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Abstract

The three-dimensional free vibration of annular sector plates with various boundary conditions is studied by means of the
Chebyshev—Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. The product of
Chebyshev polynomials satisfying the necessary boundary conditions is selected as admissible functions in such a way that the
governing eigenvalue equation can be conveniently derived through an optimization process by the Ritz method. The boundary
functions guarantee the satisfaction of the geometric boundary conditions of the plates and the Chebyshev polynomials provide
the robustness for numerical calculation. The present study provides a full vibration spectrum for the thick annular sector
plates, which cannot be given by the two-dimensional (2-D) theories such as the Mindlin theory. Comprehensive numerical
results with high accuracy are systematically produced, which can be used as benchmark to evaluate other numerical methods.
The effect of radius ratio, thickness ratio and sector angle on natural frequencies of the plates with a sector angle from 120° to
360° is discussed in detail. The three-dimensional vibration solutions for plates with a re-entrant sector angle (larger than 180°)
and shallow helicoidal shells (sector angle larger than 360°) with a small helix angle are presented for the first time.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As fundamental structural elements, plates are widely used in various engineering constructions. The
vibration characteristics of annular sector plates have attracted the interest of many investigators. The early
study on plate vibrations is focused on the classical plate theory (CPT), which is suitable for thin plate
structures. Ramakris and Kunukkas [1] provided a closed-form analytical solution for free vibration of an
annular sector plate with radial edges simply supported. Mukhopadhyay [2,3] used a semi-analytical method
and Thiruvenkatachari [4,5] used the integral equation technique to analyze the vibrations of annular sector
plates, respectively. Kim and Dickinson [6] used one-dimensional (1-D) orthogonal polynomials and Liew and
Lam [7] used two-dimensional (2-D) orthogonal polynomials as admissible functions to study the free
vibration of annular sector plates by the Rayleigh—Ritz method. Ramaiah and Vijayakumar [8] studied the
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free vibration of annular sector plates with simply supported radial edges by a combination of the
Rayleigh—Ritz method and coordinate transformation. Irie et al. [9] studied the vibration of cantilevered
annular sector plates with curved radial edges by a coordinate transformation. Mizusawa [10] and Mizusawa
and Kajita [11] used the spline finite element and spline strip method to analyze the free vibration of annular
sector plates, respectively. Swaminadham et al. [12] compared the natural frequencies of annular sector plates
from the finite element method and experiments. Seok and Tiersten [13] used a variational approximation
procedure to analyze the free vibration of cantilevered annular sector plates. Houmat [14] used the hierarchical
finite element method to study the free vibration of annular sector plates. Sharma et al. [15,16] integrated an
analytical approach with the Chebyshev polynomials technique to study the buckling and free vibration of
isotropic and laminated composite sector plates based on the first-order shear deformation theory.

For moderate thickness plates, the first-order shear deformable plate theory is commonly used, which could
provide a result more accurate than that from the CPT. Liew and Liu [17] used the differential quadrature
method to analyze the free vibration of thick annular sector plates. Rao et al. [18] and Guruswamy and Yang
[19] used the finite element method to analyze the vibrations of thick annular sector plates. Benson and Hinton
[20] and Cheung and Chan [21] used the finite strip method to carry out static and dynamic analyses of thick
annular sector plates. Mizusawa [22] used the finite element method to study the natural frequencies of thick
annular sector plates. Xiang et al. [23] applied the Ritz method to study the free vibration of thick annular sector
plates. Leissa et al. [24,25] considered the effect of stress singularities on the vibration analysis of thick annular
sector plates and presented the corner functions to improve the convergence of the numerical solutions.

However, only three papers have been found in the published literature about the vibrations of annular
sector plates based on the three-dimensional (3-D) elasticity theory. Mizusawa [26] used the finite prism
method, Houmat [27] used the hierarchical finite element method and Liew et al. [28] used the 2-D orthogonal
polynomials in the Ritz method to analyze the free vibration of thick annular sector plates. The existing results
are simply too scarce for engineering applications and comparative studies, and only results for annular sector
plates with sector angles not larger than 90° are available.

In the present study, the Chebyshev—Ritz method is applied to study the free vibration of thick annular
sector plates. Admissible functions can be derived conveniently from a product of the Chebyshev polynomials
and boundary functions in such a way that the geometric boundary conditions are implicitly satisfied. The
present admissible functions show a distinct advantage over admissible functions based on simple polynomials
as Chebyshev polynomials are numerically stable even when a large number of admissible functions are
employed for the solutions of higher vibration modes [29,30].

2. Basic formulation

Consider an annular sector plate shown in Fig. 1. The plate is of constant thickness /%, inner radius Ry, outer
radius R; and sector angle 6. A cylindrical coordinate system (r, 6, z) is taken to describe the displacement
components u, v, w at a generic point in the radial, circumferential and thickness directions. The linear elastic
strain energy P of the plate can be written in the integral form

)
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where £ is Young’s modulus and v is Poisson’s ratio. The strain components ¢; (i, j = r, 0, z) are defined as
follows:
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The kinetic energy 7 of the plate is given by

Ri o rh/2 [ roy o\ > ow\?
/RO / /h/2<<al> <6t> * <6t> >rdzd0dr @)

where p is the mass density per unit volume.
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Fig. 1. A sector plate: (a) the plan and (b) the cross-section.

For simplicity and convenience in mathematical formulation, the following dimensionless parameters are
introduced:

—1, z== )

where R = R|— R is the width of the plate in the radial direction and ¥ = (R; + Ry)/(R|—Ry).

