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Abstract

A new efficient approach is presented for solving the quadratic eigenvalue problem of weakly, nonproportionally

damped vibration systems. In the analysis of these systems, gyroscopic moments and external damping are both

considered. Traditional restriction of symmetry of inertia, damping and stiffness matrices is slightly relaxed. A second-

order perturbation theory is developed such that the perturbed solution is based on the eigensolution of an unperturbed

subproblem. This subproblem considers the unperturbed system in two different forms: (i) a conservative, gyroscopic part

of an original problem, or (ii) a nonconservative, gyroscopic part of an original problem that is proportionally damped. To

cope with asymmetry of the system matrices, a Duncan’s like state formulation is used to bring these matrices into a

suitable form for perturbations. Two numerical examples are introduced for explaining the detailed implementation of the

presented approach. Additionally, a practical problem of rotor supported by two tilting pad-bearings is investigated. The

eigensolutions obtained by the current approach match, to a great extent, other solutions obtained by time-consuming

exact methods. The investigation procedure given here gives a framework to handle vibration problems of weakly

nonproportional damping and/or weakly asymmetric inertia, damping and stiffness matrices.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The eigenvalue problem is the heart of the linear vibration theory, and its solution provides the vibration
analyst with rich foundation about the behavior of this system from the stability and response points of view.
This is why the eigenvalue problem is always being under focus of continuous, intensive research activity
everywhere. In absence of the dissipative forces, generally, the linear dynamic systems possess classical normal
modes [1]. In other words, they have a complete set of real orthogonal eigenvectors that can transform
the system into a diagonal form. This form is very delicate for applying the powerful modal superposition
method to response calculations. So many structure problems are lightly damped, and can be assumed to
have symmetric damping matrix proportional to symmetric mass and stiffness matrices. The self-adjoint
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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eigensolution is then an easy task to achieve by powerful tools [2], because the system classical normal modes
are conserved for proportionally damped systems. These tools become unacceptable even for lightly damped
systems having symmetric viscous damping matrices of distribution dissimilar to that of symmetric mass and
stiffness matrices. The system is then called nonclassically damped, and response predictions urge using other
techniques. A common procedure in the analysis of such systems is to neglect the off-diagonal elements of the
associated modal damping matrix. Some other methods for modal and response calculations of nonclassically
damped are available in the literature [3–6].

In modern vibration practices [7,8], active damping and fully active vibration control techniques, normally,
lead to asymmetric damping and stiffness matrices. Moreover, introducing circulatory forces and gyroscopic
moments can further complicate the eigenvalue problem, as it becomes quadratic and asymmetric one. This
necessitates the use of other methods like the pioneering Duncan’s formulation [9] in which the concept of
trivial identity was introduced by Duncan to linearize the problem. But, before going to algorithms that counts
on Duncan’s formulation or any other methods as in Refs. [10–13], asymmetric systems might possess classical
normal modes, and must be checked for their existence. Thus one can avoid complexity in computations and
consumption in time, especially, in large-scale models. Conditions under which classical normal modes exist in
asymmetric systems are presented in Refs. [14–16].

First- and second-order perturbation techniques have been proven effective in both eigensolution
calculations and eigensolution reanalysis problems [17–20]. Meirovitch and Ryland [21] made a second-order
perturbation theory developed for the generalized eigensystem lu ¼ Au, fruitful for application to lightly
damped gyroscopic systems with symmetric mass, damping and stiffness matrices. Chung and Lee [22]
extended the theory for application to the generalized eigenproblem Bu ¼ lAu of heavy, but weakly
nonproportional damped systems. Although the matrix A in the basic perturbation theory and the matrices
A and B in its extension have no restriction except that they must be real, simplifications are necessary to make
this theory attractive for application to large-scale systems where hundreds or thousands of degrees of
freedom can be considered. Basically, the theory requires the calculation of eigenvalues and right and left
eigenvectors of the unperturbed system. This will be the gate for any simplification to be significant. However,
the reader is referred to further readings concerning the eigensolution problems in Refs. [23–26].

This paper contributes to the problem of finding approximate eigensolution of asymmetric systems by using
the second-order perturbation theory. Firstly, the perturbed solution is based on the solution of unperturbed
conservative system formulated in a highly standard eigenvalue problem of single, symmetric positive definite
matrix. The perturbed solution is also considered in another form where it represents the nonconservative,
gyroscopic part of an original problem that is proportionally damped. Numerical examples will be presented
to demonstrate the method in a detailed manner.
2. New formulation

Consider the free vibration problem of a general linear discrete system described by vector differential
equation

M €qðtÞ þ ðCþGÞ_qðtÞ þ ðKþHÞqðtÞ ¼ 0 (1)

where M, C, and K are n� n real asymmetric matrices.M is the mass matrix, C is the damping matrix, K is the
stiffness matrix, G is an n� n real skew symmetric gyroscopic matrix, H is an n� n real skew symmetric
circulatory matrix, and q(t) is a real n� 1 vector of generalized coordinates. Note here that G is of conservative
nature, while H is a dissipative one. If the trivial identity

