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Abstract

In this paper, nonlinear vibrations under weak and strong external excitations of axially moving beams are analyzed
based on the Timoshenko model. The governing nonlinear partial-differential equation of motion is derived from
Newton’s second law, accounting for the geometric nonlinearity caused by finite stretching of the beams. The complex
mode approach is applied to obtain the transverse vibration modes and the natural frequencies of the linear equation. The
method of multiple scales is employed to investigate primary resonances, nonsyntonic excitations, superharmonic
resonances, and subharmonic resonances. Some numerical examples are presented to demonstrate the effects of a varying
parameter, such as axial speed, external excitation amplitudes, and nonlinearity, on the response amplitudes for the first
and second modes, when other parameters are fixed. The stability of the response amplitudes is investigated and the
boundary of instability is located.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many real-life engineering devices, such as band saws, power transmission chains, aerial cableways, and
serpentine belts, involve the transverse vibration of axially moving beams. Despite its wide applications, these
devices suffer from the occurrence of large transverse vibrations due to initial excitations. Transverse
vibrations of these devices have been investigated to avoid possible resulting fatigue, failure, and low quality.
For example, the vibration of the blade of band saws causes poor cutting quality. The vibration of the belt
leads to noise and accelerated wear of the belt in belt drive systems. Therefore, vibration analysis of axially
moving beams is important for the design of the devices.

There are many researches that have been carried out on axially moving systems in literatures. Mote [1] first
investigated the effect of tension in an axially moving band and computed numerically the first three
frequencies and modes for simply supported boundary conditions. Wu and Mote [2] studied the linear
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problem of parametric excitation of an axially moving band by periodic edge loading with different
assumptions. Wickert and Mote [3] presented a classical vibration theory, comprised of a modal analysis and a
Green'’s function method, for the traveling string and the traveling beam, where natural frequencies and modes
associated with free vibration serve as a basis for analysis. Oz and Pakdemirli [4] and Oz [5] calculated the first
two natural frequency values for different flexural stiffnesses in the cases of pinned—pinned ends and
clamped—clamped ends, respectively. Ghayesh and Khadem [6] investigated free nonlinear transverse vibration
of an axially moving beam in which rotary inertia and temperature variation effects have been considered and
they gave natural frequency versus the mean velocity and rotary inertia, critical speed versus the rotary inertia,
and natural frequency versus the mean velocity and temperature for the first two modes. Lee and Jang [7]
investigated the effects of continuously incoming and outgoing semi-infinite beam parts on dynamic
characteristics and stability of an axially moving beam by using the spectral element method. In all of the
above literatures, either simple support or fixed support is researched. Yang and Chen [8] studied axially
moving elastic beams, and Chen and Yang [9] studied viscoelastic beams, on simple supports with torsion
springs and gave the first two frequencies and modes.

Lee et al. [10] used exact dynamic-stiffness matrix in structural dynamics to provide very accurate solutions,
while reducing the number of degrees of freedom to resolve the computational and cost problems. Chakraborty
and Mallik [11] used wave propagation in a simply supported traveling beam to derive forced responses. Zhang
and Zu [12] investigated the nonlinear forced vibration of viscoelastic moving belts excited by the eccentricity of
pulleys. Pellicano and Vestroni [13] investigated the dynamic response of a simply supported traveling beam
subjected to a transverse load in the super-critical speed range. Yang and Chen [14] studied the nonlinear forced
vibration of axially moving viscoelastic beams excited by vibration of the supporting foundation.

The axially moving beam has been traditionally represented by the Euler—Bernoulli beam theory by
assuming that the beam is relatively thin compared to its length. It appears that, to the authors’ knowledge,
there have been very few studies on the axially moving beam for the Timoshenko model. Simpson [15] was
probably the first to derive equations of motion for the moving thick beam on the basis of the Timoshenko
beam theory, but no numerical results were given and he did not consider axial tension in his equations.
Chonan [16] studied the steady-state response of a moving Timoshenko beam by applying the Laplace
transform method. Arboleda-Monsalve et al. [17] presented the dynamic-stiffness matrix and load vector of a
Timoshenko beam column resting on a two-parameter elastic foundation with generalized end conditions. Mei
et al. [18] presented wave vibration analysis of an axially loaded cracked Timoshenko beam.

The present paper is organized as follows. Section 2 derives the governing nonlinear partial-differential
equation of motion. Section 3 employs the method of multiple scales to investigate nonlinear vibrations under
weak and strong external excitations. Section 4 ends the paper with concluding remarks.

2. The governing equation

Uniform axially moving Timoshenko beams, with density p, cross-sectional area 4, area moment of inertia
of the cross-section about the neutral axis J, initial tension P, shape factor k, modulus of elasticity E, axial
tension N, beam shearing modulus G, travel at the constant axial transport speed I' between two simple
supports separated by distance L under the distributed external excitation F in the transverse direction. The
bending vibration can be described by two variables dependent on axial coordinate X and time 7, namely,
transverse displacement Y(X, T) and angle of rotation of the beam cross-section ¥ (X, T) due to the bending
moment.

