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Abstract

The vibration characteristics of a light axially moving band are investigated by a numerical study in the subcritical and

supercritical speed ranges. Equations of motion for the geometrically nonlinear axially moving string are formulated using

Hamilton’s principle and discretized by the finite element method. The periodic nonlinear problem for the string is solved

by the Fourier–Galerkin–Newton (FGN) method. The nonlinear dynamic behaviour of an axially moving band is

examined through the dependences between the fundamental frequency, axial velocity and vibration amplitude resulting

from nonlinear free vibration. In general, the behaviour of the nonlinear axially moving string is similar to that of a

nonlinear beam, the most notable differences being the fact that the string does not undergo bifurcation from a straight

configuration to curved equilibrium states in a supercritical transport speed regime, nor does the equilibrium state remain

straight.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is a large class of industrial processes which involve the transport of bands and webs across spans.
From the point of view of mechanics, the translating structural members must have special characteristics with
regard to vibration and dynamic stability. The topic of axially moving material has been studied widely, and
recent research developments have been reviewed by Chen [1] and Paı̈doussis [2]. Our interest is in the topic of
nonlinear vibrations in an axially moving string, which has also received much attention in the literature. The
earliest known study of fundamental period nonlinear transverse vibration, by Mote [3], showed the
significance of tension variation as velocity increases, while Bapat and Srinivasan [4] used the method of
harmonic balance to obtain approximate period–tension relationships by the Galerkin’s method and to
determine the frequency of transverse oscillations for a nonlinear travelling string. Ames et al. [5] used a finite
difference technique to compute the nonlinear response of a harmonically excited translating string while Kim
and Tabarrok [6] resolved the nonlinear response of a travelling string using the method of characteristics.
Wickert [7] studied a nonlinear translating string and beam and found that the contribution of nonlinear
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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stiffness increases with speed and grows most rapidly near critical speeds. Recently, the studies are frequently
focussed to the axially moving viscoelastic strings [8–10] and the time-dependent axial velocity [11–13]. For
instance, Chen et al. [10] investigated an axially travelling viscoelastic string by using the Boltzmann
superposition principle along with the Galerkin method, and presented chaotic behaviours and bifurcation
diagrams with varying parameters. Pakdemirli and Ulsoy presented the dynamic stability of an axially
accelerating string by using the method of multiple scales [11].

Already in the earlier studies [3,5–7] it was noticed that the linear model of the system is not adequate near
the critical speed, meaning here the lowest of the critical speeds defined as the speeds where the system has a
vanishing eigenvalue and is subject to a divergence instability. Transport speeds above the lowest critical speed
are termed supercritical. Although above observation the dynamic behaviour of an axially moving string has
not been studied very intensively near critical speed or in a supercritical velocity regime. Parker [14] examined
the supercritical speed dynamics of an elastically supported string with particular focus on the distribution of
the critical speed and the stability of the trivial equilibrium. Some interest has been shown in supercritical
velocity regimes in axially moving beams. Wickert [7] used singular perturbation techniques to examine
vibration and bifurcation in both subcritical and supercritical speed ranges, while Hwang and Perkins [15,16]
investigated the effect of an initial curvature due to supporting wheels and pulleys on bifurcation and the
stability of equilibrium. Ravindra and Zhu [17] studied pitchfork-type bifurcation and chaos in an axially
accelerating beam in a supercritical regime, and Pellicano et al. [18,19] studied post-bifurcation velocity with
viscous damping and external harmonic excitation in the supercritical speed range using a high-dimensional
discrete model obtained by the Galerkin procedure.

The aim of this paper is to examine the subcritical and supercritical speed dynamics of an axially moving
narrow band with particular focus on free vibration and vibration shape. The equations of motion are
formulated using Hamilton’s principle and discretized by the finite element method. The nonlinear dynamic
behaviour of the structure is investigated by analysing free and steady-state periodic vibration in the
geometrically nonlinear axially moving band. The periodic nonlinear problem is solved by the Fourier–
Galerkin–Newton (FGN) method according to Narayanan and Sekar [20]. The structural response to
harmonic excitation and the backbone curves of free vibration show that the nonlinearities have a
considerable effect on the dynamic behaviour of the system.
2. Equations of motion for a discrete axially moving string