For the free vibration analysis, the displacement components of the plate can be expressed into the product
of displacement amplitude functions about coordinates 7, 0,7 and an exponent function about time ¢ as
follows:

u(r,0,z,1) = UG, 0,2,  o(r,0,z,0) = V(70,2 w0,z 1) = W(F0,2)e (5)

where @ denotes the natural frequency of the plate and i = +/—1. Substituting Egs. (2), (4) and (5) into
Egs. (1) and (3), the maximum potential energy Pna.x and the maximum Kkinetic energy 7T,.x can be
written as
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where y = //R. Each of the displacement amplitude functions takes the form of a triplicate series of Chebyshev
polynomials suitably combined with boundary functions as follows:
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where Ay, By, and C,,, are the coefficients yet to be determined. G(y) (s =1,/ k, L m,n,p, q,r, x =T, 0,2)
are the Chebyshev polynomial series, which are given by

Gy(x) = cos[(s — I)arccos(y)], s=1,2,3,... ®)

Fu(F), Fy(7) and F,,(F) are the boundary functions of displacements u, v and w in the r direction,
respectively. F(0), F,9(0) and F,,(0) are those of displacements u, v and w in the 6 direction, respectively. The
boundary functions can be written as follows:

Fo,(A) = FO(AFL(F), Fup=FQW0)F,0), o=uov,w 9)

where Fgr(;’) and Fig(f) are the boundary functions at r = Ry and r = R;, respectively. Fge(é) and Fig(é) are
those at 8 =0 and 60 = 0, respectively. The boundary functions corresponding to common boundary
conditions are given in Table 1. The energy functional of the plate is defined as

II = Pmax - Tmax (10)
Substituting Eq. (7) into Eq. (6), then minimizing energy functional (10), i.c.
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Table 1
Boundary functions (BF) for various common boundary conditions

BF Clamped Free Sliding Hard simply supported Soft simply supported
FBr(f) F+1 1 F+1 1 1
FO(7) F+1 1 1 P+ 1 1

F° (7) F+1 1 1 F+1 F+1
Fl () F—1 1 F—1 1 1
FL(7) F—1 1 1 F—1 1
F\lrr(’? f_ -1 1 1_ F—1 F—1
Fu(0) 0+1 1 041 1 1
Fiy@) 0+ 1 ! ! i1 !
F2,(0) 0+1 1 1 0+1 0+1
Fll,()({?) (?— 1 1 0—1 1_ 1

F 2«0(9_) (f* 1 1 1 (-_)7 1 1_
FLy0) 0—1 1 1 0-1 0-1

Note: hard simply supported means the zero displacement conditions in both the z direction and the tangential direction along the edge,
while soft simply supported means the zero displacement condition only in the z direction.
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and truncating i, j, k up to I+1, J+1 and K+ 1, respectively, one has the following eigenvalue equation:

(Kud (K] [Kun] Mw] O 0 {4} {0}
[Kul' Kl [Kwl|-Q*| 0 [Mu] O {B} p =¢ {0} (12)
[KMIV]T [KUW]T [KWW] 0 O [MWW] { C} {0}

in which, Q = wR+\/p/E, [K;] and [M;] (i, j = u, v, w) are the stiffness sub-matrices and the diagonal mass sub-
matrices, respectively. The column vectors {4}, {B} and {C} are composed of the unknown coefficients as follows:
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The elements in the sub-matrices [K;] and [M,] (i, j = u, v, w) are given by
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Table 2
Convergence of A for cantilevered annular sector plates clamped on one straight edge and having 0, = 120°, Ry/R; = 0.5

h/R IxJx K 3 J2 3 Ja As 6
Antisymmetric modes in thickness direction
0.01 18x 18 x 1 1.7956 5.9855 13.661 20.624 36.233 40.314
18 x 18 x2 1.6964 5.7464 13.247 19.654 34.905 38.399
18x 18 x 3 1.6964 5.7464 13.247 19.654 34.905 38.399
22x22x%x2 1.6959 5.7431 13.240 19.646 34.888 38.381
26 %26 x 2 1.6955 5.7413 13.237 19.642 34.880 38.371
30x30x2 1.6948 5.7402 13.235 19.639 34.876 38.365
0.2 16 x 16 x 2 1.6570 5.4593 12.141 18.612 31.405 34.952
16x16x3 1.6568 5.4588 12.139 18.611 31.398 34.947
16 x 16 x 4 1.6568 5.4588 12.139 18.611 31.398 34.947
20x20x 3 1.6565 5.4573 12.138 18.606 31.394 34.939
22x22x3 1.6564 5.4570 12.137 18.605 31.393 34.937
24x24x3 1.6564 5.4567 12.137 18.604 31.393 34.936
0.5 14x14x3 1.5354 4.7865 9.7465 15.619 23.314 26.885
14x 14 x4 1.5353 4.7863 9.7458 15.618 23.312 26.884
14x14x5 1.5353 4.7863 9.7458 15.618 23.312 26.884
16x 16 x4 1.5351 4.7856 9.7451 15.616 23.311 26.881
18x 18 x 4 1.5350 4.7851 9.7447 15.615 23.310 26.880
20 x 20 x 4 1.5350 4.7848 9.7445 15.614 23.310 26.879
Symmetric modes in thickness direction
0.2 16x16x3 6.8828 21.590 43.963 69.248 90.479 104.65
16 x 16 x 4 6.8828 21.590 43.963 69.248 90.479 104.65
20x20x3 6.8817 21.587 43.960 69.243 90.472 104.65
22x22x3 6.8814 21.586 43.959 69.242 90.470 104.65
24 x24x3 6.8812 21.585 43.959 69.241 90.469 104.65
0.5 14x 14 x4 2.7611 8.6477 17.609 27.726 36.195 41.855
14x14x%x5 2.7611 8.6477 17.609 27.726 36.195 41.855
16 x 16 x 4 2.7607 8.6467 17.608 27.724 36.193 41.854
18x 18 x4 2.7605 8.6460 17.608 27.723 36.191 41.853
20 x 20 x 4 2.7604 8.6456 17.607 27.723 36.190 41.853
in which
1 - 1 b ~ -
Da,h,c _ da[Focr(r)PU(r)] d [Fﬁr(r)P(f(V)] (f+ lp)c dr
b ) dr dr
1 7] o\ J4° NP-(0
ot [ CEOPD] LEROPD) o
= T Al o’
1 =~ thp (=
b _ [ PO P
atft T O dza dz—b

ab=0;1, ¢c=0;1;-1, whf=wvw, o=iLp, ¢=05Lp, E=jmq
E=fmq, t=kmr, T=knF (15)