Because shear deformations are considered, the angle of the beam 6 depends not only on the angle ¥ but
also on the shear angle y:

0(x, 1) = y(x, 1) — 7(x, 1) (1
The bending moment M(x, f) and shear force Q(x, ) are related to the corresponding deformations:
M =EJy.,,

AG AG
0=M. ="ZW-0="Cw -1 @
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Coupled governing equations are obtained according to Newton’s second law:
— O,y dX cosO — pA(Y ;7 4+ 2I'Y ,ypcos 0 + 'Y, yy cos 0) dX
+ Nsinf+ N,ydXsin0+ FdX =0,
pIV.rr — M,y + Q=0 3)

where F is the external transverse excitation. The axial tension N is composed of the initial tension and the
tension due to the transverse displacement:

N =P+1EA(Y,x) (4)

Substituting Egs. (2) and (4) into Eq. (3) and using the approximate expressions cos § = 1 and sin § = y, yield
the governing equation for the transverse vibration of axially moving Timoshenko beams:

kP kE kP 3
PJ<1 +A_G+ G) Y, xxrr — (1 +AG) xxxx + PY,xx +§EAY3YY,XX

2Jk 3 Jk
(YaTTTT + Y xxrr + 2T Y yrrr) + p (Y,X Yoxxrr +4Y . x Y xr Y. xxr
pEJk 3E2Jk
+2Y,x Yoxx Yoxrr +2Y 57 Yoxx) + —— QU Y yxxr + Y xxxy) — T(Y’i Y, xxxx
+6Y,yY,yy Y,xxx + 2Y,§(X) - PA(Y,TT +2IY,yr + Y, xx) +F =0 W)
The boundary conditions for the simple supports at both ends are
Ylxeo=0, Yly_p=0; ENx|y,_,=0, EJy|,_, =0 (6)

It is assumed that the external transverse excitation is a spatially uniformly distributed periodic force as
F = Fycos(QT), where F is the excitation amplitude and Q the excitation frequency.
Introduce the dimensionless variables and parameters

Y X P oA kJP KJE
y=wsp YT \lpar? "’ P’ T V' Tears

2
_EA k3=i2, k4=E—JZ, w=0 pAL, b= OL;FI

AL PL P g0trp
where ¢, a dimensionless small number, denotes the small but finite transverse deformation of beams.
Dimensionless parameter k, associated with k; accounts for the effects of shear distortion, parameter k,
represents the effect of nonlinearity, parameter k5 represents the effects of rotary inertia, and parameter k4
denotes the stiffness of the beam. Integer r indicates the order of the external excitation. For weak external
excitations, F| is of order ¢y, and r = 1; for strong external excitations, F| is of order y, and r =0

Substituting Eq. (7) into Egs. (5) and (6) yields the dimensionless form:

()

Yo + 2Uyaxl + (U2 - l)ysxx - (kO + kl + k3 - kovz)yaxxtl + (kl + k4 - klvz)yaxxxx
+ koWsruar + 20Voxi) — 2K10Y s xcns

3
= 5 9 [kasiyaxx + kl (ysiyaxxrt + 4ysxyaxryaxxr + 2ysxy,xxysxtt + 2y’)2ctyaxx)
- klkZ(y’,%;yaxxxx + 6ysxy’xxy»xxx + 2}’,%)] + e'b COS((DT()) (8)

y|x:0 = 0’ y|x:1 = O’ y’xx|x:0 = 0’ y’xx‘le =0 (9)

Lee and Jang [7] proposed a set of governing equations for axially moving Euler—Bernoulli beams to
account for the momentum transport through both of the end boundaries. For the transverse vibration, their
equation differs from the traditional one with an additional y,,,,, term. However, the present investigation still
adopts the traditional formulation. It should be noticed that Eq. (8) contains term y,,,,. Therefore, the
following analysis may be valid for models developed by Lee and Jang’s approach.
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3. The multi-scale analysis

The method of multiple scales will be employed to Eq. (8). One assumes an expansion of dimensionless
displacement and its time derivatives

y(xa IS 8) = yO(xa TO: Tl’ TZ) + gyl(xs TOa Tla T2) + 82)/2(X, TO» Tl, T2) e (10)

4_0o o a0
dl_aT() oT o7

S S az+2 G
d2 =12 T a0, g o2 " “8T, 0T, ’

d3— o + 3¢ o + 3¢? o + o +
e orT " TTOTiT, 0TodT? OT}0T ’

a0 o* ot ot
— =44 +&|6 +4 +.. 11
df ~oari " “orior, T \"orZer: T Terier, (1

3.1. Nonlinear vibrations under external excitations

First, we consider nonlinear vibrations under weak external excitations of axially moving beams on simple
supports based on the Timoshenko beam model. At r =1, substituting Eq. (10) into Eq. (8), and then
equalizing the coefficients ¢° and &' in the resulting equation, one obtains

azyo 64y0 azJ’O 3"y, 6 64y
k 2v 2kov 2 —1) — 2kyv 0
aTg+ 06T3+ YoxoTy T axor 3+( Tox : oot
P o (12)
—(ko + k1 4+ ks — kovz)a 26T2+(k1 +k4—k102) =0
62)’1 62y1 6 az ot 1
2 S S )
6T2+k0 + Voot TR T 3+(“ Yoo ~ Hivgaars
4
—(ko + ki + k3 — kovz)a 26T2 + (ki + kg — klvz)
62y0 ot Yo o’ Yo ot Yo <6y0) azJ’O
=2 — 4k 2 — 6kov +fk 2
0TooT, " 'oTi0T, ~oxdT, " oxdT2oT, ox ) o2
oy, \ 0 oy, Oy, O RG
1. Yo Yo Yo 9Vo 9o oY 13
e +3k, (axaT0> 52 3k ox0x0T2 o 3k1k2(ax2> (13)
ayo azyo 63yo yo
6k ko + ki + k3 — kot?)—ee0
kg axoTeant oty T 2 Ko H kit ks = ko) a5 T
G ’ a4yo ay062YO63y0 ot Yo
2k, (20 _ 0% S Yo L 5
3 S <ax> oxtor? R ae oo T 2NEder,

3 3y “0*y,
—§k1k2<ax) v + b cos(wt)