ðKþHÞ_q� ðKþHÞ_q ¼ 0 (2)

adjoins Eq. (1), the 2n associated eigenvalue problem and its adjoint will be

Bui ¼ liAui; BT vi ¼ liA
T vi; i ¼ 1; 2; ::::; 2n (3)

where q ¼ elt u is substituted into Eqs. (1) and (2) for exponential form solutions, li is the ith eigenvalue, ui

and vi are the corresponding right and left eigenvectors, respectively, of the non-self-adjoint eigenvalue
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problem (3). The biorthogonality of right and left eigenvectors provides

vTj Aui ¼ uTj Avi ¼ 2aidij

vTj Bui ¼ uTj Bvi ¼ 2ailidij ; i; j ¼ 1; 2; :::; 2n (4)

where ai is the scale factor of the ith eigenvector, dij is the Kronecker delta. A and B are real asymmetric
matrices defined by

A ¼
KþH 0

0 M

� �
; B ¼

0 �K�H

KþH CþG

" #
(5)

Since any real asymmetric matrix can be regarded as a summation of two real matrices one of them
symmetric and the other one is skew symmetric, the asymmetric matrices M, C and K can be written as
follows:

M ¼M0 þMg; C ¼ C0 þ Cg; K ¼ K0 þ Kg (6)

where M0, C0 and K0 are symmetric matrices, and Mg, Cg and Kg are skew symmetric ones. For instance, the
calculated symmetric and skew symmetric parts of the damping matrix are:

C0 ¼ ðCþ CT
Þ=2; Cg ¼ ðC� CT

Þ=2 (7)

It should be mentioned here that the skew symmetric matrix Cg represents the conservative part of
the damping matrix [27,28]. Normally, the true damping is contained into the symmetric part C0 of the

asymmetric damping matrix A0 ¼
K0 0

0 M0

" #
[27,28]. It will be further assumed that M0 and K0 are

positive definite. For perturbation purposes, if Eq. (6) is substituted into Eq. (5), one can write the matrices in
Eq. (5) as

A ¼ A0 þ A1; B ¼ B0 þ B1 (8)

where A0 and B0 are considered as unperturbed matrices, and A1 and B1 are considered as perturbation
matrices. The matrices A and B are then called the perturbed matrices. An order of magnitude condition is
considered here [22], which states that the elements of the matrices A1 and B1 are one order of magnitude
smaller than the elements of A0 and B0. The following formulation is suggested for the matrices in Eq. (8):

A0 ¼
K0 0

0 M0

" #
; B0 ¼

0 �K0

K0 Gþ Cg

" #
(9)

A1 ¼
�KT

g �HT 0

0 Mg

" #
; B1 ¼

0 KT
g þHT

Kg þH C0

" #
(10)

where K0 and M0 are assumed symmetric positive definite matrices, A0 and B0 will be symmetric positive
definite and skew symmetric, respectively. While the matrices A1 and B1 are skew symmetric and symmetric
nonnegative definite, respectively. The reason for suggesting that new matrix formulation of Eqs. (9) and (10)
is that the unperturbed and perturbation matrices are either symmetric or skew symmetric. In other words, the
skew symmetric matrix A1 is a perturbation to the symmetric matrix A0 while the symmetric matrix B1 is a
perturbation to the skew symmetric matrix B0. This permits taking advantages of this arrangement in the
perturbation process as will be shown later on. Note also here that the unperturbed matrices A0 and B0

represent the conservative gyroscopic part of the original perturbed system A and B.
The difference between the matrix formulation presented in this section and the most commonly used

formulation in the literature, e.g. Chung and Lee [22], can be easily recognized by comparing Eqs. (5), (9) and
(10) with Eqs. (A.5), (A.6) and (A.7) in Appendix A.
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3. General perturbation theory

In this section, we summarize the second-order perturbation method as was originally developed by
Meirovitch and Ryland [21] and modified by Chung and Lee [22] for the second-order perturbation formula to
based on the unnormalized eigenvectors rather than the normalized eigenvectors. It will be shown in the
forthcoming section that neither the original perturbation results [21] nor the modified ones [22] are suitable
for application to the perturbation problem defined by Eqs. (9) and (10) and that a significant modification
of the second-order perturbation theory is needed in order to make it applicable to the problem of Eqs. (9)
and (10).