In the numerical computations, the piece-wise Gaussian quadrature is used to evaluate the integrals in Eq. (15).
3. Convergence and comparative studies

In the following analysis, Poisson’s ratio is fixed at v = 0.3 and all the simple supports mean hard simple
supports unless stated otherwise. To be consistent with the frequency parameters defined in the literature, two
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Table 3
Convergence of A for annular sector plates clamped on one straight edge and having 6, = 240°, Ro/R; = 0.5

h/R IxJx K A J2 23 o As 6

Antisymmetric modes in the thickness direction

0.01 18x18x 1 1.8647 4.5829 9.4245 15.656 15.869 23.787
18 x 18 x2 1.7545 4.3298 8.9672 15.007 15.147 22.737
18x18x3 1.7545 4.3298 8.9672 15.007 15.147 22.737
22x22x%x2 1.7533 4.3265 8.9599 14.999 15.136 22.720
26 x 26 x 2 1.7527 4.3246 8.9558 14.995 15.130 22.710
30x30x2 1.7522 4.3236 8.9533 14.993 15.126 22.704

0.2 16 x 16 x 2 1.7251 4.2281 8.6710 13.786 14.478 21.444
16x16x3 1.7251 4.2279 8.6707 13.785 14.478 21.443
16 x 16 x 4 1.7251 4.2279 8.6707 13.785 14.478 21.443
20x20x 3 1.7241 4.2251 8.6646 13.783 14.469 21.429
22x22x3 1.7238 4.2243 8.6629 13.782 14.466 21.426
24 x24x3 1.7237 4.2238 8.6618 13.782 14.465 21.423

0.5 14x14x3 1.6310 3.9289 7.7558 12.427 11.126 17.398
14x14x4 1.6309 3.9289 7.7557 12.427 11.126 17.397
14x14x5 1.6309 3.9288 7.7557 12.427 11.126 17.397
16x16x4 1.6304 3.9272 7.7527 12.423 11.125 17.396
18x 18 x 4 1.6301 3.9262 7.7507 12.420 11.125 17.395
20x20x 4 1.6299 3.9255 7.7495 12.419 11.125 17.394

Symmetric modes in the thickness direction

0.2 16x16x3 12.453 24.577 39.701 46.012 59.570 65.291
16x 16 x 4 12.453 24.577 39.701 46.012 59.570 65.291
20x20x 3 12.446 24.570 39.693 46.006 59.559 65.279
22x22x3 12.444 24.568 39.691 46.005 59.557 65.275
24 x24x3 12.443 24.567 39.689 46.004 59.555 65.273

0.5 14x 14 x4 4.9956 9.8412 15.899 18.430 23.863 26.125
14x14x%x5 4.9956 9.8412 15.899 18.430 23.863 26.125
16 x 16 x 4 4.9937 9.8392 15.896 18.428 23.860 26.122
18x 18 x 4 4.9924 9.8379 15.895 18.427 23.858 26.120
20 x 20 x 4 4.9915 9.8371 15.894 18.426 23.857 26.118

non-dimensional eigenvalues are used: 4 = wR%\/ph /D and Q = wR;+/p/E. For plates, the vibration modes
can always be divided into antisymmetric and symmetric ones in the thickness direction. In this case, the
computational cost can be reduced by taking k,n = 2,4,6,..., r = 1,3,5,... for the antisymmetric vibration in
the thickness direction and k,n = 1,3,5,..., r = 2,4,6,... for the symmetric vibration in the thickness direction,
respectively.

The convergence studies of the frequency parameter A for cantilevered annular sector plates clamped
at a straight edge are carried out to study the convergence characteristics of the present method as shown in
Table 2. The radius ratio of the plates is Ry/R; = 0.5 and the sector angle is 6, = 120°. Three different
thickness ratios #/R = 0.01,0.2,0.5 are examined, which correspond to thin, moderately thick and thick plates,
respectively. For simplicity, equal numbers of terms of admissible functions are taken in displacement
amplitude functions U, V and W although different numbers of terms among U, V and W might provide a
more rapid convergence. It is seen in Table 2 that the convergent rate of A is consistent with the upper-bound
characteristics of the Ritz method. Namely, as the number of terms of the admissible functions increases,
frequency parameter A tends to converge monotonically from the above. With the increase in plate thickness,
the number of terms needed in the z direction should be increased and at the same time the number of terms
used in the x and y directions can be reduced.

