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Abstract

The optimization of power acquired from a piezoelectric vibration-based energy harvester which utilizes a harvesting

circuit employing an inductor and a resistive load is described. The optimization problem is formulated as a nonlinear

program wherein the Karush–Kuhn–Tucker (KKT) conditions are stated and the resulting cases are treated. In the first

part of the manuscript, the case of a purely resistive circuit is analyzed. While this configuration has received considerable

attention in the literature, previous efforts have neglected the effect of damping on the optimal parameters. Here, we

explore the impact of damping on power optimality and illustrate its quantitative and qualitative effects. Further, we

analyze the effect of electromechanical coupling demonstrating that the harvested power decreases beyond an optimal

coupling coefficient. This result challenges previous literature suggesting that higher coupling coefficients always culminate

in more efficient energy harvesters. In the second part of this work, the effect of adding an inductor to the circuit is

examined. It is demonstrated that the addition of the inductor provides substantial improvement to the performance of the

energy harvesting device. It is also shown that within realistic values of the coupling coefficient, the optimal harvested

power is independent of the coupling coefficient; a result that supports previous findings for the purely resistive circuit.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in the fields of sensing, computing, and electronics contributed to the development of
ultra-small, self-contained, and low-power sensors and actuators. The low-power characteristics of these
devices directed a large segment of energy research towards seeking alternative sources to power and maintain
them. Recently, an approach based on harvesting ambient vibration energy was proposed. Vibration-based
energy harvesters explore the ability of some active materials (e.g., piezoelectric, magnetostrictive,
ferroelectric, etc.) to generate an electric potential in response to external mechanical stresses. As a result,
these materials can be effectively utilized to transform mechanical strains into useful electrical power. The
latter can be stored or used to directly run and maintain low-power devices.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A area, m2

C capacitance of piezoelectric layer, F
I current magnitude, A
M proof mass, kg
Mp mass of piezoelectric layer, kg
P magnitude of harvested power, W
Rl load electric resistance, O
V voltage magnitude, V
X displacement magnitude, m
c mechanical modal damping coefficient,

N s/m
c33 elasticity coefficient of the piezoelectric

layer in the f33g direction, N=m2

e33 piezoelectric constant in the f33g direc-
tion, C=m2

k effective stiffness of the harvester, N/m
L inductance, H
m approximate effective mass of the har-

vester, kg

t thickness, m
v voltage developed across the electrodes, V
x piezoelectric layer displacement, m
xb base displacement, m
�̄ mechanical strain, dimensionless
�33 permittivity of the piezoelectric layer in

the f33g direction, F/m
y electromechanical coupling coefficient, N/V

Subscript

e electrode layer property
p piezoelectric layer property

Superscript

E property measured at zero electric field
S property measured at zero strain
T property measured at zero stress
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Many researchers have considered the design and performance optimization of vibration-based energy
harvesters [1,2]. For instance, Sodano et al. [3,4] focused on the performance of energy harvesting devices
through quantifying the amount of harvested power and the ability to charge storage devices. In other
demonstrations, Grisso and Inman [5] proposed an integrated sensor ‘‘patch’’ that can harvest energy from
ambient vibrations and temperature gradients. This patch would be able to take measurements and broadcast
them when necessary. Rastegar et al. [6] presented a class of efficient energy harvesting devices that are
mounted on platforms that vibrate at low frequencies. Priya et al. [7] reported on the advances of powering
stationary and mobile untethered sensors using a fusion of energy harvesting approaches. Lefeuvre et al. [8]
compared four vibration-powered generators with the purpose of powering standalone systems. They
proposed an approach based on processing the voltage generated by the piezoelectric material that would
enhance the electromechanical conversion. Badel et al. [9] considered the addition of an electrical switching
element in parallel with the piezoelectric element. The switch is triggered at the maxima or minima of the
displacement realizing a voltage inversion through an inductor, and hence yielding an increase in the output
voltage of the piezoelectric element. Anderson and Sexton [10] presented a model for piezoelectric energy
harvesting with a cantilever beam configuration. The model incorporated expressions for variable geometry,
tip mass, and material constants.

Researchers such as Roundy [11], Stephen [12], and duToit et al. [13] focused on the optimization of energy
harvesters by analyzing the effect of design parameters such as the load resistance and the electromechanical
coupling on power optimality. One of the most efficient and simple optimization techniques is based on tuning
both of the electrical and mechanical impedances (impedance matching). Based on this concept, Wu et al. [14]
developed a tunable resonant frequency power harvesting device in the form of a cantilever beam. The device
utilized a variable capacitive load to shift the gain curve of the cantilever beam such that it matches the
frequency of the external vibration in real time. Twiefel et al. [15] also presented a model that can be tuned to
the external excitation frequency. Furthermore, Johnson et al. [16] presented the design of a unimorph
piezoelectric cantilever beam tuned to harvest optimal energy from a specific machine application.