The physical model of the system is shown in Fig. 1, a string of axial stiffness EA travels under applied
tension T0 with a constant transport speed va between two simple supports. The longitudinal and transverse
displacements of the string are described by u(x, t) and w(x, t). The kinematical description of the model
follows the formulation and assumptions of a taut axially moving string presented in Ref. [21] and the element
development follows the model and notations introduced by Chen et al. [24] for a geometrically nonlinear
beam.
u (x, t)

q

Lx0

va

Le
ui, wi uj, wj

i j

w (x, t)

Fig. 1. Model of axially moving string.
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For plane frame structural nonlinear finite element analysis, a plane axially moving string element shown in
Fig. 1 is employed. The displacement vector of an point within the element are given as a function of a element
displacement vector qe as

U ¼ Nqe, (1)

U ¼ ½ u w �T; N ¼
Ns 0

0 Ns

� �T
and qe ¼ uTe wT

e

h iT
, (2)

where ue ¼ ½ ui uj �T and we ¼ ½wi wj �T are nodal displacements and Ns is the shape function vector defined
as

Ns ¼ N1 N2

� �
(3)

in which N1 ¼ x/Le, N2 ¼ 1�x/Le and Le is element length.
For convenience of formulation the strain is defined as vector

E ¼ � 0
� �T

, (4)

where e is axial strain including the geometrically nonlinear effect arising from the longitudinal stretching, i.e.

� ¼
qu

qx
þ

1

2

qw

qx

� �2

. (5)

By substituting Eq. (1) into Eq. (5), strain vector can be written as

E ¼ B0qe þ
1
2
BLqe, (6)

where B0 is the strain matrix coming from the linear part of the strain and BL is the strain matrix of the
nonlinear elastic problem, which are, respectively

B0 ¼

qNs

qx
0

0 0

2
4

3
5; BL ¼

0 wT
e

qNs

qx

� �TqNs

qx

0 0

2
64

3
75. (7)

The stress–strain relationship can be written as

r ¼
T

0

� �
¼

EA 0

0 0

� �
�

0

� �
¼ DE, (8)

where the stress vector r contains only the axial component, a resultant force T and constitutive matrix D

includes axial term, where E is the Young’s modulus and A the cross-sectional area.
The equations of two-dimensional, planar motion governing an axially moving string can be derived on

Hamilton’s principle, although since the traditional form is formulated for a closed system, i.e. a system
containing the same particles throughout, a mixed Lagrangian–Eulerian formulation according to Refs.
[21,22] is used in this consideration, so that the motion of the system is due to the movement of the
configuration and of material particles passing through it. Thus, the particles which fill the domain are
assumed to be changing all the time and the energy flux across the boundaries must be taken into account. By
assuming a special case in which the boundaries are fixed at both the inlet and outlet, the fluxes in and out are
rendered equal and the net energy flux through the boundaries is zero. In this case, as shown by McIvar [23],
Hamilton’s principle takes the familiar form

d
Z t2

t1

ðK �U þW Þdt ¼ 0, (9)
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where d is the variation operator, K the kinetic energy, U the strain energy and W the work done by the
external forces. The kinetic energy is given by

K ¼

Z Le

0

VTVrAdx, (10)

where rA is the constant mass per unit length of the string and V presents the velocity of a string particle.
According to Refs. [21,27] the motion of a material particle consists of the movement of the configuration and
the transport movement of the passing particles, i.e.

V ¼
u;t þ vað1þ u;xÞ

w;t þ vaw;x

" #
¼ U;t þ vaU;x þ va

1

0

� �
. (11)

The strain energy is defined as

U ¼

Z Le

0

ETrdx (12)

and the work done by the external forces

W ¼

Z Le

0

UTPdx, (13)

where the external force vector P includes axial loads fx(x, t) and transverse loads fy(x, t), i.e.