Table 3 gives the convergence of the cantilevered annular sector plates clamped at a straight edge with
Ro/R; = 0.5 and 6y = 240°. It is obvious that in such a case, the sector angle is re-entrant. It is seen that the
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Table 4
Comparison of A/n* for annular sector plates with various boundary conditions for Ro/R; = 0.4 and 6, = 90°
h/R BC Sources Jn? JojT? N T s Jo/m?
1/6 SSSS Ref. [28] 3.4476 5.5699 6.0808 8.6811 9.9621 10.248
Present 3.4476 5.5699 6.0807 8.6811 9.9620 10.248
SSFF Ref. [28] 2.6606 3.1100 3.2111 4.8673 5.8231 7.4718
Present 2.6602 3.1058 3.2107 4.8665 5.8203 7.4713
CCFF Ref. [28] 5.2651 5.5023 6.5224 8.6305 10.590 11.735
Present 5.2615 5.4983 6.5172 8.6262 10.584 11.728
CCSS Ref. [28] 5.6650 7.1019 9.8012 11.195 13.007 13.307
Present 5.6625 7.0999 9.7982 11.194 13.002 13.304
CCCC Ref. [28] 5.9306 7.8931 10.918 13.141 14.490 14.565
Present 5.9274 7.8885 10.910 13.135 14.480 14.563
1/3 SSSS Ref. [28] 2.9973 3.0424 4.5870 4.9818 5.5973 6.7040
Present 2.9973 3.0424 4.5870 4.9818 5.5973 6.7040
SSFF Ref. [28] 1.5608 2.3558 2.7829 29136 4.0289 4.6820
Present 1.5587 2.3556 2.7827 29121 4.0288 4.6812
CCFF Ref. [28] 3.8839 4.0336 4.7411 5.2979 6.2429 6.7281
Present 3.8821 4.0318 4.7494 5.2949 6.2415 6.7243
CCSS Ref. [28] 4.1722 5.2634 5.5973 7.0733 7.1145 8.4995
Present 4.1710 5.2625 5.5973 7.0730 7.1136 8.4976
CCCC Ref. [28] 4.3755 5.6945 7.2911 7.5643 8.5621 9.4678
Present 4.3738 5.5926 7.2904 7.5617 8.5600 9.4663

Note: BC means boundary conditions, the first two letters mean the boundary conditions at the straight edges and the other two letters
mean those at the curved edges, in which S = simply supported, C = clamped and F = free.

Table 5
Comparison of Q = wR;+/p/E for flexural vibration of annular sector plates simply supported on two straight edges and free on other
edges for Ry/R; = 0.5

h/R 0o (deg) Methods Q Q, Q3 Q Qs
0.01 30 HFEM [26] 0.071 0.175 0.266 0.305 0.496
Present 0.071 0.175 0.266 0.305 0.496
60 HFEM [26] 0.017 0.071 0.072 0.154 0.175
Present 0.017 0.071 0.072 0.154 0.175
0.2 30 HFEM [26] 1.304 2.929 4.180 4.617 6.883
Present 1.304 2.929 4.180 4.617 6.883
60 HFEM [26] 0.335 1.286 1.304 2.626 2.929
Present 0.335 1.286 1.304 2.626 2.929
0.6 30 HFEM [26] 2.750 5.024 6.494 6.656 6.868
Present 2.750 5.024 6.494 6.656 6.868
60 HFEM [26] 0.863 2.565 2.750 4.715 5.024
Present 0.863 2.565 2.750 4.715 5.024
1.0 30 HFEM [26] 3.309 3.897 5.142 5.748 6.333
Present 3.309 3.897 5.142 5.748 6.333
60 HFEM [26] 1.175 2.792 3.309 3.897 4.933
Present 1.175 2.792 3.309 3.897 4.933

Note: HFEM means hierarchical finite element method.

convergence pattern of data in Table 3 is similar to that in Table 2. Comparing Tables 2 and 3, we can
see that using the same number of terms, the convergence rate for the plates with the sector angle 6, = 120° is
more rapid than that for the plates with the sector angle 6, = 240°. This phenomenon can be attributed
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Comparison of fundamental frequency parameter 2 = owR3+/ph/D for flexural vibration of annular sector plates with two straight edges
simply supported for Ry/R; = 0.5

0y (deg) h/R Theories F-F S-S Cc-C F-C F-S
195 0.01 Classical [25] 0.1850 41.5375 90.0837 21.4263 10.8761
3-D 0.1856 41.5301 90.1125 21.4074 10.8522
0.2 Mindlin [25] 0.1784 38.6356 70.8090 19.9986 10.2268
3-D 0.1785 38.7635 71.9146 20.0967 10.2386
0.4 Mindlin [25] 0.1706 32.8713 48.6618 17.5822 9.3661
3-D 0.1707 33.1895 50.0059 17.7636 9.3961
210 0.01 Classical [25] 0.3239 41.3313 89.9678 20.9496 10.2631
3-D 0.3233 41.3242 90.0265 20.9368 10.2418
0.2 Mindlin [25] 0.3113 38.4554 70.7344 19.6097 9.6643
3-D 0.3114 38.5820 71.8406 19.7064 9.6751
0.4 Mindlin [25] 0.2968 32.7340 48.6117 17.2943 8.8769
3-D 0.2971 33.0498 49.9566 17.4733 8.9043
270 0.01 Classical [25] 0.6116 40.8220 89.6828 19.7282 8.5788
3-D 0.6104 40.8152 89.7655 19.7258 8.5635
0.2 Mindlin [25] 0.5812 38.0095 70.5516 18.6218 8.1304
3-D 0.5815 38.1335 71.6588 18.7149 8.1386
0.4 Mindlin [25] 0.5481 32.3938 48.4901 16.5657 7.5461
3-D 0.5488 32.7038 49.8361 16.7386 7.5670
360 0.01 Classical [25] 0.7044 40.4811 89.4931 18.8711 7.2502
3-D 0.7029 40.4748 89.6519 18.8831 7.2418
0.2 Mindlin [25] 0.6613 37.7107 70.4307 17.9366 6.9363
3-D 0.6608 37.8329 71.5435 18.0283 6.9426
0.4 Mindlin [25] 0.6151 32.1654 48.4105 16.0630 6.5171
3-D 0.6161 32.4715 49.7559 16.2316 6.5332
Note: classical means classical thin plate theory and Mindlin means Mindlin moderately thick plate theory.
Table 7
Comparison of 1 = wR2+/ph/D for sector plates fixed at four edges with Ro/R; = 0.5, 1/R = 0.4
9() (deg) Methods )u| 22 )»3 14 ;»5 /l(,
30 Mindlin [17] 83.457 123.157 - 136.780 - 173.724
Present 86.147 127.498 135.545 8 141.927 146.727° 169.047
60 Mindlin [17] 56.594 717.357 - 103.806 105.145 -
Present 58.115 79.526 92.870% 107.259 108.349 114.749%
120 Mindlin [17] 49.788 54.674 63.253 - 74.838 88.418
Present 51.147 56.107 64.865 73.149% 76.759 90.769