Detailed studies on the optimization of energy harvesting devices started with the work of Stephen [12] who
assumed that the maximum energy harvesting occurs at the mechanical resonance of the device. duToit and
Wardle [17] showed that this assumption hides essential features of the coupled electromechanical response.
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They showed that this coupling results in another optimal frequency at the antiresonance. To obtain the
complete features of the coupled response, duToit and Wardle [17] used a linearly coupled model to derive an
expression for the extracted power. Following similar concepts, Nakano et al. [18] presented a two-port model
for electromechanical transducers. They developed a unified method to obtain the optimal conditions for
energy harvesting from electromagnetic and piezoelectric transducers.

The purpose of this effort is to provide an analytical understanding of the effects of structural damping and
electromechanical coupling on the optimal energy harvesting from a vibration source. Towards that end, we
consider a ‘‘stack’’ harvesting device similar to that analyzed in Ref. [17]. However, we propose a harvesting
circuit wherein an inductor is employed in parallel or series with the load. Adding an inductor to the
harvesting circuit was previously explored by Lesieutre, Ottman, and Hofmann [19] who focused on the
analysis of the damping resulting from energy harvesting.

By utilizing the Karush–Kuhn–Tucker (KKT) method [20], we cast the optimization problem as a nonlinear
program and examine optimizing the circuit parameters to realize maximum power. Unlike previous research
efforts, [17], we account for mechanical damping in the optimality treatment and obtain exact analytical
expressions for the optimal frequency ratios as a function of the damping and electromechanical coupling. We
demonstrate that neglecting the mechanical damping may result in qualitatively and quantitatively erroneous
predictions especially for small quality factors and/or electromechanical coupling coefficients. We also show
that there exists an optimal coupling coefficient beyond which the power cannot be increased questioning the
previously published idea that a higher coupling coefficient results in higher power values. Results show that
the proposed circuit can provide superior performance compared to a purely resistive circuit. In particular, it is
shown that at the optimal electric elements, the proposed circuit can harvest maximum power at any excitation
frequency.

The remainder of this work is organized as follows. In Section 2 the analytical model of the system under
consideration is presented. We first treat the parallel configuration of the inductor and resistor. The
optimization problem is stated in Section 3. In Section 4 the harvesting device equipped with a purely resistive
circuit is studied. The section presents exact analytical solutions for the optimal frequencies, and presents an
analysis of the role of damping and coupling coefficient. In Section 5, we consider the new circuit (parallel
configuration). In Section 6, we treat the series configuration of the harvesting circuit. Finally, conclusions for
this work are drawn in Section 7.

2. One-dimensional electromechanical analytic model

Fig. 1 displays a stack-type piezoelectric harvesting device with a basic harvesting circuit. We consider the
circuit both with and without the inductor. The piezoceramic operates in the f33g mode, and energy is
harvested through base excitations.

The equations governing the electromechanical behavior of the system are:

m €xþ c _xþ kx� yv ¼ �m €xb, (1)
tp

xB

x

te

+

–

vRpRlL

Proof Mass

Piezoceramic

Base

Fig. 1. Schematic of a piezoelectric energy harvester in stack configuration and harvesting circuit.
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y €xþ Cp €vþ
1

Req

_vþ
1

L
v ¼ 0, (2)

where,

m ¼M þ
1

3
Mp; k ¼

cE
33Ap

tp

; y ¼ �
e33Ap

tp

; Cp ¼
�S
33Ap

tp

. (3)

Here, the approximate total mass of the system, m, is taken to be analogous to the effective mass used in a
single-degree-of-freedom model of a cantilevered rod with a tip mass in longitudinal vibrations. This
approximation has no effect on the analysis presented in this paper, as the system at hand is indeed governed
by a single mechanical degree of freedom. A continuum model would certainly present a better approximation
of the system dynamics [21,22]. The electrode thickness is neglected (te ¼ 0) and numerical values of the
parameters used in all simulations presented in this paper are listed in Table 1. In the absence of the inductor,
Eq. (2) reduces to the model derived in Ref. [17].

In Eq. (2), the equivalent resistance Req is the parallel resistance of the load and leakage resistances, Rl and
Rp, respectively. The leakage resistance, Table 1, is usually much higher than the load resistance [23].
Consequently, in the remainder of this work, we assume Req � Rl , and we only refer to the load resistance Rl .