The unperturbed eigenvalue problem is assumed to have known eigensolution. In general, the accuracy of
the perturbation process is pertinent to the accuracy of the unperturbed solution. The unperturbed
eigenproblem and its adjoint one can be expressed as follows:

B0u0i ¼ l0iA0u0i; BT
0 v0i ¼ l0iA

T
0 v0i; i ¼ 1; 2; . . . ; 2n (11)

where l0i is the ith eigenvalue, and u0i and v0i are ith right and left eigenvectors, respectively. The
biorthogonality property of the right and left eigenvectors satisfies the following relations:

vT0jA0u0i ¼ uT0jA0v0i ¼ 2aidij

vT0jB0u0i ¼ uT0jB0v0i ¼ 2ail0idij ; i; j ¼ 1; 2; . . . ; 2n (12)

To produce the perturbed eigenvalues in terms of the unperturbed ones, one can express the solution of the
perturbed eigenvalues as follows:

li ¼ l0i þ l1i þ l2i þ � � � ; i ¼ 1; 2; . . . ; 2n (13a)

ui ¼ u0i þ u1i þ u2i þ � � � ; i ¼ 1; 2; . . . ; 2n (13b)

vi ¼ v0i þ v1i þ v2i þ � � � ; i ¼ 1; 2; . . . ; 2n (13c)

The order of any particular term in Eq. (13) is characterized by the first subscript. For example, l1i, u1i

and v1i are one order of magnitude smaller than l0i, u0i and v0i, respectively. Substituting Eqs. (8) and (13)
into Eq. (4) gives, after collection by order of magnitude, the perturbation systems as summarized in
(Eqs. (B.1)–(B.3)) Appendix B. The first-order perturbations u1 and v1 can be expressed as a linear com-
binations of u0 and v0, respectively, because they span the same space:

u1i ¼
X2n

k¼1

�iku0k; v1i ¼
X2n

k¼1

gikv0k; i ¼ 1; 2; . . . ; 2n (14a,b)

where eik and gik are small first-order coefficients. Similarly, the eigenvectors u2 and v2 can be expressed as

u2i ¼
X2n

k¼1

~�iku0k; v2i ¼
X2n

k¼1

~gikv0k i ¼ 1; 2; . . . ; 2n (15a,b)

where ~�ik and ~gik are small second-order coefficients. The solutions for first- and second-order perturbation
problems are summarized in Appendix B. Eqs. (B.4) and (B.5) solve for the first-order perturbation problem
while Eqs. (B.6)–(B.8) solve for the second-order one.

4. New perturbation results

The conservative gyroscopic system that is represented by the matrices A0 and B0 in Eq. (9) is considered as
the unperturbed system of equations. If the outcomes of the eigenvalue problem (11) of the unperturbed
system (9) satisfy the orthogonality conditions (12), then one can say that the first- and second-order
perturbation solutions (Eqs. (B.4)–(B.8)) are possible. Unfortunately, the results of the second-order
perturbation theory derived by Chung and Lee [22], although they are quite general with a single restriction
that A and B must be real, are not liable for application to the unperturbed system (11). In other words, the
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solution of the unperturbed (11) with the matrices A0 and B0 as given in Eq. (9), violates the orthogonality
arrangements as given by Eq. (12) and, consequently, mismatches the formulation requirements of the second-
order perturbation theory. The task now is to modify this theory to make it liable for application to
unperturbed systems like the one considered in this study. The following theorem will clarify this issue.

Theorem 1. The solution of the unperturbed eigenproblem (11) violates the biorthogonality property of the right

and left eigenvectors in Eq. (12). Thus, the solution of the first- and second-order perturbation problems is not

possible by using the results of the general perturbation theory in Appendix B unless: (i) �u0j replaces v0j in

Eqs. (B.4) and (B.5) and (ii) the sign is reversed at the right-hand sides of Eqs. (B.6)–(B.8).

Proof. Since A0 is symmetric positive definite and B0 is skew symmetric, the eigenvalues of the unperturbed
eigensystem (11) will be pure imaginary complex conjugate pairs and the eigenvectors will also be complex
conjugate pairs with the following properties [21]:

l02r
¼ l̄02r�1

; r ¼ 1; 2; . . . ; n (16)

u02r
¼ ū02r�1

; r ¼ 1; 2; . . . ; n (17)

v0r
¼ ū0r

; r ¼ 1; 2; . . . ; 2n (18)

where l̄0 and ū0 are the complex conjugate of l0 and u0, respectively. Eq. (18) indicates that the left
eigenvectors are exactly the complex conjugates of the right eigenvectors. This is due to the nature of the
unperturbed eigensystem in which A0 is symmetric and B0 is skew symmetric. Also, Eq. (18) simply states that
there is no necessity to solve the unperturbed eigenvalue problem twice to have right and left eigenvectors
because they are complex conjugates. Now consider the biorthogonality related Eq. (12) upon which the
results of the general second-order perturbation theory in the preceding section are derived. And consider an
unperturbed eigenproblem of order 2n ¼ 2 having two eigenvalues, two right eigenvectors and two left
eigenvectors. Taking into consideration that the unperturbed system is conservative, and upon using Eqs. (17)
and (18), the following orthogonality conditions hold true:

uT01A0u01 ¼ 2a1d11; uT01A0u02 ¼ 0

uT02A0u01 ¼ 0; uT02A0u02 ¼ 2a2d22 (19)

vT01A0u01 ¼ ūT01A0u01 ¼ uT02A0u01 ¼ 0

vT01A0u02 ¼ ūT01A0u02 ¼ uT02A0u02 ¼ 2a2d12

vT02A0u01 ¼ ūT02A0u01 ¼ uT01A0u01 ¼ 2a1d21

vT02A0u02 ¼ ūT02A0u02 ¼ uT01A0u02 ¼ 0 (20)