P ¼ f xðx; tÞ f yðx; tÞ
h iT

. (14)

By noting from Laukkanen [25] and Kulachenko et al. [22] the special features arising from the gyroscopic
effects of an axially moving structure, the equation of motion for an axially moving string element can be
written as

Me €qe þ Ce _qe þ KeðqeÞqe ¼ Fe � BeV , (15)

where Me is the mass matrix, Ce the damping matrix, Ke the stiffness matrix, Fe the external force vector and
BeV the inertial force vector. The consistent mass matrix is

Me ¼ rA

Z Le

0

NTNdx, (16)

The element damping matrix consists of the damping matrix CeD and gyroscopic matrix CeG:

Ce ¼ CeD þ CeG. (17)

In which are, respectively

CeD ¼ n
Z Le

0

NTNdx (18)

and

CeG ¼ va

Z Le

0

ðNTN;x �N;TxNÞdx, (19)

where v is the damping coefficient and va is the transport speed of the material. The element stiffness matrix
includes the linear stiffness matrix K0, the nonlinear stiffness matrix KNL and the gyroscopic stiffness matrix
KG:

Ke ¼ K0 þ KNL � KG, (20)

which are, respectively

K0 ¼

Z Le

0

BT
0DB0 dx, (21)
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KNL ¼

Z Le

0

1

2
BT
0DBL þ BT

LDB0 þ
1

2
BT

LDBL

� �
dx (22)

and

KG ¼ v2a

Z Le

0

BT
GBG dx, (23)

where

BG ¼

qNs

qx
0

0
qNs

qx

2
664

3
775. (24)

The external force vector is

Fe ¼

Z Le

0

NTPdx, (25)

and the inertial force vector is

BeV ¼ v2a

Z Le

0

qNs

qx

� �T

0

" #T
dx (26)

Following the standard assembly, the equations of motion for the assembled structure can be written as

M€qþ C_qþ KðqÞq ¼ FðtÞ, (27)

where q is the global displacement vector, M the global mass matrix, C the damping matrix, K(q) the stiffness
matrix and F the global force vector, which includes the inertial force vector.

3. Periodic solution for the system

The dynamic response of the system is assumed to be periodic with a frequency equal to o. Setting the non-
dimensional time as t ¼ ot, the equation of motion, Eq. (27) becomes

o2Mq00 þ oCq0 þ KðqÞq ¼ FðtÞ, (28)

where the primes denote derivates with respect to the non-dimensional time t. The first step in the
Fourier–Galerkin–Newton (FGN) method is a Newton–Raphson procedure carried out using a Taylor series
[20]. Starting from a known state q0 and o0, a neighbouring state is reached through a parametric
incrementation

q ¼ q0 þ Dq,

o ¼ o0 þ Do. (29)

Substituting Eq. (29) into (28) and neglecting small terms of higher order, a linearized incremental equation
is obtained:

o2
0MDq00 þ o0CDq0 þ KT ðq0ÞDq ¼ R� ð2o0Mq000 þ Cq00ÞDo, (30)

where R denotes the residual on substituting the assumed periodic solution and is

R ¼ FðtÞ � o2
0Mq000 þ o0Cq

0
0 þ KT ðq0Þq0

� �
(31)
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and KT is the tangent stiffness matrix. Since a periodic solution is sought, the solution q and its increment Dq
are represented as Fourier series, i.e.

q ¼ Q0 þ
XM
j¼1

½Q2j�1 cosðjtÞ þQ2j sinðjtÞ�;

Dq ¼ DQ0 þ
XM
j¼1

½DQ2j�1 cosðjtÞ þ DQ2j sinðjtÞ�; (32)

where Q0, Qj’s DQ0 and DQj’s are the Fourier coefficients and M represents the number of harmonics.
A similar series expansion is assumed for the incremental velocities and accelerations appearing in Eq. (32).
In order to minimize the error due to the above approximation, a Galerkin procedure with harmonic
weighting functions is employed. After applying the Galerkin technique with [1, cos t, sin t;y, cos jt;
sin jt,y, ], as weighting functions, the following expression is obtained in the frequency domain [20]:

KDQ ¼ R� RoDo, (33)

where

K ¼ o2
0Mþ o0Cþ KT ðq0Þ,

R ¼ F� ½o2
0Mþ o0Cþ Kðq0Þ�Q,

Ro ¼ ð2o0Mþ CÞQ. (34)

M; C; KT and F are obtained either through FFT or DFT, as shown in Ref. [20]. The number of harmonics
in the Fourier series is chosen according to Ref. [20] on the basis of the error estimate, which indicates the
magnitude of higher harmonic coefficients of the nonlinear residual beyond the harmonic number, i.e.

�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2M

j¼Mþ1

Rnl
2

2j�1 þ Rnl
2

2j

	 
vuut , (35)

where Rnlj ’s are Fourier coefficients of the nonlinear part of the residual R in Eq. (34). The criteria used for
increasing the harmonic terms was chosen the value e2 ¼ 0.1 suggested by Narayanan and Sekar [20], which
led to numbers of harmonics between 4 and 64. The linear algebraic Eq. (33) can be solved using
Newton–Raphson techniques. The nonlinear amplitude–frequency response is obtained by incrementing
either the frequency o or one component of the coefficients of Q. The solution process is described in detail by
Narayanan and Sekar [20]. To improve convergence, the Jacobian matrix K is updated by the Broyden method
during the iterations [26].

4. Results

4.1. Verification

It is quite difficult to verify the overall accuracy of the model, because there are only a few experimental
results with respect to axially moving strings [5,18,19] and none of the papers tells us of all the parameters used
in the experimental system. Thus, in order to verify the method even qualitatively, we mirror the description
given by Pellicano et al. [19] of their experiment on the ‘‘effect of pulley eccentricity on the vibration of a
power transmission belt’’, in which the load, i.e. the eccentricity of the pulley (1.25� 10�3m), was generated
by forced harmonic boundary displacements, so that the transverse displacement causes seismic excitation and
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the axial displacement tension fluctuation. In order to model the eccentricity more accurately, the loadings
have a phase difference of 901. The damping of the system is modelled by means of proportional damping:

C ¼ aKþ bM, (36)

where the constants a and b are defined using the modal damping ratio

z ¼
1

2
ao1 þ

b
o1

� �
(37)

on the assumption that the damping arises equally from both the stiffness and the mass. The model
parameters, the damping ratio and unknowns, were fitted following the experimental data on the direct
resonance of the first mode at o1 ¼ 2p� 16.7 rad/s as shown in Fig. 2. The figure indicates clearly that if the
weight of the belt itself is included, the model can describe the behaviour of the experimental system. The
parametric resonance founded near direct resonance of the second mode at O/(2o1) ¼ 1 or o2 ¼ 2p� 28 rad/s
and the third mode at O/(2o1) ¼ 1.25 are shown in Fig. 3. With the FGN model it is possible to find both the
1/2 sub-harmonic at O/(2o1) ¼ 0.93 and the 1/3 sub-harmonic at O/(2o1) ¼ 1.19 in the experimental data.
Moreover, the model follows the nonlinear stiffening effect well as the amplitude increases. The first peak on
the left at O/(2o1) ¼ 0.845 is the third super-harmonic and was found with a much lower damping level than
that chosen on the basis of the direct resonance of the first mode and used elsewhere. This super-harmonic
resonance explains the behaviour of the experimental system, because the damping model used here is simple
and, as noted by Pellicano et al. [19], this is a probable source of inaccuracy.

Although it is not possible to make any quantitative comparison with the experimental results, it is quite
interesting to compare the results calculated here with the analytical and numerical analyses performed for an
axially moving nonlinear string by Wickert [7] and an axially moving nonlinear band by Koivurova and
Pramila [27]. Wickert [7] studied a travelling beam and string with a second-order perturbation solution,
employing the asymptotic method of Krylov, Bogoliubov and Mitropolsky, and made comparisons with the
results of numerical integration and with some other studies. Koivurova and Pramila [27] calculated the
fundamental frequency of an axially moving nonlinear membrane by transient time integration.

The free vibration of an axially moving nonlinear band is considered as a function of axial velocity. For sake
of clarity, the results are shown in non-dimensional form, where the frequency is presented as a proportion of
the fundamental analytical frequency fl0 and the axial velocity as a proportion of the critical velocity va(cr),
Nondimensional Frequency F (Ω/ω1)
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by FGN method including self weight; (*) experimental results (increasing frequency O) and (o) experimental results (decreasing O) of
Pellicano et al. [19].
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Table 1

Comparison of linear and nonlinear fundamental frequency calculations for a axially moving band and string with A/L ¼ 0.017