A closed-form analytical solution of the system’s displacement and the magnitudes (half-peak-to-peak
value) of the voltage developed and the power consumed in the resistive load can be obtained assuming a
harmonic base excitation of amplitude X b and frequency o. These quantities are presented below normalized
with respect to the acceleration amplitude. The normalization choice is motivated by the fact that
measurement of acceleration is widely used in experimental settings (e.g. using accelerometers). Hence, the
normalized magnitudes are:

X

o2X b

����
���� ¼ 1

o2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2O2 þ a2ðbO2 � 1Þ2

q
ffiffiffiffi
B
p , (4)

V

o2X b

����
���� ¼ 1

jyj
mabk2

eO
2ffiffiffiffi

B
p , (5)

P

ðo2X bÞ
2

����
���� ¼ V 2

Rlðo2X bÞ
2

����
���� ¼ 1

o3
n

kab2k2
eO

4

B
, (6)

where,

B ¼ ððbþ 2azÞO� bð1þ 2azÞO3Þ
2
þ ða� ð2bzþ að1þ bþ bk2

eÞÞO
2 þ abO4Þ

2, (7)

and on is the natural frequency of the mechanical system, a and b are dimensionless time constants, ke is an
alternative electromechanical coupling coefficient, O is the frequency ratio, and z is the modal damping ratio
Table 1

Data used to simulate the energy harvester

Piezoceramic Harvester’s properties

Proof mass, M (kg) 0.01

Thickness, tp (m) 0.01

Cross-sectional area, Ap (m2) 0.0001

Mass, Mp (kg) 0:0075
Permittivity, �33 (F/m) 1:137� 10�8

Coupling coefficient, k33 (dimensionless) 0:75
Leakage resistance, Rp (O) 5� 109

Base acceleration magnitude 1g (g ¼ 9:81m=s2)
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of the mechanical system. These quantities are given below:

on ¼

ffiffiffiffi
k

m

r
; a ¼ ReqonCp ; b ¼ o2

nLCp,

k2
e ¼

y2

kCp

; O ¼
o
on

; z ¼
c

2mon

. (8)

A note regarding the quantity ke is in order. Throughout this work, ke will be loosely referred to as the
coupling coefficient. This quantity is not to be confused with the more traditional coupling coefficient referred
to in the literature, k33, given as

k2
33 ¼

d2
33

sE
33�

T
33

. (9)

Both quantities, k33 and ke, are positive. However, k33 is bounded by one, whereas ke is not. The two coupling
coefficients are related through,

k2
e ¼

k2
33

1� k2
33

¼
e233

cE
33�

S
33

. (10)

Lesieutre and Davis [24] provide an interesting discussion on the coupling coefficient of a piezoelectric device
and that of its active material.

3. Power optimization

The goal is to maximize the magnitude of the harvested power from the piezoelectric device. In the
following, we cast the optimization problem as a nonlinear program with the KKT conditions. The KKT is a
generalized form of the long celebrated method of Lagrange multipliers [see for instance Ref. 20]. The
objective function to be optimized P, is given by

Pða; bÞ ¼
1

o3
n

kab2k2
eO

4

B
. (11)

To this end, we desire to obtain optimal values of the resistance and inductance that would achieve
maximum power magnitude. Moreover, to obtain meaningful results, the optimal resistance and inductance
must be nonnegative. Hence, the nonlinear optimization problem can be stated as follows:

Find the min
a;b
ð�PÞ subject to giða;bÞp0; i ¼ 1; 2. (12)

The negative sign in Eq. (12) indicates that we are seeking a maximum. The constraint functions giða;bÞ
declare the nonnegativity of a and b, hence they are given by

g1ða;bÞ ¼ �a and g2ða;bÞ ¼ �b. (13)

The necessary KKT conditions are stated as follows: if the pair ðaopt; boptÞ is a local optimum, then there
exists constants miX0 ði ¼ 1; 2Þ, such that

�rPðaopt; boptÞ þ mT � rgðaopt;boptÞ ¼ 0 and migiðaopt; boptÞ ¼ 0 i ¼ 1; 2, (14)

where rP is the gradient of P. Expanding the above expression yields

qP
qa

����
ðaopt;boptÞ

þ m1 ¼ 0 and m1aopt ¼ 0 (15a)

and

qP
qb

����
ðaopt ;boptÞ

þ m2 ¼ 0 and m2bopt ¼ 0. (15b)
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Moreover, the KKT necessary conditions state that if the sufficient conditions, Eqs. (15a,b), are satisfied, and
Pða;bÞ and giða;bÞ are convex functions, then the pair ðaopt;boptÞ is a global optimum. The constraint
functions giða;bÞ are convex by construction. Moreover, one can obtain the Hessian of Pða;bÞ and show that
it is positive definite. Hence, an optimal pair ðaopt;boptÞ is a global optimum.