If one considers the Kronecker product properties

dij ¼
1 for i ¼ j

0 for iaj

(
(21)

for application to Eqs. (19) and (20), it follows that the results of the biorthogonality multiplications in
Eq. (19), if arranged in a matrix form, lead to a diagonal matrix, while the multiplications in Eq. (20) will lead
to a matrix of zero elements. On the basis of this result, one can conclude that using the left eigenvector v0 in
the biorthogonality relations does not justify the arrangements of Eq. (12), and hence a mismatch occurs in the
formulation of the second-order perturbation theory leading to incorrect computations if the solution results
(Eq. (B.4) through (B.8)) are used in their current form. This proves the first part of the Theorem 1. As a result
to this, �u0 should replace v0 in the formulation starting with Eq. (13c), which will be modified to

vi ¼ ū0i þ ū1i þ ū2i þ � � � (22)

Or in a more convenient form to the perturbation theory:

vi ¼ �u0i � ~u1i � ~u2i � � � � ; r ¼ 1; 2; . . . ; 2n (23)
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~u1i ¼
X2n

k¼1

giku0k; ~u2i ¼
X2n

k¼1

~giku0k; r ¼ 1; 2; . . . ; 2n (24a,b)

The assumption made to develop Eqs. (22)–(24) is mainly based on the nature of the unperturbed system
(11) in which the left eigenvectors are the complex conjugates of the right eigenvectors. If one substitutes
Eqs. (8), (13a), (13b) and (23) into Eq. (4) and collects by the order of magnitudes, then three sets of problems
of different perturbation orders result:

~Oð0Þ : � uT0jA0u0i ¼ 2aidij

� uT0jB0u0i ¼ 2ail0idij ; i; j ¼ 1; 2; . . . ; 2n (25)

~Oð1Þ : � uT0jA0u1i � uT0jA1u0i � ~u
T
1jA0u0i ¼ 0

� uT0jB0u1i � uT0jB1u0i � ~u
T
1jB0u0i ¼ 2ail1idij ; i; j ¼ 1; 2; . . . ; 2n (26)

~Oð2Þ : � uT0jA0u2i � uT0jA1u1i � ~u
T
1jA0u1i � ~u

T
1jA1u0i � ~u

T
2jA0u0i ¼ 0

� uT0jB0u2i � uT0jB1u1i � ~u
T
1jB0u1i � ~u

T
1jB1u0i � ~u

T
2jB0u0i ¼ 2ail2idij ; i; j ¼ 1; 2; . . . ; 2n (27)

where ~Oð0Þ, ~Oð1Þ and ~Oð2Þ indicate the modified zero-, first- and second-order perturbation problems,
respectively. Substituting Eqs. (14a), (15a) and (24a) into Eq. (26), with orthogonality relations like (19) being
utilized, the first-order perturbation solution is provided as in Eqs. (B.4) and (B.5) except that �u0j replaces v0j

in these equations. Similarly, the substitution of Eqs. (14b), (15b) and (24b) into Eq. (27), and upon the use of
orthogonality relations as in Eq. (19), the second-order solution will be the same as that in Eqs. (B.6)–(B.8),
except that the sign of all terms at the right-hand sides of these equation is reversed. This completes the proof
of Theorem 1. &

It is worth to mention that Theorem 1 in this study is specifically developed for application to undamped
unperturbed systems of gyroscopic nature with symmetric A0 and B1 matrices and skew symmetric A1 and B0

matrices. Furthermore, A0 should be positive definite. With any other formulation, the reader might switch
back to the general theory as derived in Refs. [21,22].

5. Simplified unperturbed calculations

Although a contribution is made to the second-order perturbation theory in the preceding section, the
vibration analyst is still in need to a powerful tool by which an unperturbed eigensolution can be
systematically generated and a considerable save in time can be ultimately achieved for large-scale systems.
Once again, the special form of the unperturbed conservative gyroscopic system can be utilized. Meirovitch
[29,30] has shown that a conservative gyroscopic eigensystem like the one of Eq. (11) can be transformed into
a highly standard eigenvalue problem of a single, real, positive definite symmetric matrix. The resulting
eigenvalues and eigenvectors of this problem will be real. So many fast, efficient algorithms are available for
solving the later problem. The procedure of transformation is as follows.