Note: the superscript S on the data means the symmetric modes in the plate thickness direction.

to the stress concentration at the re-entrant corner, as discussed by Leissa et al. [24,25]. However, by increasing
the number of terms of the admissible functions, convergence can be still rapidly achieved in the present

analysis.

Table 4 gives a comparative study between the present solutions and the solutions from Liew et al. [28]
where a combination of 1-D and 2-D orthogonal polynomials was used as admissible functions. It is seen
for Table 4 that the present Chebyshev solutions are in good agreement with the orthogonal polynomial

solutions.
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Table 8
Frequency parameter /. = @R3/ph/D for annular sector plates with four clamped edges

h/R 0o oy Ja I3 Ja s X6

Ro/R, = 0.25

0.25 120° 32.6494S 44.10924 59.3684S 66.7654S 62.67754 75.86944
180° 29.892A8 34,7128 42.710%8 52.61374 54.9755A 63.388"S
240° 29.13248 31.50544 35.889S 42.012%4 49.28748 52.17554
360° 28.6997S 29.55344 31.18978 33,7314 37.15548 41.320%4

0.5 120° 21.36548 28.0964 31.375%4 36.58748 39.410"8 40.26558
180° 19.53478 22.7934 27.50954 27.62078 33.2497A 34.24158
240° 18.959A8 20.7244 23.63148 26.10154 27.36244 30.45358
360° 18.609S 19.30144 20.536"S 22.310%4 24.53818 25.09354

1.0 120° 12.00448 15.55144 15.68454 19.58524 20.056"S 20.09958
180° 10.99348 12.87774 13.75554 15.51478 16.98758 17.826™
240° 10.6384S 11.745%4 13.05254 13.418%8 15.17258 15.450°4
360° 10.40148 10.88144 11.67378 12.54854 12.7347A 13.60358

Ro/R; =0.5

0.25 120° 66.933A8 73.194A4 84.6897S 101.0474 116.9954 121.0548
180° 65.78248 68.09744 72.42548 79.08444 88.1034S 99.239AA
240° 65.44478 66.619" 68.763"S 72.068"4 76.678"S 82.641°7
360° 65.22748 65.700"4 66.530S 67.770%4 69.4834S 71.72744

0.5 120° 43.596"S 47.972°4 55.488"S 58.52554 65.466%4 72.98258
180° 42,7487 44.41200 47.496"S 52.05944 55.18154 57.929A8
240° 42.50348 43.337A4 44.88748 472667 50.498A8 53.9765A
360° 4235078 42,6777 43.264"S 44.16174 45.4107 47.041°4

1.0 120° 24.42148 27.129A4 29.26154 31.4684% 36.1785S 36.806°4
180° 23.842A8 24.982AA 26.9591S 27.5895A 29.69974 31.21158
240° 23.6654S 242587 25.32148 26.8704A 26.98654 28.8641S
360° 23.556"S 23,7894 24.21078 2484544 25.70348 26.55254

Note: the first superscript on the data describes the modes in the thickness direction and the second one describes those in the
circumferential direction, in which A = antisymmetric mode and S = symmetric mode.

A comparative study of the present solutions with those using the three-dimensional (3-D) hierarchical finite
element method is given in Table 5. It is seen from Table 5 that the present solutions are the same as those
from the hierarchical finite element solutions.

It should be noted that no previously published results are known to exist for the 3-D vibration of sector
plates with a re-entrant corner (0> 180°). However, Leissa et al. [24,25] provided the exact results for sector
plates with a re-entrant corner, based on the Mindlin plate theory. The comparative studies of the
fundamental frequency parameters are given in Table 6. It is seen from Table 6 that for thin plates
(h/R = 0.01), there is an excellent agreement between the present 3-D solutions and the classical solutions. For
moderately thick plates (/R = 0.2), the present 3-D solutions also agree quite well with the Mindlin solutions.
For very thick plates (#/R = 0.4), the discrepancies increase, particularly for C—C plates. Therefore, we can
conclude that the error of the Mindlin plate theory increases with the increase of the plate thickness,
particularly for very thick plates. It is well known that the Mindlin theory considers the first-order shear
deformation of the plate; however, it ignores the effect of the higher-order shear deformation. It is seen from
Table 6 that the maximum differences between the 3-D solutions and the Mindlin solutions always occur at
the C—C plates. It has been known that the accuracy of the Mindlin solutions is dependent on the boundary
conditions of the plates [31]. For a clamped edge, the rigid boundary constraints result in a rapid change of
stresses and strains in the boundary layer zone, which cannot be adequately modeled by the simple constant
shear Mindlin theory. In fact, Dauge and Yosibash [32] demonstrated that the Mindlin model cannot capture