The resulting system of equalities and inequalities requires thorough analysis to obtain the possible optimal
solutions ðaopt;boptÞ. A preliminary investigation reveals the existence of the following cases:
(a)
 Case I: If m1a0 and m2a0, then aopt ¼ bopt ¼ 0 as per Eqs. (15a,b). This result violates the purpose of the
problem, as no power can be extracted in the absence of an electric circuit.
(b)
 Case II: If m1a0 and m2 ¼ 0, then aopt must be zero, and we have to solve the following system:

qP
qa

����
ð0;boptÞ

¼ 0 and
qP
qb

����
ð0;boptÞ

¼ 0. (16)

An optimal value bopt can be obtained, however, the solution is not useful. The power is consumed by the
resistor, and since aopt ¼ 0, the suggestion is that we are harvesting power with an infinite magnitude
which is not realistic.
(c)
 Case III: This case occurs if m1 ¼ 0 and m2a0. This yields the purely resistive circuit which was analyzed in
the literature. The optimization problem reduces to solving the following equation:

qP
qa

����
aopt

¼ 0. (17)

duToit and Wardle [17] solved this equation in the absence of mechanical damping. Here, we extend their
results by including the effect of damping.
(d)
 Case IV: When m1 ¼ 0 and m2 ¼ 0, then aopta0 and bopta0. As such, Eqs. (15a,b) reduce to solving the
following nonlinear system:

qP
qa

����
ðaopt;boptÞ

¼ 0 and
qP
qb

����
ðaopt;boptÞ

¼ 0. (18)

This case represents a separable optimization problem and will be analyzed in Section 5.
4. Analysis of Case III

To solve the optimization problem posed in Eq. (17), duToit and Wardle [17] among others [12,14] set the
damping ratio, z, to zero. Then, they analyzed the harvesting circuit at short- and open-circuit conditions by
letting the dimensionless time constant a approach zero and infinity, respectively, to obtain two optimal
frequency ratios (for which the power is maximum). These two frequency ratios were denoted as the resonance
frequency, Or, and the antiresonance frequency, Oar, given by

Or ¼ 1 and Oar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

e

q
. (19)

At zero damping ratio, the preceding expressions accurately describe the optimal frequency ratios for which
the power harvested is indeed maximum. However, this result suggests that the optimal frequency ratios are
invariant to changes in the damping ratio. Towards that end, we solve Eq. (17) and obtain the value of aopt as

a2opt ¼
1

O2

ð1� O2Þ
2
þ ð2zOÞ2

ð½1þ k2
e � � O2Þ

2
þ ð2zOÞ2

. (20)

Next, we optimize the frequency ratio. We substitute Eq. (20) in Eq. (6), set the derivative of the resulting
power expression to zero, and solve the resulting equation for O. The resulting polynomial is of the 12th
degree in O and obtaining analytical expressions for all the roots of this polynomial is rather a formidable
task. Consequently, we resort to plotting the numerical solutions of the resulting equation versus the damping
ratio, z, at a given coupling coefficient ke, as displayed in Fig. 2.
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Fig. 2. Optimal frequency ratios and harvested power at k ¼ 0:6 and corresponding aopt: (a) variation of optimal frequency ratios with the

damping ratio z and (b) magnitude of optimal harvested power at different damping ratios, z.
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At z ¼ 0, the system has three real positive extrema: two maxima and a minimum. The maxima are Or ¼ 1

and Oar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

e

q
as predicted in Ref. [17]. The third root is a minimum, given as

Omin ¼
1ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ k2

e þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 16k2

e þ k4
e

qr
. (21)

Examining Fig. 2a, we observe that as the damping ratio increases, the value of Or increases whereas the
value of Oar decreases. On the other hand, the value of the minimum, Omin decreases slowly relative to
changing values of z. The variation of these three roots resembles a subcritical pitchfork bifurcation with the
damping ratio being the bifurcation parameter. More specifically, for damping ratios that are less than a
particular damping ratio (bifurcation damping ratio zb), the optimal power resembles a double-peak single-well
potential function with the double peaks representing the two maxima and the well representing the minima,
Fig. 2b. At zb, the power expression becomes of the single-peak potential type and the values of the three
extrema become a single maximum. This solution is an extension of the minimum solution prior to crossing zb.
Further increase in z beyond zb results in a decrease in the optimal frequency ratio. For the case considered
here, the bifurcation damping ratio was found to be zb ¼ 0:084.

The associated magnitudes of the voltage and displacement are displayed in Fig. 3a and b, respectively.
Fig. 4a displays the magnitude of the current passing through Rl . It is worth noting that, at the resonance
frequency ratio, Or, the current magnitude is at a maximum whereas the voltage magnitude is at a minimum.
Hence, Or is a suitable operating point for applications requiring high current, such as charging a storage
device. This observation is reversed at the antiresonance frequency ratio, Oar, where the voltage is at a
maximum and the current is at a minimum. This operating condition is suitable for applications requiring high
voltage, such as wireless sensors, which mainly use diodes and transistors. Furthermore, the optimal value of
the displacement behaves similar to the voltage. It assumes a small value at the resonance frequency, Fig. 4b.
Recall that the time constant a is proportional to the load resistance, Rl . However, the power is inversely
proportional to the load resistance. Hence, to maintain the same harvested power, the voltage and the
resistance have to behave similarly. The magnitude of the voltage and Rl are both small at Or and both attain
maxima at Oar.
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Fig. 3. Optimal voltage and displacement magnitudes at different damping ratios with k ¼ 0:6: (a) optimal voltage magnitude vs.