The solution to Eq. (12) can be assumed as

Yo = $u()ANT1, T2)E™ " + ¢, (x)A,(T1, To)e™ T (14)
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where ¢, and w, denote the nth mode function and natural frequency and overbar represents complex
conjugate. Substituting Eq. (14) into Egs. (12) and (9) yields

Ko, — 2ikovd,0? + [(ko + k1 + ks — kot))d) — b,] 02 + 2iv(, — k1§ v
+ (07 = D + (ki + ks — ki) =0 (15)

$,00=0, ¢,(1)=0, $,0)=0, ¢,(1)=0 (16)
The solution to ordinary differential Eq. (15) can be expressed by
() = CLa(@® + o 4 Cae® 4 Cypeifin®) (17)
Substituting Eq. (17) into Egs. (15) and (16) yields

(k1 + ka — kivH)Bh — 2vki0,p5, — [(ko + ki + ks + kov?)o? + (1 — v?)]B2,

+ (2kova)fl — 2vew,) B, + koa)ﬁ — wi =0 (18)
1 1 1 1 1
ﬂ %n ﬁ %n ﬁ %n ﬁ in C2n
b e ey b c,, | Cm=0 (19)

2 2 2 i 2
ﬂln elﬂln ﬁzn el/)’Zn ﬁ3n elﬁ,’w ﬁ4n elﬁ4n C4n
For the nontrivial solution of Eq. (19), the determinant of the coefficient matrix must be zero:

[ei(ﬁ1n+ﬁzn) + ei(ﬁ3n+ﬁ4n)] (B%n _ :B%n)(ﬁgn _ Bin)
+ [el(ﬂln""/f}n) + el(ﬁzﬁﬁ%)](ﬁ%n _ /g%n)(/ggn _ ﬁin)
+ [el(ﬁln+ﬂ3n) + el(/)’m+ﬁ4n)](ﬁ§n _ ﬁ%n)(ﬁ%n _ ﬁfm) =0 (20)

Using Eqgs. (19) and (20), one can obtain the modal function of the simply supported beam as follows:

5 o . 5 o .
d)(x) = ei/flnx . (ﬁ4n — ﬁln)(elﬁh B elﬁl”) eiﬁz,lx o (ﬁ4n — ﬁln)(elﬁzn B elﬁl”)eiﬁ3x
(B3, — B3)(ehn — eifa) (B3, — B3 )(ehn — eibs)

_(1_wi—ﬁ»w%—w%0+wz—ﬁ»wm—émvemﬁ
(B2, — Ba (e — by (B2, — B2,)(eiP — eifn)

The nth eigenvalues 8, (j =1, 2, 3, 4) and the corresponding natural frequency can be calculated
numerically considering boundary conditions (9). Fig. 1 presents the natural frequencies for the first and
second modes. It has been found that the natural frequencies decrease with increasing axial speed. The exact
value at which the first natural frequency vanishes is called the critical speed and afterwards the system is
unstable about the zero equilibrium.

If the axial speed variation frequency approaches any natural frequency of the system (12), primary
response may occur. A detuning parameter ¢ is introduced to quantify the deviation of w from w, and w is
described by

21

w=w,+ e (22)

where o, denote the nth natural frequency of free vibration described by Eq. (12). To investigate the primary
response with the possible contributions of modes not involved in the resonance, the solution to Eq. (13) can
be expressed as

Yo = Gu()A(T1, T2)E " + ¢ (X) AT, To)e ™" + cc (23)
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k, =0.64
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s g k, =0.36 T

Fig. 1. Natural frequency diagram: (a) the first mode and (b) the second mode.

where m #n. Substituting Eqgs. (22) and (23) into Eq. (13) yields

62}/ 1 64)’ 1 62)’ 1 64y 1 2 62 64y 1
k 2 2k - — 2k
a2 T K0ars ¥ Pavor, T X avors T D~ g 3T,
4
> P
— (ko + ki + k3 — kov )a 26T2+(k1 + k4 — kv )

"

—2(iw,p, — 2ikow’p, + v, — Skovaw ) — (ko + ki + ks — kov*)w, P

3 N N 12 7 12 71 2 T
+3 k26,6, — k10,0, 6,0, + kad'u§, — kiond's b, — Okikads b, — Skikady by,

— 6kika ), — 6kikadl, b, — 2k k2¢n¢ QL — kikad 2 VAR A, + 3(ka bl — ki 02 Bl

+ k2, B by — k10n 0 by + k2,1 — K1 0r )b b, — k1K1, = 3K b

= 3kikadp), bir — 3kika b bl — 3kikad), Bl — 3kikadl, b — 3kikad, b — kikadly, bl

T

_klkZd);an/ ¢W/ - k k2¢ d) (nbm )AmAnlam + EbeioT] eiw"TO

"

+ [-2(0m,, — 2ikow? ¢, + v, — Skova? ¢ — (ko + ki + ks — kov*)wn !, —

3 1 Tl anm 2 Vi 7"
+ 5 @k, b, 0}, — 2k1 09,0, 8, + o B — kiR B — 6k ka2 B — 6kika Ll

— 6kikad, Pl — 6k ika gl — 2kika bl — kikad s VA2 Ay + 302 Bt — 102, Bl
+ Bl — ki Dbl + ko b — k12 DL Bl — Gkikadpl Pl bl — Skikadp, !