Non-dimensional speed, V 0.0 0.2 0.4 0.6 0.8 1.0

Linear 1.000 0.960 0.840 0.640 0.360 0.000

Current model 1.106 1.068 0.958 0.780 0.538 0.237

FEM integration [21] 1.11 1.070 0.960 0.780 0.550 0.250

Integration [7] 1.109 1.069 0.955 0.780 0.558 0.308

Asymptotic [7] 1.112 1.077 0.966 0.792 0.569 0.308

Thurman and Mote [22] 1.103 1.067 0.955 0.770 – –
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Fig. 3. Frequency amplitude curves. Parametric resonance (—) by FGN method; (*) experimental results (increasing frequency O) and (o)

experimental results (decreasing O) of Pellicano et al. [19].
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defined as follows:

F ¼ f 2L

ffiffiffiffiffiffi
m

T0

r
¼ f =f l0 (38)

V ¼ va

ffiffiffiffiffiffi
m

T0

r
¼ va=vaðcrÞ. (39)

The same non-dimensional presentation is used in all the subsequent analyses. The dependence between the
nonlinear frequency ratio f/fl0 and the non-dimensional vibration amplitude A/L is computed by dividing
the string into 11 elements and using 16–32 harmonic terms. The parameters for the analysis are chosen so that
the results of Ref. [28] are the ones given in Ref. [7] and therefore the non-dimensional vibration amplitude is
0.017 and the longitudinal stiffness parameter vlð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=T0

p
Þ is 20. The results are listed in Table 1, where they

are compared with results adapted from Refs. [7,27,28]. The present solution agrees to within 3% with both
the asymptotic and numerical integration solutions [7] for Vp0.8 and [28] for Vp0.6. At higher speeds the
difference increases rapidly by comparison with the results of Wickert [7]. One explanation for the difference
could be the fact that a stretching approximation for longitudinal direction was used in Ref. [7], where it was
proposed that the longitudinal displacement field

uxðx; tÞ ¼
x

2

Z l

0

quy

qx
dx�

1

2

Z x

0

qu2
y

qx
dx (40)
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arises entirely from finite transverse vibration. Moreover, the inclusion of nonlinearity in vibration studies is
most important at near-critical speed vcr, where modal stiffness is small and is dominated by the nonlinear
extensional stiffness. The above conclusion is confirmed by the results of Ref. [27], which differ from the
current results by about 5% at the critical speed.

Koivurova and Pramila [27] examined the nonlinear dynamic behaviour of an axially moving narrow
membrane with fixed simple supports through the response to harmonic boundary excitation, calculated by
direct time integration of the equations of motion. A harmonic response curve for the present nonlinear
system at a non-dimensional axial velocity of 0.50 is shown in Fig. 4. The amplitude of the harmonic boundary
motion is 0.0024m and the other parameters are as follows: L ¼ 2.4m, b ¼ 0.47m, h ¼ 0.49mm, m ¼ 17 g/m,
T0 ¼ 170N and E ¼ 1� 109N/m2. The results given by the current model as shown in Fig. 4 are in good
agreement with those reported in Ref. [27].
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4.2. Fundamental frequency of free vibration

The nonlinear dynamic behaviour of an axially moving band is examined through the dependences of
fundamental frequency, axial velocity and vibration amplitude resulting from nonlinear free vibration. The
parameters used are the same as in the previous application referred to above. The backbone curves describing
the relation between the non-dimensional amplitude of vibration ( ¼ A/L) and the non-dimensional
fundamental frequency with different non-dimensional axial velocity are shown in Fig. 5. The system behaves
like a nonlinear hard spring at subcritical axial velocities (i.e. 0pVo1.0) and like a soft spring at supercritical
velocities (V41). The nonlinearity clearly stiffens the system in the subcritical range and softens it in the
supercritical range as the amplitude is increases. This phenomenon seems to become slightly more accentuated
with the increase in axial velocity, and the change is clearly visible at the supercritical velocities (V41). The
figure also shows how the critical velocity increases as a function of the amplitude of free vibration. In the
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linear limit case at A/L ¼ 0 the critical velocity V(cr) ¼ 1.0, from which it increases to V(cr) ¼ 1.1 at
A/L ¼ 0.008.