frequency ratio and (b) optimal displacement magnitude vs. frequency ratio.
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4.1. Exact solution for optimal frequencies

Using the numerical bifurcation diagram of Fig. 2, exact analytical expressions for the resonance, Or, and
antiresonance, Oar, frequency ratios can be obtained through a trial and error process. These roots are:

Or ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4z2 þ k2

e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16z4 � 16z2 � 8z2k2

e þ k4
e

qr
ffiffiffi
2
p , (22)
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Oar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4z2 þ k2

e þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16z4 � 16z2 � 8z2k2

e þ k4
e

qr
ffiffiffi
2
p . (23)

The exact solution for Omax which represents the middle branch of the bifurcation diagram displayed
in Fig. 2 is found next. Recall that Eq. (23) yields complex quantities when z4zb. This can be exploited to
solve for Omax, since the two roots obtained so far, Or and Oar constitute four roots as the conjugate of a
complex root is also a root. Moreover, the opposite of these roots and their conjugates are also roots. Hence,
by eliminating these eight roots, one can solve a polynomial of the 4th degree instead of solving a polynomial
of the 12th degree. The root presenting the middle branch is,

Omin ¼

ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4z2 þ k2

e þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 16z4 þ 16k2

e þ k4
e � 8z2ð2þ k2

eÞ

qr

6
. (24)

Now, further analysis can be conducted to expand our understanding of optimal energy harvesters.

4.2. Criticality treatment

The expressions for Or and Oar are new and warrant some investigation. For instance, note that these
quantities are complex when,

16z4 � 16z2 � 8z2k2
e þ k4

eo0. (25)

Inequality (25) can be solved to yield exact values of the bifurcation damping ratio discussed above as well as a
bifurcation coupling coefficient,

zb ¼
1
2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

e

q� �
, (26)

ðkeÞb ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
zþ z2

q
. (27)

4.2.1. Effects of the bifurcation damping ratio

Eq. (26) reveals that the bifurcation damping ratio is independent of the harvesting circuit parameters.
Furthermore, the bifurcation damping ratio is only a function of the coupling coefficient ke, and hence
depends only on the properties of the piezoelectric material used. As ke approaches zero, zb approaches zero,
and the transition bifurcation takes place at lower values of z. On the other hand, as the coupling coefficient
increases, the bifurcation damping increases. In other words, the two branches of Or and Oar coexist for larger
values of the damping ratio, Fig. 5a. This is favorable as the existence of the two branches provides an
operating point, Or for low voltage/high current, and another operating point, Oar, for high voltage/low
current as discussed earlier.

A key point here is that if the mechanical damping is neglected when optimizing the frequency ratio, then
erroneous values of frequency ratios, time constant and optimal load resistance result. Fig. 5b shows variation
of the optimal time constant aopt with the damping ratio z at ke ¼ 0:6. As predicted earlier by duToit and
Wardle [17], for z ¼ 0, short circuit condition (Rl ¼ 0) maximizes the power at resonance whereas open circuit
condition (Rl !1) maximizes the power at antiresonance. However, as z is increased, the optimal time
constant obtained by duToit and Wardle [17] deviates from the actual values. More importantly, for values of
z beyond zb, the previously published model predicts that two values of Rl maximize the power. However, for
damping ratios beyond zb, there is only one value for Rl that maximizes the power. This value can be obtained
analytically by substituting the solution of the optimal frequency ratio for z4zb, Eq. (24), in the expression
determined for the optimal time constant aopt, Eq. (20). The optimal resistance values can then be obtained.
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4.2.2. Effects of the bifurcation coupling coefficient

To further understand the effects of the bifurcation coupling coefficient, inequality (25) should be studied
more. As such, we define

f ðz; keÞ ¼ 16z4 � 16z2 � 8z2k2
e þ k4

e . (28)

Fig. 6a displays the behavior of this function with varying values of z and ke. As z is increased for constant
values of ke, f ðz; keÞ varies from being large and positive to being small and negative. This behavior is shown in
Fig. 6b, and was also demonstrated in Fig. 5a. This stituation gives rise to two operating points that produce
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the same amount of power; one provides high voltage/low current, and the other provides high current/low
voltage.

On the other hand, for constant z values, f ðz; keÞ is negative for small values of the coupling coefficient and
becomes positive when the coupling coefficient crosses the bifurcation coupling coefficient, ðkeÞb. This
behavior can be concluded from Fig. 7a and indicates the existence of another bifurcation diagram that is
‘‘opposite’’ to the one obtained previously. It turns out that, for small values of ke, a single maximum exists.
Beyond the value of ðkeÞb, this maximum becomes a minimum, and two roots branch out. These two branches
represent two maxima.

