25b) and the PD wave-control force is
applied at (xs, ys) ¼ (0.50a, 0.40b). Numerical results show the response at the position (xs, ys) ¼ (0.50a,
0.70b). In Fig. 8, the unit disturbance force is applied at (xd, yd) ¼ (0.50a, 0.25b) and the PD wave-control
force is applied at (xs, ys) ¼ (0.50a, 0.50b). Numerical results show the response at the position
(xs, ys) ¼ (0.50a, 0.70b). In the approximation that tuned PD control (Eq. (22)), the controller is tuned to
be optimal at the fourth natural frequency. In Fig. 9, the unit disturbance force is applied at (xd, yd) ¼ (0.50a,
0.25b) and the causal FIR wave-control force is applied at (xs, ys) ¼ (0.50a, 0.50b). Numerical results show the
response at the position (xs, ys) ¼ (0.50a, 0.70b). In figures, the value of ordinate is prescribed as common
logarithm of the actual deflection.

Figs. 3 and 4 show the frequency responses before and after modal control. The lowest two modes are
clearly well controlled, while sharp resonances associated with the uncontrolled modes still exist. Including
more modes in the control design can alleviate this problem, but only at the cost of increased model
complexity.

Figs. 3 and 5 show that the resonances are sharp before control, while after wave control, controllers add
damping to the structure. Energy of structure is absorbed. Sharp resonances (the 4th and 9th mode) are
weakened. They also change the natural frequencies somewhat. Since the controller is tuned to be optimal at
fourth frequency, relatively good performance can be seen at the fourth frequency. Figs. 3 and 6 show that the
frequency responses are different when the disturbance force is applied at different positions.
Table 1

The first nine nondimensional natural frequencies of system

Mode number 1 2 3 4 5 6 7 8 9

Frequency 1.00 1.83 2.13 6.59 7.12 7.16 8.11 8.20 8.35

D
ef

le
ct

io
n 

pe
r u

ni
t f

or
ce

 w

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Nondimensional frequency �−

Fig. 3. Frequency response before control.
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Fig. 4. Frequency response after modal control.
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Fig. 5. Frequency response after PD wave control.
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Fig. 7. Frequency response after PD wave control.
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Fig. 8. Frequency response after PD wave control.
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Fig. 9. Frequency response after FIR wave control.
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In Figs. 5 and 7, relatively poor performance can also be seen at high frequencies. The degradation of the
performance at higher frequencies is due to the fact that the point of application of the wave controller lies
close to a node of the 9th mode. Such effects depend on the specific form and location of the wave control.
They can be minimized by applying wave control at a boundary, by implementing wave controllers which
sense both displacement and rotation or by the suitable application of two or more wave controllers. Figs. 5, 7,
and 8 show that the frequency responses have differences when the disturbance force is applied at different
positions and wave control force is applied at the same position, or disturbance force is applied at the same
position and wave control force is applied at different positions. In Fig. 9, it is seen that the causal FIR control
give the same good performance as PD control and relatively poor performance can also be seen at high
frequencies.
6. Conclusions

This paper presents the theoretical analysis and numerical results of vibration suppression of Mindlin plate.
Wave control is applied to control the wave motion in plates. For simplicity, only flexural waves are
considered, because the power carried in longitudinal waves will transfer to more effective radiant flexural
wave at structural continuity and discontinuity.

Control gain is designed in frequency domain, and there are many possible approaches to the
implementation. Here PD control and causal FIR control are adopted, controller is designed to absorb
energy by adding damping to the structure. In the time domain, this corresponds to a tuned spring–damper
combination. The PD control gain being calculated is optimal at some desired tuned frequency od. Better
performance can be achieved by implementing wave controllers which sense both displacement and rotation or
by the suitable application of two or more wave controllers.
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Appendix

The coefficients satisfying the boundary conditions along x direction are given by

a2 ¼

rho2

C
� k2

11

� �
cosðk11aÞ þ k2

11 �
rho2

C

� �
cosðk12aÞ

rho2

C
� k2

12

� �
sinðk12aÞ

k12

k11
�

rho2

C
� k2

11

� �
sinðk11aÞ

a1; a3 ¼

rho2
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� k2

11

k2
12 �
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k11
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d1 ¼ �

rho2
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11

� �
rho2
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� �
cosðk11aÞ þ k2

11 �
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� �
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� �
rho2
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� �
sinðk12aÞk12 � k11

rho2

C
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� �
sinðk11aÞ

a1; d2 ¼

rho2

C
� k2

11

k11
a1,

d3 ¼

rho2
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� �
rho2

C
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� �
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rho2
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� �
cosðk12aÞ

� �
rho2

C
� k2

12

� �
sinðk12aÞk12 � k11

rho2

C
� k2

11

� �
sinðk11aÞ

a1; d4 ¼ �
k11

k12
d2,

where a1 can be determined by orthogonality of mode shapes of free–free Timoshenko beam.
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The coefficients satisfying the boundary conditions along y direction are given by

b2 ¼ �

k1 k2
1 �

rho2

C

� �
cosðk1bÞ � k2

2 �
rho2

C

� �
cosðk2bÞ

� �

k2
1 �

rh

C
o2

� �
½k1 sinðk1bÞ � k2 sinðk2bÞ�

b1; b3 ¼ �b1,

b4 ¼

k2 k2
1 �

rho2

C

� �
cosðk1bÞ � k2

2 �
rho2

C

� �
cosðk2bÞ

� �

k2
2 �

rho2

C

� �
½k1 sinðk1bÞ � k2 sinðk2bÞ�

b1,
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rho2
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cosðk1bÞ � k2
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rho2
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� �
cosðk2bÞ

k1 sinðk1bÞ � k2 sinðk2bÞ
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rho2

C
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cosðk1bÞ � k2

2 �
rho2

C

� �
cosðk2bÞ

k1 sinðk1bÞ � k2 sinðk2bÞ
b1; c4 ¼

k2
2 �

rho2

C
k2

b1,

where b1 can be determined by orthogonality of mode shapes of clamped–free Timoshenko beam.
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