= 3kikady, §, by — 3kikad, by = Skikadr b, by — 3kikad), b b, = Skikadr by — Kikad, §,y

— kikagy b — Kk by VAnAm A €T + ce + NST (24)
where the prime denotes derivation with respect to the dimensionless spatial variable x, cc stands for complex
conjugate of the proceeding terms, NST for non-secular terms, and h.o.t. for high orders of .
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The solvability condition, which demands orthogonal relationships, has been presented by Nayfeh [19]:

"

< [—Z(iwnqbn — 2ikowl ¢, + v, — 3kt — (ko + ki + k3 — kov*)w, ¢! —

3 17! 12 7 12 7 n2 7 /N
+ 3 2k29), 6,0, — k10,0, 6,07 + ka1, — kil B, — Gkikad, B, — 6kika b, )

"

_ 6k kzqs;ld)_//nd)/// 6k k2(l’) ¢// ///n _ 2k k2¢ ¢ ¢//// _ k k2¢/2¢ )Aﬁ/‘]n
+ 302, by, — K103 bbb, + K2 Gty — K100 DB+ K2y, — K103, 8,8,

— 6k1kapl DL — kikad, Bl — 3kikadpl Bl — hkrkad, B — kikad, Bl

=

- 3k1k2¢n¢m Wm - 3k1k2¢m¢;z/ /”m - klkqund)md))’;” - klkz(tbmd)md)m/ k kz¢m¢ ¢m )|A |
1 IGTl
#3067 0,) =0 03)

n
m a T

< {—2(iwm¢m — 2ikow b, + v, — 3kovw? ¢l — (ko + ki + k3 — kov* )l —

3 r 1! 17 r 1/ Vi 7 "o
+5 k2, B, DL — 21l BB b+ kadp s B — k@ bl — 6k ika B — 6k ikadp, bl
— 6kikadp, Bl — 6kika ) Dty — 2k kad Bl — kikad's ¢:::’>A;Am+3<kz¢’ bl
— k1 P+ kol — k102Dl Kol — K102l — Ck1ka ] Pl

— 3kikadp, ¢l — 3kikadpl B — 3kikad,pldl — 3kikad Bl — 3kikad, bl

—3kika bt s — kika )b, 1 — Kika b, i — Kika s, )b, ) Anl> A },r/)m> =0 (26)
where the inner product is defined for complex functions on [0,1] as
1
g) = /0 fgdx (27)
Application of the distributive law of the inner product to Egs. (25) and (26) leads to
A,
U A2+ | APy + b7, 8T = 0 (8)
oT,
04
" kA2 A AP Ay = 29
where
o= =2 (2k2 / 0,811 dx — 2102 / 0B bby dx + o / 26 B dx — ki / 020 B dx

6k k2 / ¢4 B, dx — 6kiks / F B8, dx— 6k ik, / b B dx— Gy / S By dx
0 0 0

ki / 8 @, F, dx — kiks /O 1¢’ﬁq§Z”</3ndx> / 2<icu,, /0 lqanz')ndx—zikowz /0 ld)nq-ﬁndx

1 1 1
+v / ¢, P, dx — 3kover? / ¢, b, dx — (ko + ki + k3 — kov*), / ¢!, dx — kv / o, dx) (30a)
0 0 0 0
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Mo = —3 (kz /0 | Gy b, dx — ey /0 | D b, dX + k2 /0 1 Gru P, dx
— kyo? /0 1 G b, dx + ke /0 1 G by dx — ky /0 1 G ®” i,y dx
— 6kik /0 | G dnd b, dx — ki /0 | ¢ babimb, dx — 3kik /0 1 Gnd by dx
3k, /0 b B — 3k /0 B B — Bherk /0 B
ks [ a0~ Kk [ kiks [ 6000
—kik /0 1 Gru PP B dx) / 2 (iwn /0 bubadx 2ikow? /0 o o /0 1 ¢, dx

1 1 1
—3kove? / ¢, P, dx —i(ko + ki + k3 — kov*)o, / ¢!, dx — kv / "', dx> (30b)
0 0 0

1 1 1 1 1
n = — / d-)n dX/4 <1wn / (]snd-)n dx — Zlkowi / ¢)nq§n dx + U/ d),nq-sn dx — 3k01.7(1)i / qs/nq;n dx
0 0 0 0 0
1 1
—i(ko + k1 + ks — kov*), / ¢" P, dx — ko / ¢ ub dx) (30c)
0 0

Express the solution to Egs. (28) and (29) in polar form
Ay = 0,(Ty, T) T2

Am = fxm(Tla TZ) eiﬁM(Tl’Tz) (31)
Substituting Eq. (31) into Eq. (29) yields
oo,
! = _Re(KM)ﬁfn - Re(:umn)|An|2ﬁm9
oT
aﬁm _ 3 2
Olm aTl - Im(KI71)ﬁm Im(:umn)|An| ﬂm (32)

For steady-state solutions, the amplitude «,, and the new phase f,, angle in Eq. (32) should be constant.
Setting o), = 0 and f,, = 0 gives

0 = —Re(km)By, — Re(ty) | An* By

0= _Im(Km)ﬁ; - Im(:umn)|An|2ﬁm (33)

Eq. (33) obviously has a zero solution. If we assume that there is a non-zero solution, Eq. (33) yields

0 = —Re(km)fr, — Re(i) 1 Aul*,

m

0 = —Im(ie,)f;, — Im(4t,)1 Al (34)

The two equations in Eq. (34) cannot come into existence at the same time. Thus, the assumption is wrong.
The solution to Eq. (29) has only zero stationary solution and decays to zero exponentially. Therefore, the mth
mode has actually no effect on the stability.