Eqs. (23) and (24) can be used to study the behavior of the optimal frequency ratios for varying values of ke.
This behavior is illustrated in Fig. 7b, where the bifurcation diagram presenting the optimal frequency ratios is
shown for different values of the damping ratio. We note that for all the values of damping ratio used, all the
branches of the bifurcation diagram coincide for high values of the coupling coefficient. Moreover, the middle
branches (Omax before ðkeÞb, Omin after ðkeÞb) differ slightly before ðkeÞb, and practically coincide after crossing
ðkeÞb. Additionally, the bifurcation coupling coefficient increases as the damping increases, which is also
evident from Eq. (27).

4.3. Electromechanical coupling

In order to gain a better understanding of the effect of the electromechanical coupling coefficient, ke, on the
power harvested, we use Eq. (2) to relate the power harvested to the displacement of the stack,

jPj ¼
kak2

eO
2on

1þ a2O2
jX j2. (29)

Eq. (29) states that for a constant O, a, and jX j, the harvested power increases as ke increases. However,
although O and a can be maintained constant, it is almost impossible to maintain the displacement magnitude
jX j constant. More specifically, Eq. (4) indicates that for constant input acceleration amplitude, as ke

increases, the displacement magnitude jX j decreases. Therefore, for constant input acceleration amplitude, an
increase in ke is not necessarily accompanied by an increase in the harvested power.

Furthermore, according to Eq. (4), as ke approaches zero, jX j is maximized, therefore all the energy
supplied by the environment is transferred to the structure. However, this energy cannot be harvested as
per Eq. (6).
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The above discussion suggests that a larger ke does not always imply a more efficient energy harvester. The
coupling coefficient ke also acts as a damping term that minimizes the flow of energy from the environment to
the harvesting device. For a given frequency ratio and time constant, O and a, the optimal coupling coefficient
can be obtained as

ðkeÞ
2
opt ¼

1

aO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a2O2Þð1þ ð4z2 � 2ÞO2 þ O4Þ

q
. (30)

Note that Eq. (30) has a solution for all possible values of a, O, and z. For z ¼ 0, O ¼ Or ¼ 1 as per Eq. (23).
Then, the optimal coupling coefficient, ðkeÞopt ¼ 0 and the harvested power approaches infinity according to
Eq. (6). This is counterintuitive, physically unrealizable, and can be explained by the fact that the displacement
amplitude jX j unrealistically approaches infinity at resonance for zero damping ratio and zero coupling
coefficient.

Fig. 8a shows the variation of the harvested power with the coupling coefficient for different values of load
resistance at the resonance frequency with z ¼ 0:01. For a given Rl , as the coupling coefficient increases, the
harvested power increases until it reaches a maximum value at ðkeÞopt. Further increase in ke results in a
decrease in the harvested power which approaches zero as the coupling coefficient increases.

At the optimal load resistance, Rl;opt, the harvested power saturates at the optimal coupling coefficient,
ðkeÞopt. Moreover, the displacement reaches a final value as well, Fig. 8b. These results might be
counterintuitive, yet they are supported by the equations governing the behavior of the system. Replace the
expression of the optimal time constant, Eq. (20), in the expression of the displacement and power magnitudes,
Eqs. (4) and (6). Then, compute the limit of these expressions as ke approaches infinity,

jPke!1j ¼
kO

2ð2zOþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4z2 � 2ÞO2 þ O4

q
Þo3

n

, (31)

jX ke!1j ¼
1

o2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2Oðð4z2 � 2ÞOþ O3 þ 2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4z2 � 2ÞO2 þ O4

qr . (32)

The values in Eqs. (31) and (32) can be used to verify the saturation limits displayed in Figs. 8a and b.
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5. Analysis of Case IV

For Case IV, we solve Eq. (18) which yields the following optimal values for a and b:

aopt ¼
O4 þ ð4z2 � 2ÞO2 þ 1

2zk2
eO

2
(33a)

and

bð1Þopt ¼ 0X0 and bð2Þopt ¼
O4 þ ð4z2 � 2ÞO2 þ 1

O2ðO4 � ð2þ k2
e � 4z2ÞO2 þ k2

e þ 1Þ
X0. (33b)

Note that aopt is independent of bopt and that there are two solutions for bopt. The first solution, b
ð1Þ
opt, implies

that no inductor is added to the circuit. Section 4 treated this case in detail. The second solution, bð2Þopt, reveals

interesting results and requires further attention. For instance, while the first solution obtained, bð1Þopt, always

satisfies the constraint boptX0, the second solution bð2Þopt is less than zero when

O1oOoO2 and zpzb, (34)

where

O1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4z2 þ k2

e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16z4 � 16z2 � 8z2k2

e þ k4
e

qr
ffiffiffi
2
p ,

O2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 4z2 þ k2

e þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16z4 � 16z2 � 8z2k2

e þ k4
e

qr
ffiffiffi
2
p . (35)

The resulting values of O1 and O2 are the resonance and antiresonance frequency ratios obtained in Eq. (23).