Consider the following unperturbed eigenvalue problem for a conservative gyroscopic system where the
eigenvalues are normally pure imaginary:

�B0u0 ¼ io0A0u0; AT
0 ¼ A040; B ¼ �BT (28)

The complex eigensolution of Eq. (28) can be expressed as

sr

s̄r
¼ �io0r;

u0r

ū0r

¼ x0r
� iy0r

; r ¼ 1; 2; . . . ; n (29)

To transform the problem from complex to a real form u0 ¼ x0+iy0 is substituted into Eq. (28). Then both
the real and imaginary part on both sides are equated to give

�B0x0 ¼ o0A0y0; þB0y0 ¼ o0A0x0 (30a,b)
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Solving Eqs. (25a,b) together, provides

Bn

0x0 ¼ l0A0x0; Bn

0y0 ¼ l0A0y0; l0 ¼ o2
0 (31)

where

Bn

0 ¼ BT
0A
�1
0 B0 (32)

is a symmetric positive definite matrix. Since A0 is symmetric positive it can be decomposed by Cholesky
decomposition as follows:

A0 ¼ QTQ (33)

where Q is a 2n� 2n nonsingular, orthogonal matrix such that Q�1 ¼ QT. By using the linear transformation

Qx ¼ zx; Qy ¼ zy (34)

the eigenvalue problem of Eq. (31) can be reduced to the following standard real one:

An

0z ¼ l0z; l0 ¼ o2
0 (35)

where the last two equations implicitly means that zx is the same as zy, and

An

0 ¼ ðQ
TÞ
�1Bn

0Q
�1 ¼ ðQ�1ÞTBn

0Q
�1 (36)

The two eigenvalue problems (31) and (35) have the same eigenvalues with each eigenvalue of A0* retains
the multiplicity of two. This multiplicity is expressed as in Eq. (16). By analogy with Eq. (34), the real and
imaginary part of u0r

can be expressed as follows:

x0r
¼ Q�1 z2r�1; y0r

¼ Q�1 z2r; r ¼ 1; 2; . . . ; n (37)

Thus the complex eigensolution of Eq. (24), can be reconstructed from the solution of a highly standard
eigenvalue problem of single, symmetric positive definite matrix with real eigenvalues and eigenvectors. This,
of course, leads to a marginal reduction in the computational time. This reduction becomes more effective as
the order of the problem increases. Another idea for future work is that the first- and second-order
perturbation solutions in Eq. (B.4) through (B.8) can be related directly to the calculated real eigenvectors (37)
rather than reconstructing the complex eigenvector from these real ones. This will save a great part in core of
the computer use.

6. Results and discussions

A little problem is to be highlighted first. A hard condition has to be met by any eigenvalue problem in order
to be solved by the perturbation method developed in this paper. The entries of the perturbation matrices A1

and B1 should be one order of magnitude smaller than the entries of the unperturbed matrices A0 and B0. This
implicitly means, according to Eqs. (9) and (10) that the entries of the symmetric damping matrix C0 should be
one order of magnitude smaller than the entries of the skew symmetric damping matrix Cg. The situation is
hard to meet for some applications. Consequently, the theory will not be applicable for those applications. To
avoid such a situation, the symmetric damping matrix C0 can be divided as follows:

C0 ¼ C0p
þ C0np

(38)

where C0p
is the part of the symmetric damping matrix C0 that is proportional to the distribution of the mass

and stiffness matrices. While, C0np, is the nonproportional part that will replace C0 in Eq. (10). By the well-
known techniques, the proportional part adds to the stiffness and mass matrices in Eq. (1) as it can be
expressed as a linear combination of them. Thus, using Eq. (38) will provide a good opportunity for
applications, incapable of meeting the hard condition explained above, to be solved by the perturbation
technique developed in this paper.

Example 1. The following hypothetical two-dof system is used to show the accuracy of solutions obtained by
the current method in comparison with those obtained by exact methods. This example slightly violates the
condition that the entries of A1 and B1 are one order of magnitude smaller than the entries of the matrices A0
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and B0. This is just to show that the method presented here is capable of producing acceptable solutions even
when this hard condition is violated. The matrices in Eq. (1) are given by

M ¼
5 2

3 6:5

� �
; C ¼

1 0:5

0:3 1

� �
; G ¼

0 �4

þ4 0

" #
; K ¼

4 0

0 5

� �
; H ¼

0 �1

þ1 0

" #

According to Eqs. (6) and (7), the resulting n� n formulation matrices are:

M0 ¼
5 2:5

2:5 6:5

" #
; Mg ¼

0 �0:5

þ0:5 0

" #
; C0 ¼

1 0:4

0:4 1

" #

Cg ¼
0 þ0:1

�0:1 0

" #
; K0 ¼

4 0

0 5

" #
; Kg ¼

0 0

0 0

" #

The 2n� 2n formulation matrices in Eqs. (8)–(10) are then given by

A0 ¼

4 0 0 0

0 5 0 0

0 0 5 2:5

0 0 2:5 6:5

2
666664

3
777775; B0 ¼

0 0 �4 0

0 0 0 �5

þ4 0 0 �3:9

0 þ5 þ3:9 0

2
666664

3
777775

A1 ¼

0 �1 0 0

þ1 0 0 0

0 0 0 �0:5

0 0 þ0:5 0

2
666664

3
777775; B1 ¼

0 0 0 þ1

0 0 �1 0

0 �1 1 0:4

þ1 0 0:4 1

2
666664

3
777775

Comparing the entries of the matrices A1 and B1 with those of the matrices A0 and B0 one notices that they
violate the condition as mentioned above. The solution results are shown in Table 1. Note that the exact
solution of asymmetric eigenproblem are obtained by the using the prepackaged Matlab code eig which
implements the generalized Schur decomposition algorithm. The computed damping ratios for the two modes
are actually contained into the symmetric damping matrix C0, and are given by z1 ¼ 0.086 and z2 ¼ 0.207,
respectively. The results show a significant matching between the second-order perturbation results and those
obtained by exact methods. Accuracy to the third decimal is achieved by the current method when compared
to the exact one even with the order of magnitude condition is violated.

In Table 1, the results of the method agrees to the second or the third decimal with the results of the exact
one. While in Table 2, the agreement between the two solutions is only to the second decimal. The accuracy of
Table 1

Eigenvalues obtained by perturbation and by exact methods

Exact solution ~Oð0Þ ~Oð0Þ þ ~Oð1Þ ~Oð0Þ þ ~Oð1Þ þ ~Oð2Þ

�0.126271.4548i 71.4736i �0.128771.4736i �0.128771.4545i

�0.126770.5963i 70.5924i �0.126670.5924i �0.126670.5962i

Table 2

Eigenvalues obtained by perturbation and by exact methods

Exact solution ~Oð0Þ ~Oð0Þ þ ~Oð1Þ ~Oð0Þ þ ~Oð1Þ þ ~Oð2Þ

�0.722072.2559i 72.2842i �0.724472.2842i �0.724872.2840i

�0.278070.6681i 70.6678i �0.275576648i �0.277570.6681i
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solutions is constrained by two factors: (i) how small is the elements of the perturbation matrices relative to
the unperturbed matrices in the formulation, and (ii) the amount of damping in the system that is under
investigation. Keeping the elements of the matrices A1 and B1 one order of magnitude smaller than the
elements of the matrices A0 and B0 will increase the accuracy of solutions [21,22]. In Example 2, the slight
violation was made by the damping matrix C0 and the situation was totally resolved by dividing this matrix
into proportional and nonproportional parts as stated by Eq. (38). While the violation in Example 1 was
caused by the matrix H and in such circumstances there no way but to make sure that the violation is slight in
order to get a reasonable solution. There is no one rule that can be generalized for estimating how the
violation is slight because the situation differs from one problem to another. However, the main contribution
of this paper was accomplished by providing a powerful tool for solving eigenproblems which satisfy the
magnitude condition. The method developed here is like any other perturbation method finds most of its
impact for lightly or moderately damped systems. Fortunately, most of the practical problem in mechanics
and structures are lightly or moderately damped systems. The accuracy of solutions gets worse for heavily
damped systems with wide nonproportionality of damping.

Example 2. This example shows how to handle nonproportionally damped systems in cases, where the matrix
C0 does not justify the order of magnitude condition. The matrices in Eq. (1) are given by

M ¼
3 0

0 4

� �
; C ¼

3 �1:4

1:6 4

� �
; G ¼

0 �4

þ4 0

" #
; K ¼

5 0

0 7

� �
; H ¼

0 �0:5

þ0:5 0

" #

According to Eqs. (6) and (7), the resulting n� n formulation matrices are:

M0 ¼
3 0

0 4

" #
; Mg ¼

0 0

0 0

" #
; C0 ¼

3 0:1

0:1 4

" #

Cg ¼
0 �1:5

1:5 0

" #
; K0 ¼

5 0

0 7

" #
; Kg ¼

0 0

0 0

" #

According to Eq. (38), with proportionality constants a ¼ b ¼ 0.35, the proportional and nonproportional
parts of the matrix C0 are given by

C0p
¼

2:8 0

0 3:85

� �
; C0np

¼
0:2 0:1

0:1 0:15

� �

The 2n� 2n formulation matrices in Eqs. (8)–(10) are then given by

A0 ¼

5 0 0 0

0 7 0 0

0 0 3 0

0 0 0 4

2
666664

3
777775; B0 ¼

0 0 �5 0

0 0 0 �7

þ4 0 2:8 �5:5

0 þ7 þ5:5 3:85

2
666664

3
777775

A1 ¼

0 �0:5 0 0

þ0:5 0 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775; B1 ¼

0 0 0 þ0:5

0 0 �0:5 0

0 �0:5 0:2 0:1

þ0:5 0 0:1 0:15

2
666664

3
777775

The calculated damping ratios of the two modes are z1 ¼ 0.38 and z2 ¼ 0.30, respectively. The results are
shown in Table 2. The accuracy achieved in this example is also considerable.