Substituting Eq. (31) into Eq. (28) and eliminating the mth mode yields

0y = —bRe(y,)cos 0, + bIm(y,)sin 0,
0T
Oy & = 0,0 + lm(rcn)ocfl + bRe(y,)sin 0, + b Im(y,) cos 0, (39)

0T,
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where
0, =0T —p, (36)

For steady-state solutions, the amplitude «, and the new phase 6,, angle in Eq. (35) should be constant. Setting
o, =0 and 0, = 0 leads to

b
o= —Im(Kn)OC%, + OT |Xn| (37)
n

0,70 in Eq. (35) yields

ooy, = —bRe(y,)cos 0, + bIm(y,)sin0,,

oT

0 _ o + Im(x, )o + b Re(y,) sin 0, + ﬁlm(xn) cos 0, (38)
aTl On Oy

The stability of the nontrivial state can be obtained by perturbing these polar modulation equations and
checking the eigenvalues of the resulting Jacobian matrix.
To determine the stability of the nontrivial state, these equations are perturbed to obtain

oy, 00,
A A
{ aT," " oT,

T
} = J{Ax,, AO,}T (39)

where T denotes transpose.
The Jacobian matrix whose eigenvalues determine the stability and bifurcations of the system is

0 —oo, — Im(rc, )]
= ai + 3 Im(x, )y, 0 (40)
The J-matrix characteristic function
22+ [0+ Im(x,)e2] [0 + 3Im(i,)o2] = 0 (41)

where 4 is an eigenvalue of the system. Based on Routh—Hurwitz theorem, the boundary of instability yields
[0 + Im(x,)o;] [0 + 3 Im(xc,)oz] = 0 (42)

Consider an axially moving beam with k4 = 0.64 and v = 2.0. The response amplitudes at exact resonance
for the first two natural frequencies are shown in Fig. 2. The first two natural frequencies of the unperturbed
system are w; =4.7393 and w, =23.7017. In the first-mode response, the coefficients are b = 0.04,
k> = 100,000, and in the second-mode response, the coefficients are b = 0.1, k>, = 100,000.

Fig. 3 shows the effects of a different parameter k,. With an increase of kj, response under the same
conditions decreases. In the first-mode response, the coefficient is » = 0.04, and in the second-mode response,
the coefficient is b =0.1. The solid lines are for coefficient k, = 50,000, the dashed for coefficient
k>, = 100,000, and the dotted lines for coefficient k£, = 150,000.

The effects of the foundation vibration amplitude on the response amplitudes are illustrated in Fig. 4. From
the response diagrams, it is clear that the excitation amplitudes increase the amplitude of the excited system.
The coefficient is k», = 100,000. In the first-mode response, the solid lines are for coefficient b = 0.02, the
dashed for coefficient b = 0.04, and the dotted lines for coefficient » = 0.06. In the second-mode response, the
solid lines are for coefficient b = 0.05, the dashed are for coefficient b = 0.1, and the dotted lines for coefficient
b =0.15.

The stability of the response amplitudes is illustrated in Fig. 5. In the first-mode response, the coefficients
are b = 0.04 and k, = 100,000. In the second-mode response, the coefficients are b = 0.1 and k, = 100,000.
The solid lines denote the response amplitudes and the dashed denote the boundary of instability.
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(a) (b) % 104
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0 1 1 L 0 1 1 L
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Fig. 2. Response amplitudes diagram: (a) the first mode and (b) the second mode.

(a) %1078 (b)  x104

ap

0 . . . 0
-10 -5 0 5 10 -10 -5 0 5 10

Fig. 3. Comparison of response amplitudes of a different parameter k,: (a) the first mode and (b) the second mode.

The inner region of the boundary of instability is unstable and the outer is stable. Thus a jump phenomenon
appears.

3.2. Nonlinear vibrations under strong external excitations

Next, we consider nonlinear vibrations under strong external excitations of axially moving beams on simple
supports based on the Timoshenko beam model. At r =0, substituting Eq. (10) into Eq. (8), and then
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(a) % 1073 (b)  x10*

Fig. 4. Comparison of response amplitudes of different excitation amplitudes b: (a) the first mode and (b) the second mode.

(@) x 1073
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Fig. 5. Stability of the response amplitudes: (a) the first mode and (b) the second mode.

equalizing the coefficients ¢° and ¢! in the resulting equation, one obtains

2

oy %y oy o7y oy
kg——2 4+ 20—=0_ 4 2k, 0 2 )2 - 2k
Roars T 2o, T H%er T T Vo ~ Faaar,

64)’0
0x20T3

a2y0
0T}

4
—(ko + k1 + k3 — kov?) + (ki + kg — klvz)aa—;f — b cos(wTy)

(43)
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22%1 + ké?é + 21;6226”% + 2kovaa4ay}3 TRE T e T 634ng0
—(ko + ket + k3 — kovz)a 246T2 + (ky 4 kg — klvz)
2 2
T - _26T60JE;0T1 - 4k°aﬁggon 20 a;ac ay;l 6k #zoan 3k <66y;> % s
| +3k, (622;0)2%320 + 3klaay)f ai ay;%a;yzo — 3kiks <a;y20)
+6k1%{é}aizggoajz3;(}o +2(ko + k1 + k3 — /’C()UQ)WJ}OOGT1

3 o 2o Yo 6y062y063y0 o* Yo 3 a)’o 64y0
J— 2 I _ _
Pl <6x> ator? MR e T M aer, R\ e ) o

Express the solution to Eq. (43) in the following form:
Yo(x, To, T1, T2) = p(x)q(To, T, T2) + cc (45)

where ¢(x) is the complex mode function satisfying the boundary condition. The mode function has been
calculated above in Eq. (21).
Substituting Eq. (45) into Eq. (43), multiplying both sides by ¢(x), and integrating on [0,1] gives

q(4) 4+ o1 g+ g + o3q + 0ug = /’lCOS((JJT()) (46)

where

mzw az—folqﬁzdx—(koJrkl+k3—k002)fol¢‘/)”dx h= b J, ¢ dx

5 El

i *dx ko fy ¢ dx ko f) ¢Pdx
o 2v(fo o' dx — ky [y o dX) e (02 = 1) [y ¢p¢" dx + (k1 + kg — k10%) [, p¢p”" dx @
ko [if ¢* dox ko [ ¢ dx
Express the solution to Eq. (46) in polar form
q= ATy, Ty)e™" 4 Bel~To (48)
Substituting Eq. (48) into (46) yields
- 2(w* — i w3 — :za)z + oz + o) “9)
The solution of Eq. (43) is
06, To, T1, T2) = ()A(T1, T2) " + BeT") + ce (50)