Hence, bð1Þopt optimizes the system, always satisfies the KKT conditions, and was treated in Section 4. However,

bð2Þopt violates the KKT conditions when O1pOpO2 and zpzb, and in such circumstance, the first optimal value

bð1Þopt is used.
Through the rest of this work, bopt will refer solely to bð2Þopt unless specified otherwise. It is worth noting that

bopt is independent of aopt. In other words, the optimization problem at hand is of an additive (separable)
nature. The power can be independently optimized with respect to each electrical element. Based on these
findings, an optimal power expression can be obtained by substituting aopt and bopt in Eq. (6), yielding

Popt ¼
k

8zo3
n

. (36)

Observing Eq. (36), we can state the following:
(a)
 The optimal power is independent of the coupling coefficient ke. It was shown in Section 4 that at the
optimal resistance of the purely resistive energy harvesting circuit, the power saturates and does not
increase as ke increases. The result obtained here is in agreement with the previous findings. However,
Eq. (36) suggest that the harvested power would remain constant even if the coupling coefficient ke

becomes arbitrarily small or arbitrarily large. To investigate this, we examine the expressions of the
optimal voltage and current,

Vopt

o2X b

����
���� ¼ k

ffiffiffiffi
C
p
ð1þ k2

e � ð2þ k2
e � 4z2ÞO2 þ O4Þ

4Cpzkeð1þ ð4z
2
� 2ÞO2 þ O4Þo2

n

, (37a)

Iopt

o2X b

����
���� ¼ Cpkeð1þ ð4z

2
� 2ÞO2 þ O4Þ

2
ffiffiffiffi
C
p
ð1þ k2

e � ð2þ k2
e � 4z2ÞO2 þ O4Þon

, (37b)
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where,

C ¼
Cpð1þ ð4z

2
� 2ÞO2 þ O4Þ

3

kO2ð1þ k2
e � ðk

2
e � 4z2 þ 2ÞO2 þ O4Þ

2
. (37c)

Examining Eq. (37c) shows that

lim
ke!0
jVoptj ¼ 1 and lim

ke!0
jIoptj ¼ 0, (38a)

however

lim
ke!1

jVoptj ¼ 0 and lim
ke!1

jIoptj ¼ 1. (38b)

Eq. (38b) removes any potential confusion, and show that Eq. (36) is only valid for realistic values of ke.
For very small (or very large) values of ke, the voltage and current values are not useful.
(b)
 The optimal power is independent of the frequency ratio. Previous works concluded that maximum power
can be achieved at the resonance frequency [12]. This concept was advanced in a later work [17], where it
was shown that two frequency ratios, resonance and antiresonance, maximize the value of the harvested
power. However, the optimal power of Eq. (36) is independent of the frequency ratio, suggesting that the
device harvests the same maximum power at any frequency ratio.
Another notion is realized by deriving the expression for the optimal strain rate within the piezoelectric
element. This can be obtained by calculating the magnitude of _̄� ¼ _x=tp, and substituting the optimal circuit
elements values aopt and bopt which simplifies to

_̄�

o2X b

����
���� ¼ 1

4tpzon

. (39)

The above expression implies that, for constant base acceleration, to achieve optimal power everywhere in the
frequency domain, the harvesting device has to maintain a constant optimal strain-rate.

5.1. Discussion and analysis of Case IV

The optimization results presented above deserve further analysis. First, it is worth noting that the optimal
power expression in Eq. (36) is the same approximate expression obtained for a purely resistive circuit at the
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resonance and antiresonance frequency ratios for small values of ðz=keÞ. This is clearly demonstrated in
Fig. 9a. However, for Case IV, Eq. (36) is valid for all frequency ratios and any value of ðz=keÞ provided that
bopt40. This implies that, by optimizing the inductor and resistor of the energy harvesting circuit, one can
harvest the maximum power everywhere in the frequency domain making the proposed circuit superior to that
utilized previously in Ref. [17] among others.

Fig. 9a displays the optimal power at a coupling coefficient, ke ¼ 0:6, and a damping ratio
z ¼ 0:04ozb ¼ 0:085. The presence of the inductor helps transform the power figure of Fig. 8a into a
broadband-constant curve as shown in Fig. 9a. Fig. 10a and b display the voltage and current. It is worth
noting that, the power, voltage, and current coincide with those obtained for Case III when OroOoOar

(bopt ¼ 0). To further examine the practicality of the optimal results, one has to check the values obtained for
the optimal resistance and inductance. As illustrated in Fig. 11a and b, these values are for the most part
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practical quantities that can be found off the shelf or even manufactured, if needed. For instance, at O ¼ 2, the
optimal values for the load resistance and inductance are, respectively, 22 kO and 55mH which are achievable
values. It is worth noting that, near the antiresonance and for very small excitation frequencies, the optimal
inductance can be rather large.

Fig. 12 shows the optimal power with the same coupling coefficient used previously (ke ¼ 0:6) and a
damping ratio z ¼ 0:24zb. A constant optimal power can still be harvested if optimal circuit elements are
used, as per Eq. (36). Moreover, the power harvested via the proposed circuit is higher than the maximum
power that can be obtained via the circuit utilized in Ref. [17]. It is also worth noting that the expression of
Eq. (36) cannot describe the optimal power harvested using the purely resistive circuit as the ratio ðz=keÞ is not
small any more.