Example 3. This example is devoted to a practical problem. A rotor shaft, supported on two identical, tilting
five-pad bearings with the bearing load acting between pads, is considered in this example as shown in Fig. 1.
The bearing data are such that the preload factor is taken 0.66, the length is 0.025m, the diameter is 0.05m,
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Fig. 1. Rotor-bearing system model.

Table 3

Eigenvalues obtained by perturbation and by exact methodsa

Exact solution ~Oð0Þ ~Oð0Þ ~Oð0Þ þ ~Oð1Þ þ ~Oð2Þ

�0.000470.1441i �0.001170.1440i �0.000470.1440i �0.000470.1441i

�0.000370.1496i �0.001270.1496i �0.000370.1496i �0.000370.1496i

�0.021170.6182i �0.019070.6159i �0.021170.6159i �0.021370.6183i

�0.011870.6815i �0.023170.6789i �0.012170.6789i �0.012470.6811i

�0.048570.9460i �0.045370.9500i �0.048570.9500i �0.048370.9462i

�0.117571.1264i �0.064671.1345i �0.117271.1345i �0.116971.1294i

aAll numbers in the table should be multiplied by 103.
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the radial clearance is 0.001m, and the lubricant viscosity is 0.069N s/m. The bearing stiffness and damping
coefficients are then taken by interpolation from the tabulated coefficients by Someya [31]. The disk mass
(per bearing) 150.03 kg, the journal mass is 141.47 kg, the bearing-support mass is 100.8 kg. The rotor stiffness
is 49� 106N/m and the support stiffness is 10� 107. Damping is neglected in both the rotor and the support.
The six-dof model considered here has been frequently used for studying the lateral vibration of rotors in two
perpendicular x and y directions as shown in Fig. 1. The model equations of motion are reported by
Abduljabbar et al. [32]. The rotor speed is considered to be 1230 rad/s. The mass, stiffness and damping
matrices of this example are shown in Appendix C. In order to satisfy the magnitude condition, we have to
isolate the proportional and nonproportional damping parts of the matrix C0. The proportionality constants
are chosen such that a ¼ 0.1 and b ¼ 0.0001. The solution results are shown in Table 3, where the
perturbation approach developed in this paper is still holding a reasonable accuracy in comparison with the
exact method.
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7. Conclusions

A method is developed to get the general second-order perturbation theory fruitfully applicable to the
solution of the eigenvalue problem of nonclassically, viscously damped system. The main contribution here is
that the eigensolution of a highly standard eigenvalue problem of single, symmetric positive definite matrix is
systematically employed to generate the eigensolution of an asymmetric nonproportionally damped
eigenproblem. The later one primarily includes asymmetric damping, stiffness and mass matrices introduced
by gyroscopic and circulatory effects. A high compatibility between solutions obtained by the current method
and other solutions obtained by exact method is proven.

Appendix A. General perturbation results

Prior to presenting the perturbation results, it is believed that introducing Chung and Lee’s [22] matrix
formulation and perturbation would be useful to the reader. This is to clarify the difference between the matrix
formulation and perturbation used in this paper and that of Ref. [22]. A general viscously damped system was
considered in Ref. [22] such that:

M €qðtÞ þ C _qðtÞ þ KqðtÞ ¼ 0 (A.1)

whereM, C, and K are n� n real asymmetric matrices.M is the mass matrix, C is the damping matrix, K is the
stiffness matrix, and q(t) is a real n� 1 vector of generalized coordinates. The matrices M and K are assumed
positive definite. Note here that the skew symmetric matrices G and H are not considered in Chung and Lee’s
matrix formulation. In Ref. [22], the matrices DM, DC, and DK are regarded as the mass, damping and
stiffness modification matrices such that Eq. (A.1) becomes

ðMþ DMÞ€qðtÞ þ ðCþ DCÞ_qðtÞ þ ðKþ DKÞqðtÞ ¼ 0 (A.2)

When the damping matrix C is separated into its proportional and nonproportional parts, Cp and Cnp,
respectively, Eq. (A.2) can be rewritten as follows:

ðMþ DMÞ€qðtÞ þ ðCp þ Cnp þ DCÞ_qðtÞ þ ðKþ DKÞqðtÞ ¼ 0 (A.3)

The solution of Eq. (A.3) can be most conveniently solved by transforming the equation to the first-order
form, A _U ¼ BU; where

U ¼ f_qTqTg (A.4)

A ¼
Mþ DM 0

0 �K� DK

� �
; B ¼

�Cp � Cnp � DC �K� DK

�K� DK 0

� �
(A.5)

and A and B are real symmetric matrices. In the case of weakly nonproportionally damped system being
slightly modified, the unperturbed and perturbation matrices are given by

A0 ¼
M 0

0 �K

� �
; B0 ¼

�Cp �K

�K 0

� �
(A.6)

A1 ¼
DM 0

0 �DK

� �
; B1 ¼

�Cnp � DC �DK

�DK 0

� �
(A.7)