Substituting Eq. (50) into Eq. (44) yields

64)/1
ox30T

64)/1
oxoT;

62)’ 1
0T}

64)/1 62)’1 2
2 2 —1 -2
+k06T3+ ”axaT ~+ 2kgv + (v ) kv

— (ko + ki1 + k3 — kov?) + (ki + k4 — klvz)

ox 26T2
3 .
_z[(gklwé _ k2)¢/2¢// + 2k1k2(]’)”3 + 6klk2¢/¢//¢/// + klk2¢/2¢////]A3 631(UOT0
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3 / 7 7”3 ISV / " iw
—5[Ok10” —k)¢” " + 2kikad” + 6k ko' ¢ ¢ + kakap"1B 5T

- ;[(—kz + k1o + dkjoog + 4k1w§)¢>’2¢>” + 2kikadp" + Gkika ' "¢
+ kikag? 9142 Bel @20 o

2l + ki = ko + AODG P+ 26 F ) + ki
+ Okika(@'$"¢" + 99" + @GS + kaka(¢” 9" + 20 0P
- g[(—kz + kiw} + 4k ooy + A1) " + 2k1kad” + 6kika ¢ P

4 k1k2¢/2¢////]ABz ei((u0+2(1))T0

)]AZB ei(w72wu)T0

3 '/2 Vi BV 7" 72
— z[(—kz + kjw} — dkiowg + 4k 0?) (PP +2¢' P ¢ + 6ki1kad”

T

+ 6k1k2(¢;’¢_”¢/” + d;/¢//¢7” + ¢/(/)'u¢7//) + klk2(¢_,2¢/w + 2¢/¢'/¢ )]ABZ ei(a)Owa)To
_ {3[(k10)2 _ kz)(d)ﬂd)_// + 2(15/(2;/(]5//) + 6k1k2(¢//2¢_// + (,b_/(,b”(bm + ¢/¢_//¢/// + ¢/¢//¢7//)

T/

+ 2Uerkr ' §' " + krkord*$ 1 ABA
+%[(k1w2 _ k2)(¢/2¢7/ + 2(]5/(,5/4)”) + 6k1k2(¢//2¢7/ + (]5_/(]5//4)”/ + ¢/¢7/¢/// + ¢/¢//¢7//)

T

+ 2k1ka ' B " + kikag* | BB € To

_ {3[(1(10)3 _ kz)(¢/2¢'// + 2¢/(f;/¢//) + 6k1k2(¢//2¢7/ + d;/d)//d)m + ¢)/¢7/¢/// + ¢/¢//¢7//)

-/

+ 2kikr¢' $ " + kikrd* " |ABB
3 - - - - - -
—{—5[(](1(1)3 _ kz)(¢/2¢// + 2¢/¢/¢//) + 6k]k2(¢//2¢// + ¢/¢)H¢/// + ¢)/¢//¢/H + ¢/¢//¢///)

T

+ zklkzqs/q-s/d)//// + klkz(]s/zd) ]Azla
+ 2[iwo(1 — 2kowd)p + v(1 — 3kowd)d’ — iwo(ko + ki + ks — kov?)g”

" 04
—kivdp™] =

o7, } ¢l 4 cc + NST + h.o.t.

(1)

where the prime denotes derivation with respect to dimensionless spatial variable x, cc stands for complex
conjugate of the proceeding terms, NST for non-secular terms, and h.o.t. for high orders of e.

3.2.1. Nonsyntonic excitations
When the frequency w is far from 0, wgy, @wo/3, and 3wy, the solvability condition demands the orthogonal

relationship

<3[(k1(03 _ kz)(¢/2¢7/ + 2¢/(/)_/q5//) + 6klk2(¢//2¢7/ + Q;/d)”d)m + ¢/¢7/¢/// + ¢/¢//¢7//)

s

+2kikad'§'9" + kikagp* 14 BB
3 - - - - - -
+ 5[(klw% . k2)(¢/2¢// + 2¢/¢/¢//) + 6k1k2((}’)//2(]')// + ¢/¢//¢/// + ¢/¢//¢)/// + ¢/¢//¢///)

="

+ 2kt § " + kkag? 1A% A
+ 2[iwg(1 — 2kowd)p + v(1 — ko) — iwg(ko + ki + k3 — kov*)”

" aA
—kivg ]ﬁ’ >=0

(52)
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where the inner product is defined for complex functions on [0,1] as

1
Voo = [ raax (53)
Application of the distributive law of inner product to Eq. (52) leads to
YABB + kA*A + G%A =0 (54)

where
1 _ 1 . _
1= 3[(k1w5 —k2) ( /0 ¢ ¢ dx +2 /0 qﬁqﬁ’qﬁ/qﬁ”dx) + 6kik < /0 56 dx
: I 1'/'///// ]'///7//
+/0 556 dx+/o F6'F$ dx+/0 F6' D' dx)+zk1k2
1 T [ 1 - ="
x / P ¢ ¢ dx + kiks / ¢ dx} / {2[iw0(1—2k0w3)
0 0

1 1
x [ G dx ot = koo [ G0 dx —ionlko + ki + ks — ko)
0 0

1 1
x/ d¢" dx — klv/ oo dx} } (55a)
0 0

1
K= Ey (55b)

These coefficients in Eq. (55) can be determined by the natural frequencies and the modal functions calculated
from Eq. (12) with the boundary condition. Consider the transformation

A= a\(Ty, Ty 1),

B = b e (56)
Substituting Eq. (56) into Eq. (54) yields

6a1
3T = —a kR — aplyR (57a)
6a2
T, = —ak! — by (57b)
The first approximate solution is
Yo = a1 cos(wot + a2) + Beos(wt) + O(e) (58)

These coefficients a; and a, can be determined from Eqgs. (57a) and (57b). The amplitude of the free-vibration
term will be attenuated. Steady-state response will be only forced vibration term.