6. Placing the inductor in series

For the purpose of completion and comparison, we consider in this section, the optimization problem when
the inductor is connected in series with the resistor. In this case, the governing equations are:

m €xþ c _xþ kx� yð _qReq þ €qLÞ ¼ �m €xb, (40)

CpL €qþ CpReq _qþ qyx ¼ 0 where i ¼
dq

dt
. (41)

For sinusoidal base excitation, the magnitude of the response is given as

X

o2X b

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2O2 þ ðbO2 � 1Þ2

q
o2

n

ffiffiffiffi
D
p , (42)

I

o2X b

����
���� ¼

ke

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpkO2

q
on

ffiffiffiffi
D
p , (43)

P

o2X b

����
���� ¼ kak2

eO
2

o3
nD

, (44)

where,

D ¼ O2ðaþ 2zþ ak2
e � ðaþ 2bzÞO2Þ

2
þ ð1� ð1þ bþ 2azþ bk2

eÞO
2 þ bO4Þ

2. (45)
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Again, we cast the same optimization problem with the KKT conditions of Eqs. (12)–(15) with P given by

P ¼
kak2

eO
2

O2ðaþ 2zþ ak2
e � ðaþ 2bzÞO2Þ

2
þ ð1� ð1þ bþ 2azþ bk2

eÞO
2 þ bO4Þ

2
. (46)

The analysis gives rise to four cases (similar to the analysis in Sections 4 and 5). The results are presented in the
following subsection.

6.1. Optimal results for series RL-circuit

The presence of the inductor in series with the resistor leads to the same value of optimal power achieved in
Section 5. The optimal power expression obtained here is identical to that of Eq. (36). As such, the results
illustrated in Fig. 13a are identical to those shown in Fig. 9a. Similarly, as demonstrated in Figs. 9b and 13b,
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Fig. 13. Optimal power and displacement at k ¼ 0:6 and z ¼ 0:04ozb (inductor in series): (a) optimal harvested power and (b) optimal
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the displacement behavior remains unchanged. Moreover, one would expect that the voltage and current
results will change due to the fact that the parallel configuration is a current divider while the series
configuration is a voltage divider. Comparing Figs. 10a and 14a, we see that, in general, the magnitude of the
voltage is higher for the case of an inductor in parallel. This is reversed for the magnitude of the current when
comparing Figs. 10b and 14b. One can conclude that a series connection is more favorable when charging a
storage device, which requires high current. However, the parallel configuration is favored when supporting
applications that require high voltage such as wireless sensors (Figs. 15–17).

7. Conclusions

In this paper, the optimization problem of a vibration-based energy harvester that utilizes a circuit design
consisting of a resistor and an inductor is described. Using the Karush–Kuhn–Tucker (KKT) technique, the
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optimization problem is cast as a nonlinear program where the optimal circuit elements are guaranteed to be
nonnegative. When treating the resistor-inductor in-parallel and in-series configurations, the optimization
problem gives rise to two physically meaningful cases. The first of which suggests utilizing a purely resistive
circuit. While this case has received considerable attention in the literature, most of the previous research
efforts neglected the effect of mechanical damping on the optimal parameters. In this work, we account for
mechanical damping and demonstrate its qualitative effect on power optimality. More specifically, it is shown
that for damping ratios that are below a bifurcation damping ratio, the power has two maxima (at the
resonance and antiresonance frequencies) and one minimum. On the other hand, beyond the bifurcation
damping ratio, the power exhibits only one maximum. In addition, we explore the effect of electromechanical
coupling on the optimal power and show that materials with higher electromechanical coupling coefficients do
not necessarily yield higher output power.

The second case resulting from the optimization problem suggests that by employing an optimal inductor in
the circuit, one can substantially enhance the harvested power. In specific, we demonstrate that for damping
ratios that are less than the bifurcation damping ratio, one can acquire the maximum power obtained at the
resonance and antiresonance frequency for the purely resistive circuit everywhere in the frequency domain
except for excitation frequencies between the resonance and antiresonance frequency. On the other hand,
when the damping ratio is higher than the bifurcation damping ratio, the harvested power using an inductor
can be much higher than that obtained via a purely resistive circuit. The critical implications presented here
suggest the following: First, adding an inductor to the circuit allows for tuning the energy harvesting device to
scavenge the optimal power for a broad range of excitation frequencies. This implies that it is not necessary to
tune the natural frequency of the mechanical element to the resonance or antiresonance frequency to obtain
optimal power. Second, in order to maintain optimal power for any excitation frequency it is essential to
maintain an optimal strain rate. As such, the power optimization problem is equivalent to optimizing the
strain rate of the mechanical element and is not related to the magnitude of the strain itself.
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