The relations between vibration amplitude and axial velocity at different fundamental frequencies are given
in Fig. 6. Here there is no difference between the subcritical and supercritical behaviour, in that the effect of
the nonlinearity bends the curves to the right, increasing the axial velocity, but instead deviant behaviour of
the system is noted at lower velocities. At the frequency F ¼ 1.004, which is the fundamental frequency of the
linear limit (A/L ¼ 0) at zero axial velocity, the dependence between the vibration amplitude and axial velocity
is linear. Moreover, lower amplitude ranges cannot be obtained at frequencies higher than the above. The
reason for this behaviour can be clearly seen from Figs. 7 and 8. If the frequency is over the non-movable
linear fundamental limit F ¼ 1.004, it is impossible to achieve linear behaviour at the lower axial velocities.

The relation between axial velocity and the fundamental frequency of free vibration is shown in Fig. 7. In
general, the behaviour of a nonlinear axially moving string is similar to that of the nonlinear beam in Ref. [7],
in that the linear theory underestimates stability in the subcritical range of axial velocity, overestimates it in
the supercritical range and it is most limited in a near-critical regime. The most notable differences between a
nonlinear string and beam are the fact that the string does not undergo bifurcation from the straight
configuration to curved equilibrium states in a supercritical transport speed regime, nor does the equilibrium
state remain straight. Moreover, the increase in fundamental frequency is notably quicker with a string in
which the axial velocity increases than in the case of a nonlinear beam.

By combining the results shown in Figs. 5–7 we can construct a surface, as shown in Fig. 8, which describes
the nonlinear dynamic behaviour of an axially moving band. The surface includes all the above dependences
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Fig. 9. Deflection shapes of the first mode of an axially moving band at axial velocities (a) V ¼ 0, (b) V ¼ 0.60, (c) V ¼ 0.99 and (d)

V ¼ 1.40. At amplitude A/L ¼ 0.01 (- - -) and linear case at A/LE0. (—).
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between fundamental frequency, axial velocity and vibration amplitude as contour lines, and therefore
represents all the aspects of the behaviour of the system noted above.

The vibration modes of the fundamental frequency at three axial velocities and two amplitudes, the
nonlinear A/L ¼ 0.01 and the linear A/L ¼ 0, are presented in Fig. 9. The modes, located as marked with ‘O’
in Fig. 5 show the characteristic behaviour of axially moving material, in that transverse vibration does not
have a constant spatial phase, and therefore the material particles pass through the equilibrium at different
times. This phase shift becomes more visible as the transport velocity increases and the accentuation of this
phenomenon continue into the supercritical speed range. The phase shift seem to weaken with an increase in
the vibration amplitude at higher velocities (V ¼ 0.99 and 1.4), i.e. as the geometrically nonlinear effect
increases. We can also note that exceeding of the critical velocity do not seem to affect the development of this
behaviour.

5. Conclusions

The vibration characteristics of a light axially moving band are examined by the numerical study in the
subcritical and supercritical speed ranges with particular focus on free vibration and the vibration shape.
Equations of motion are developed on Hamilton’s principle and discretized by the finite element method. The
periodic nonlinear problem for the string is solved by the FGN method. Verification of the model shows that
the method is capable of describing diverse forms of behaviour in nonlinear vibrations.

The nonlinear dynamic behaviour of an axially moving band is examined through dependences between
fundamental frequency, axial velocity and vibration amplitude resulting from nonlinear free vibration. The
relation between the vibration amplitude and the fundamental frequency showed that increasing nonlinearity
clearly stiffens the system in the subcritical range and softens it in the supercritical range. We did not find
similar behaviour in the relations between vibration amplitude and axial velocity, but the subcritical and
supercritical behaviour patterns were the same, in that the effect of the nonlinearity was to bend the curves to
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the right with an increase in amplitude. In general, the behaviour of a nonlinear axially moving string is similar
to that of a nonlinear beam as described in Ref. [7], in that the linear theory underestimates stability in the
subcritical range of axial velocity, overestimates it in the supercritical range and is most limited in a near-
critical regime. The most notable differences between a nonlinear string and beam are the fact that the string
does not undergo bifurcation from a straight configuration to curved equilibrium states in a supercritical
transport speed regime, nor does the equilibrium state remain straight.
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