D. Zhou et al. | Journal of Sound and Vibration 320 (2009) 421-437 431

Table 9
Frequency parameter /. = wR3/ph/D for annular sector plates with clamped straight edges and free on other edges

h/R 0o (deg) Al A2 3 4 As A6

0.25 120 7.454748 16.806%4 26.47248 29.11148 29.59154 34.08258
180 3.7636"S 8.38254A 14.954A8 16.6805 18.45148 2285744
240 235961 4854074 9.0256"S 9.974354 14.12124 14.47548
360 1.33301S 2.092344 4.0524" 4227157 6.6585™4 9.270458

0.5 120 6.36981S 12.67724 14.82754 17.09858 17.82748 20.35948
180 3.433378 6.9920°" 8.35475A 11.78748 13.03058 13.068%S
240 2.16234S 4277974 4.999054 7.60584S 9.534058 10.77148
360 1.157548 1.929474 2212254 3.642018 4.643958 5.804544

1.0 120 4.561248 7.438154 7.691744 8.560558 9.66441S 11.36054
180 27279 4.19005" 471797 6.545358 7.34647S 7.805178
240 1.770148 2.508554 3.160344 4.78935S 5.197148 6.65291S
360 0.89301S 1.068954 1.592544 2331258 2.77224A8 4.064754

Ro/R; =0.5

0.25 120 6.8172A8 17.49147 23.45578 32.19548 36.8955S 37.245%4
180 3.0170"S 7.8534°4 15.08848 16.51948 18.48154 2439244
240 1.7106"S 418317 8.53741S 9.95705* 13.35818 14,1757
360 0.8566"S 1.596154 3.388548 3.4609°4 6.000554 8.53785S

0.5 120 6.2478AS 14.68974 17.81348 18.49258 18.64954 25.30448
180 2.877248 7.113044 9.25735A 12.886"S 13.42748 13.90158
240 1.629548 3.924244 4.98995A 7.7470A8 9.835458 11.12448
360 0.7799S 1.530954 1734824 3.202548 4.276058 5.569054

1.0 120 4.967948 9.287058 9.351854 9.9605A 10.69548 1521554
180 2511818 4.64455° 545664 6.969458 8.44477S 9.4125%8
240 1.4453A8 2.505954 3.2636™ 4.928758 5.94474A8 7.5959A8
360 0.6416"S 0.872044 1.365354 2.1457%8 2710848 4.041244

See the legend of Table 8.

the boundary layer term for the clamped edge, whereas the higher-order shear deformation theories can do a
much better job.

Table 7 gives a comparison of the present 3-D elasticity solutions and the 2-D Mindlin solutions for thick
sector plates with four fixed edges. The radius ratio and the thickness ratio of the plates are Ry/R; = 0.5 and
h/R = 0.4, respectively. Three different sector angles 6, = 30°, 60°, 120° are considered. It is seen from Table 7
that the Mindlin solutions are always lower than the present 3-D elasticity solutions. Moreover, it is seen that
the Mindlin solutions cannot give the extending modes (i.e. the symmetric modes in the plate thickness
direction), which could go into the low-order modes of the thick plates. However, the present 3-D analysis can
provide a complete vibration spectrum that is composed of antisymmetric modes and symmetric modes in the
plate thickness direction.

4. Numerical results

In this section, some benchmark results are presented in Tables 8—11 for comparisons with results from
other methods. Four boundary conditions are considered: four clamped edges, two clamped straight edges and
the other edges free, four hard simply supported edges, two straight edges free and the other edges clamped.
Considering the symmetry of the boundary conditions in the 0 direction, the vibration modes can be divided
into four cases: antisymmetric in the z direction and antisymmetric in the 6 direction (AA mode),
antisymmetric in the z direction and symmetric in the 8 direction (AS mode), symmetric in the z direction and



432 D. Zhou et al. | Journal of Sound and Vibration 320 (2009) 421-437

Table 10
Frequency parameter . = wR3\/ph/D for annular sector plates with four edges simply supported

h/R 0o (deg) Py o I3 Ja s 6

Ro/R, = 0.25

0.25 120 21.069%S 26.19458 33.63344 39.80654 48.61154 50.14548
180 18.56148 24.530A0 26.19258 29.2235A 33.63378 39.80655
240 17.690%S 21.06924 26.19454 26.57348 27.40258 31.50558
360 17.0758 18.56144 21.06978 24.53284 26.19254 26.19458

0.5 120 13.11558 16.46248 19.91154 24.30654 24,6354 29.02758
180 13.119%8 14.6255A 14.650%8 18.8364 19.91158 24.3065"
240 13.11554 13.72558 13.99648 15.7635S 16.46244 19.91154
360 13.1158 13.11954 13.51548 14.58858 14.62554 14.6504

1.0 120 6.574258 9.962254 10.51348 12.15354 13.32628 14.51858
180 6.58035% 7.324054 9.4280"8 9.962258 11.840%A 12.153%4
240 6.574254 6.882458 7.891558 9.0126"S 9.962254 10.51324
360 6.574358 6.58045A 7.309258 7.324054 8.53745S 8.70244A8

Ro/R; =0.5

0.25 120 39.493A8 44.17858 49.08244 63.4965A 64.19078 83.553A4
180 37.6814S 40.10758 42.01374 49.08248 49.61854 58.61444
240 37.04478 38.65258 39.493/4 43.53018 44.17857 49.0824
360 36.58918 37.60758 37.68144 39.49348 40.10754 42,0134

0.5 120 22.11988 31.76254 31.853A8 38.44974 44.13558 48.27348
180 20.09058 24.83354 30.56748 31.76258 33.620%4 38.4491S
240 19.3665% 22.11954 26.40458 30.11248 31.76284 31.853A4
360 18.8465S 20.09054 22.119%8 24.8335A 28.09458 29.7854S