3.2.2. Superharmonic resonances and response amplitudes
To study the superharmonic resonances, a detuning parameter o is introduced to quantify the deviation and
o is described by

3w = my + €0 (59)
Solvability requires
04

YABB + kA*A + (BTt 4 3T = 0 (60)
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where

1 _ 1 _ _ 1 ) ;
xX= 3 |:(k10)% - k2) (/0 ¢Z¢/2¢U dx + 2/0 ¢¢/¢/¢” dX) + 6k1k2 (/0 ¢¢//2¢// dx

1 _ 1 _ _ 1 _ _
+/ ¢Z¢/¢//¢/// dx+/ ¢¢/¢//¢/// dX +/0 ¢¢/¢//¢/// dX) + 2k1k2

/ ¢¢ q5 ¢//// dx+ klkz/ d)(ﬁ/z //// :|/{2|:1(U0(1 _ Zkow%)

/ dpdx +v(l — 3k0w0)/ P dx — iwg(ko + ki + k3 — kov?)

/ $¢ dx—kyv / $o" dx ]}

KZEX

1 1 1
(= 3|0t~k [ d0rerax s 2tk [ xn stk [ 396" an

1 1 1
+kiky /O " dx} / {2{@0(1 — 2kow}) /0 ¢ dx + v(1 — ko) /0 ¢’ dx

1 1
—iwg(ko + ki + k3 — kov2)/ " dx — klv/ do” dx} }
0 0
Consider the transformation
A =a|(T,, Ty B=p e
Substituting Eq. (62) into Eq. (60) yields

g% = —a kR — a R — B[R cos(3by + o Ty — ay) — (' sin(3by 4 6T — ay)]
1
0
a a? = —afK’ — albf _— bf[CR sin(3b, + 6T — ar) + ! cos(3by + 0T — ar)]
1

Then, we change Eq. (63) into an autonomous system

0 .
o _ —aik® — a1pyR — B3R cosy — ! siny)
0T

0y 2.1 2.1 b% R I

—— =0+ ajk +byy +—(("siny + ' cosy)
aTl a

where

y=3by+0T| —a

(61a)

(61b)

(61c)

(62)

(63a)

(63b)

(64a)

(64b)

(65)

For steady-state solutions, the amplitude a; and the new phase y angle in Eq. (64) should be constant. Setting

ay =0 and y" = 0 and then eliminating from Eq. (64) leads to

VB 4 172) — (@ + B RY

o= —(af;c[ + b%xl) + @

(66)
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When a;#0 in Eq. (64), the Jacobian matrix characteristic function of the balanced solution on the right
(67)

72 420248 + BT+ Bati® + b ad® + b
(68)

hand,
+ (o + a%;cl + b%xl)(a + 3a%;cl + b%y’) =0
where Z is an eigenvalue of the system. Based on Routh—Hurwitz theorem, the boundary of instability yields

bfo)(a%KR + b%xR) + (o + a%;cl + bf;{’)(a + 3af;<1 + bfxl) =0

Bajr® +
@) x 1073 ®)  x10*
1 4
0.8 J
3|
0.6 f ]
& o 2 F
04 1
1t
02t :
0 0
-10 10 -5
o
Fig. 6. Response amplitude diagram: (a) the first mode and (b) the second mode
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Fig. 7. Comparison of response amplitudes of a different parameter k»: (a) the first mode and (b) the second mode
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Fig. 8. Comparison of response amplitudes of different excitation amplitudes b: (a) the first mode and (b) the second mode.

Consider an axially moving beam with k4 = 0.64 and v = 2.0. The response amplitudes at exact resonance
for the first two natural frequencies are shown in Fig. 6. The first two natural frequencies of the unperturbed
system are w; =4.7393 and w, =23.7017. In the first-mode response, the coefficients are b = 0.03,
k> = 100,000, and in the second-mode response, the coefficients are b = 0.5, k>, = 100,000.

Fig. 7 indicates the effects of a different parameter k,. With an increase of k,, response under the same
conditions decreases. In the first-mode response, the coefficient is » = 0.03, and in the second-mode response,
the coefficient is b = 0.5. The dotted lines are for coefficient k, = 50,000, the dashed for coefficient
k> = 100,000, and the solid lines for coefficient k, = 150,000.

The effects of the external excitation amplitudes on the response amplitudes are illustrated in Fig. 8. From
the response diagrams, it is clear that the external excitation amplitudes increase the amplitude of the excited
system. The coefficient here is k, = 100,000. In the first-mode response, the solid lines are for coefficient
b = 0.05, the dotted lines for coefficient b = 0.04, and the dashed for coefficient b = 0.03. In the second-mode
response, the solid lines are for coefficient b = 0.7, the dotted lines for coefficient » = 0.5, and the dashed for
coefficient b = 0.3.

The stability of the response amplitudes is illustrated in Fig. 9. In the first-mode response, the coefficients
are b = 0.03 and k>, = 100,000. In the second-mode response, the coefficients are b = 0.7 and k>, = 100,000.
The solid lines denote the response amplitudes and the dashed denote the boundary of instability.
The inner region of the boundary of instability is unstable and the outer is stable. Thus a jump phenomenon
appears.