Now, it is obvious that there is a great difference between Chung and Lee’s matrix formulation of Eqs. (A.4)
and (A.5) and the formulation of Eqs (5), (9) and (10) that is considered in this paper. According to Eqs. (A.4)
and (A.5), the unperturbed matrices A0 and B0 are symmetric and form an eigensystem that is proportionally
damped. The matrices A1 and B1 are also symmetric with both the nonproportional damping and modification
matrices included in them. In our matrix formulation (9) and (10), A0 and B0 will be symmetric positive
definite and skew symmetric, respectively. While the matrices A1 and B1 are skew symmetric and symmetric
nonnegative definite, respectively. The reason for suggesting that new matrix formulation of Eqs. (9) and (10)
is that the unperturbed and perturbation matrices are either symmetric or skew symmetric. In other words, the
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skew symmetric matrix A1 is a perturbation to the symmetric matrix A0 while the symmetric matrix B1 is a
perturbation to the skew symmetric matrix B0.

Appendix B. General perturbation results

The perturbation results according to the order of magnitude as derived by Chung and Lee [22]
are presented here. These results are similar to those developed by Meirovitch and Ryland [21] except that
the second-order perturbation formula is based on the unnormalized eigenvectors instead of the normalized
ones:

Oð0Þ : vT0jA0u0i ¼ 2aidij

vT0jB0u0i ¼ 2ail0idij ; i; j ¼ 1; 2; . . . ; 2n (B.1)

Oð1Þ : vT0jA0u1i þ vT0jA1u0i þ vT1jA0u0i ¼ 0

vT0jB0u1i þ vT0jB1u0i þ vT1jB0u0i ¼ 2ail1idij ; i; j ¼ 1; 2; . . . ; 2n (B.2)

Oð2Þ : vT0jA0u2i þ vTojA1u1i þ vT1jA0u1i þ vT1jA1u0i þ vT2jA0u0i ¼ 0

vT0jB0u2i þ vTojB1u1i þ vT1jB0u1i þ vT1jB1u0i þ vT2jB0u0i ¼ 2ail2idij i; j ¼ 1; 2; . . . ; 2n (B.3)

where O(0), O(1) and O(2) indicate the zero-, first- and second-order perturbation problems, respectively.
Note here that Eqs. (B.1) are similar to Eq. (12) of the eigenvalue problem for the unperturbed system.
Substituting Eq. (13) into Eq. (B.2), and upon using Eqs. (11) and (B.1), one gets the first-order perturbation
solutions:

aj�ij ¼ vT0jðB1 � l0iA1Þu0i=2ðl0i � l0jÞ

aigij ¼ vT0jðB1 � l0iA1Þu0i=2ðl0j � l0iÞ; iaj; i; j ¼ 1; 2; . . . ; 2n (B.4)

�ii ¼ gii ¼ �v
T
0iA1u0i=4ai

l1i ¼ vT0iðB1 � l0iA1Þu0i=2ai; i ¼ j; i ¼ 1; 2; . . . ; 2n (B.5)

Substituting Eq. (14) into Eq. (B.3), and upon using Eqs. (11), (B.4) and (B.5), one can extract the second-
order perturbation solutions. When i 6¼j,

aj ~�ij ¼
1

ðl0i � l0jÞ
�ail1igji � ajl1j�ij þ

X2n

k¼1

akgjk�ikðl0i � l0kÞ

" #
þ
X2n

k¼1

�ik�kj (B.6)

aj ~�ij ¼
1

ðl0j � l0iÞ
�ail1igji � ajl1j�ij þ

X2n

k¼1

akgjk�ikðl0j � l0kÞ

" #
þ
X2n

k¼1

gjkgki (B.7)

when i ¼ j,

~�ii ¼ ~gii ¼ 0:5
X2n

k¼1

gikgki þ �ik�ki þ akgik�ik=ai

� �
,

l2i ¼ l1iðgii þ �iiÞ þ
X2n

k¼1

akgik�ikðl0i � l0kÞ=ai; i ¼ 1; 2; . . . ; 2n (B.8)
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Appendix C. The formulation matrices of Example 3

M ¼

153:03 0 0 0 0 0

0 141:47 0 0 0 0

0 0 100:80 0 0 0

0 0 0 153:03 0 0

0 0 0 0 141:47 0

0 0 0 0 0 100:80

2
666666664

3
777777775

K ¼ 1:0� 108

0:4900 �0:4900 0 0 0 0

�0:4900 1:0842 �0:5942 0 0 0

0 �0:5942 0:6942 0 0 0

0 0 0 0:4900 �0:4900 0

0 0 0 �0:4900 0:8074 �0:3174

0 0 0 0 �0:3174 0:4174

2
666666664

3
777777775

C ¼ 1:0� 104

0 0 0 0 0 0

0 1:5244 �1:5244 0 0 0

0 �1:5244 1:5244 0 0 0

0 0 0 0 0 0

0 0 0 0 0:8245 �0:8245

0 0 0 0 �0:8246 0:8245

2
666666664

3
777777775

G ¼ H ¼ 0½ �
6�6
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