1.0 120 11.09058 15.89454A 20.9844A8 22.07458 24.682A4 26.20454
180 10.08358 12.4395A 15.89458 19.94054 20.23278 21.997A4
240 9.724858 11.09054 13.22058 15.89454 18.89458 19.96478
360 9.467458 10.08354 11.090%8 12.43954 14.06458 15.89454

See the legend of Table 8.

antisymmetric in the 0 direction (SA mode), symmetric in the z direction and symmetric in the 0 direction
(SS mode). It can be seen from Tables 7 to 10 that with the increase of the thickness ratio, the symmetric mode
in the thickness direction falls into the scope of the low-order frequencies, which cannot be obtained from the
classical plate or Mindlin plate theories. For example, when #/R = 0.5 and A#/R = 1.0, the fundamental
frequency of the simply supported plates is symmetric mode in the thickness direction. It is well known that
the 2-D theories, either the thin plate theory or the Mindlin theory, cannot predict the symmetric mode in the
thickness direction. The ability to find the symmetric mode in the thickness direction is an important
contribution of the 3-D elasticity analysis. It is seen from Tables 8 to 11 that the frequency parameters
monotonically decrease with the increase of the sector angle and the plate thickness; however, they
monotonically increase with the increase of the radius ratio.

In the 2-D plate theories, the simply supported edge means zero transverse displacement at the edge and
zero moment along the edge. However, in the 3-D analysis, there are two kinds of simply supported
definitions. One is the zero transverse displacement (the displacement in the z direction) at the edge and the
zero tangential displacement along the edge, which is called hard simply supported. The other case requires
only zero transverse displacement at the edge, which is called soft simply supported. Two kinds of simple
supports correspond to different boundary functions as shown in Table 1. Table 12 gives a comparison of
frequency parameters between two kinds of simple supports. It is shown from Table 12 that for thin plates
(h/R = 0.01), the frequency difference between hard simple supports and soft simple supports is negligible.
However, with the increase of plate thickness, the frequency difference between the two kinds of simple
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Table 11
Frequency parameter . = wR3\/ph/D for annular sector plates with free straight edges and the other edges clamped

h/R 0o (deg) Al 2 /3 24 As A6

RO/RI =0.25

0.25 120 28.18148 29.50244 35.816"S 45.54554 48.30144 56.48655
180 28.25518 28.803°4 31.45548 37.00974 45.46578 46.4765
240 28.29248 28.570A4 30.00918 32.9264 37.67948 44.061°4
360 28.32778 28.424°4 29.05148 30.20244 32.0888 34.8204A

0.5 120 18.278A8 19.210%4 22.78954 23.48878 28.268%8 30.95544
180 18.30978 18.7484 20.628"S 23.2505* 243641 25.55358
240 18.326%8 18.571A4 19.6234S 21.70344 23.45954 24.60758
360 18.34478 18.44574 18.91548 19.788AA 21.16878 23.068"4

1.0 120 10.19628 10.76324 11.40854 13.31078 14.06258 15.67324
180 10.206"8 10.51744 11.63454 11.700%8 12.77088 13.68774
240 10.21348 10.40024 11.09248 11.73654 12.3085S 12.35024
360 10.22148 10.306"4 10.63248 11.21544 11.82954 12.017%8

Ro/R; =0.5

0.25 120 64.789A8 65.627°4 69.384AS 76.942AM 89.353A8 101.4354
180 64.860"S 65.1904 66.846"S 69.89744 74.81478 81.93344
240 64.896"S 65.055" 66.004"S 67.6334 70.17478 7381477
360 64.92748 64.97544 65.43548 66.1244 67.15548 68.58144

0.5 120 42.11848 42.639™ 45.05218 50.30374 50.73954 55.53858
180 42.15148 4237147 43.41218 45.4987A 48.983AS 51.18754
240 42.168"8 42.28144 42.8691S 43.96247 4574748 48.35544
360 42.185%8 4220574 42.498"S 42,9524 43.655%8 44,660

1.0 120 23.4314A8 23.74544 25.30448 25.3835%4 27.74458 28.54044
180 23.44378 23.590A4 24.25548 25.60354 25.65844 26.527%8
240 23.450A8 23.53244 23.90548 2464877 25.7065* 25.8688
360 23.458A8 23,4914 23.6614S 23.9694 2445978 25.16324

See the legend of Table 8.

supports increases, particularly for plates with large sector angles. The effect of simple support conditions is
important on the low-order frequencies, particularly on the fundamental frequency. For example, for plate
with #/R = 0.4 and 6 = 270° the fundamental frequency parameters corresponding to hard and soft simple
supports are 23.942 versus 3.1029. Therefore, for thick sector plates the simple supported boundaries should
be carefully defined.

The present method can be extended to study the 3-D vibration of shallow helicoidal shells with a small
helix angle [25]. Table 13 gives the first six frequency parameters of thin helicoidal shells for 6 = 390-480° with
an incremental angle 30°. It should be noted that the present solutions are only suitable for the approximate
estimations of low-order eigenfrequencies of the helicoidal shells with very small helix angle.

Figs. 2-4 give the vibration modes of thick sector plates with clamped straight edges and free on
other edges. The sector angle and the radius ratio are, respectively, 0 = 120° and Ry/R; = 0.5. The first six
modes for three different thickness ratios #/R = 0.25, 0.5 and 1.0 are presented. It is seen from Figs. 2
to 4 that the antisymmetric modes in the thickness direction exhibit the flexural vibrations while the symmetric
modes in the thickness direction exhibit the extending vibrations. With an increase of plate thickness,
the symmetric modes in the thickness direction move down in the list of low-order eigenfrequencies.
When //R = 0.25, the fifth and sixth frequencies are those of the symmetric modes in the thickness
direction. When i#/R = 0.5, the fourth and fifth frequencies are those of the symmetric modes in the thickness
direction. When //R = 1.0, the second, third and sixth frequencies are those of the symmetric modes in the
thickness direction.
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Comparison of frequency parameter 2 = wR}+/ph/D for annular sector plates with (a) four hard simply-supported edges and (b) four soft
simply supported edges, Ry/R; = 0.5

00 (deg) BC ;“l /12 13 /14 /15 /lﬁ

h/R =0.01

90 Hard 47.079%8 68.359°4 103.3948 150.8844 166.2248 189.44°4
Soft 46.99748 68.15024 103.1148 150.5624 166.1348 189.1044

180 Hard 41.79078 47.079%4 55.943A8 68.3591A 84.226"S 103.39%4
Soft 41.7718 47.01324 55.82348 68.19244 84.0281S 103.1744

270 Hard 40.815"8 43,1587 47.07948 52.59144 59.690"S 68.35914
Soft 40.807S 43.120%4 47.020%8 525004 59.5694S 68.21144

/R =02

90 Hard 43.609%S 61.536"4 62.01158 89.0944S 99.63154 123.3344
Soft 42.320"° 58.51244 51.925%° 85.528"% 88.642°° 98.788%*

180 Hard 38.99248 43.609%4 50.11558 51.1984S 61.536"4 62.01154
Soft 14.323% 35.273%" 38.650"° 42,4434 49.142°° 56.170%

270 Hard 38.13348 40.192%4 43.6098 47.80258 4834974 53.30554
Soft 6.1718% 1527154 30.057°% 37.9824% 39.630* 42,4857

h/R =04

90 Hard 31.030% 36.875"8 49.8255A 498624 65.51054 68.350"S
Soft 26.08758 35.40248 44.3675S 46.897°4 49.53954 65.31148

180 Hard 25.09558 31.03054 33.36548 36.8754A 39.69458 424871
Soft 7.199858 17.71754 28.1465% 32.22058 32.938AS 35.49144

270 Hard 23.942% 26.685%" 31.030% 32,7047 34.285M% 36.590%"
Soft 3.102958 7.674154 15.09658 23.82454 25.70658 32.510"8

Table 13

Frequency parameter /. = @R3\/ph/D for shallow helicoidal shells with 4/R = 0.01

Ro/R, 0o (deg) A 2 3 4 s L6

Shallow helicoidal shells with four free edges

0.25 390 1.35844 2.768%8 5.4547A 5.7021S 9.616"8 9.79244
420 1.1574A 228748 4.593AA 6.278%S 8.63078 9.015%4
450 1.02744 1.89548 3.877A4 5.728A8 8.01078 8.218AA
480 0.95004 1.58248 3.278AA 511048 7.40674A 7.624A8

0.5 390 0.896344 2.14548 439244 6.666"5 9.16844 9.39848
420 0.74854 1.72878 3.6287A 5.83078 8.273AA 8.838AS
450 0.65384 1.40348 3.00724 5.02748 7.34974 8.42948
480 0.5960"" 1.15078 2.5007 431548 6.4607" 8.00248

Shallow helicoidal shells with clamped straight edges and the other edges free

0.25 390 1.35658 1.85474A 3.59148 6.038"A 9.05548 12.6074
420 1.25748 1.60944 3.040%8 5.140%4 777948 10.8744
450 1.17248 142877 2.60148 4.406"" 6.73078 9.46374
480 1.0984S 1.29544 224848 3.80044 5.8565S 8.287AA

0.5 390 0.823278 1.3524A 2.8534A8 51637 8.136"S 11,6944
420 0.7520"S 1.14744 235448 4.310%* 6.869S 9.95144
450 0.6954A8 0.999144 1.96148 3.625/4 5.84248 8.5341A
480 0.64947S 0.889344 1.650"S 3.06974 4.99948 7.366™4

See the legend of Table 8.
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S=6.8172 44 =17.491

J4A =23.455 744 =32.195
235=36.895 734 =37.245

Fig. 2. The first six modes of the sector plate with clamped straight edges and free on other edges, Ry/R; = 0.5, #/R = 0.25, « = 120°. The
first superscript on A describes the modes in the thickness direction and the second one describes those in the circumferential direction.

45 =6.2478 44 = 14.689
J45=17.813 735 = 18.492

734 =18.649 245225304

Fig. 3. The first six modes of the sector plate with clamped straight edges and free on other edges, Ry/R; = 0.5, /R = 0.5, o = 120°.

5. Conclusions

The 3-D vibration analysis of thick sector plates has been presented. The analysis is based on the 3-D linear
small strain elasticity theory. The Chebyshev—Ritz method expressed in terms of cylindrical coordinates is used
to obtain frequency parameters of thick sector plates under various support conditions. High accuracy, rapid
convergence and numerical robustness of the present method have been demonstrated. A complete set of free
vibration spectrum for thick annular sector plates have been provided from the present analysis, which cannot
be obtained by the CPT or the Mindlin plate theory. Some benchmark results are provided in tabulation for
the first time such as the frequency parameters of plates with re-entrant sector angle and the shallow helicoidal
shells. The effect of simply supported conditions on frequency parameters of thick sector plates has also been
discussed in detail.
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45 = 4.9679 235 =9.2870

J34=9.3518 244 =9.9605

745=10.695 gt =15215

Fig. 4. The first six modes of sector plate with clamped straight edges and free on the other edges, Ry/R; = 0.5, h/R = 1.0, « = 120°.
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