3.2.3. Subharmonic resonances and responses amplitudes
To study the subharmonic resonances, a detuning parameter ¢ is introduced to quantify the deviation and w
is described by

o = 3wy + o (69)

Solvability requires

JABB + kA2 A + (A" BTt + S—;ll =0 (70)
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(a) x 1073 (b)  x10*
. 4

Fig. 9. Stability of the response amplitudes: (a) the first mode and (b) the second mode.

where
1 _ | 1 _
1= 3[(k1w§ — k) ( /0 G " dx + 2 /0 d)qﬁ/d)/q’)”dx) + 6k k; ( /0 b6 dx
: i 1'/'///// l'///7//
+/0 5586 dx+/0 F6' 5 dx+/0 GO $ dx)+2k1k2
! T L ! - =1
x /0 ¢ P ¢ dx + kiks /0 ¢’ P dx} / {2[iw0(1—2k0w3)
1 B 1 _
x/ G dx + v(1 —3k0w3)/ P dx — iwg(ko + ki + k3 — kov?)
0 0
1 1
X/o q_ﬁqb”dx—klv/o do” dx]} (71a)

k=21 (71b)

3 : T 17 Vi : Tl ! T 1
(=3 |-k [ 6070 axe2 [ Geddax) v okt [ o' dR ax
! o7 ! T 0 ! T ! 0
+6k1k2(/0 F§ G dx+/0 FF0' dx+/0 ) dx)
1 1 1
+hkiks ( / $d " dx +2 / 43¢/<5’43””dxﬂ / {2{@0(1 — 2ko?) / P dx + v(1 — 3kow?)
0 0 0

1 1 1
x/ G’ dx—iwo(ko + ki + ks — kovz)/ d¢" dx — klv/ do” dx} } (71c)
0 0 0
Consider the transformation

A =a|(T,, Ty B=peh (72)
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Substituting Eq. (72) into Eq. (70) yields

d
% = —a}iR — b2 gR — @by [(R cos(by + 0Ty — 3az) — (' sin(by + 0T — 3ar)] (73a)
1
% = —aik’ —biy' — a1 [(®sin(by + ¢ Ty — 3ax) + ' cos(by + T — 3a)] (73b)
1

Then, we change Eq. (73) into an autonomous system

aa] 3 R

a7 = ek’ — arbiy® — aibi((" cosy — {'siny) (742)
1
o -
# = 0+ 3aiK’ +3b77" + 3arbi (" siny + (' cosy) (740)
1
where
y:bz—}—O'Tl —3ay (75)

For steady-state solutions, the amplitude @; and the new phase y angle in Eq. (74) should be constant. Setting
dy =0 and y’ = 0 and then eliminating from Eq. (74) leads to

6 = =3’ + b £ 3\ a0 + 1) — (@R + 1R (76)
When a; #0 in Egs. (74), the J-matrix characteristic function of balanced solution on the right hand,

P2+ 2(2afKR + b%;{R)X + 3(a%KR + b%;{R)(a%KR - b%XR)

—3(%+aftc’+b%;{') (%—afx’—i—b%x’) =0 (77)

where A is an eigenvalue of the system. Based on Routh—Hurwitz theorem, the boundary of instability yields
(o2 o

(@R + B2 R) (iR — bRy — (§ + a2+ b%x’) (§ — &+ b%x’) —0 (78)

Consider an axially moving beam with k4 = 0.64 and v = 2.0. The response amplitudes at frequencies three
times those of exact resonance for the first two natural frequencies are shown in Fig. 10. The first two natural

(a) %103 (b) x 1073
- - 1

- 0.8 -
P 0'6 L -

o o s
e 04 - / -
- 02t 1

0 1 1 1 1 O L 1 1
0 5 10 15 20 25 0 20 40 60 80
g g

Fig. 10. Response amplitude diagram: (a) the first mode and (b) the second mode.
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frequencies of the unperturbed system are w; = 4.7393 and w, = 23.7017. In the first-mode response, the
coefficients are b = 0.03, k, = 100,000, and in the second-mode response, the coefficients are b =75,
k> = 100,000.

Fig. 11 shows the effects of a different parameter k. In the first-mode response, the coefficient is b = 0.03,
and in the second-mode response, the coefficient is b = 5. The dotted lines are for coefficient k, = 50,000, the
dashed for coefficient k, = 100,000, and the solid lines for coefficient k>, = 150,000.

The effects of the external excitation amplitudes on the response amplitudes are illustrated in Fig. 12. From
the response diagrams, it is clear that the excitation amplitudes increase the amplitude of the excited system.
The coefficient is k> = 100,000. In the first-mode response, the solid lines are for coefficient » = 0.1, the dotted

: : ottt
0 10 20 30 40 60 80 100
g G

o
N
o
N
o

Fig. 11. Comparison of response amplitudes of a different parameter k,: (a) the first mode and (b) the second mode.

@  x10 ®)  x10°
1
- 0.8 -
1 0.6 1
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- 02 -
N oL
0 5 10 15 20 25 0 20 40 60 80
a a

Fig. 12. Comparison of response amplitudes of different excitation amplitudes b: (a) the first mode and (b) the second mode.
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(a) % 103 (b) x 1073
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Fig. 13. Stability of the response amplitudes: (a) the first mode and (b) the second mode.

lines for coefficient b = 0.06, and the dashed for coefficient » = 0.03. In the second-mode response, the solid
lines are for coefficient » = 5.5, the dotted lines for coefficient b = 5, and the dashed for coefficient b = 4.5.

The stability of the response amplitudes is illustrated in Fig. 13. In the first-mode response, the coefficients
are b = 0.03 and k> = 100,000. In the second-mode response, the coefficients are » = 5 and k> = 100,000. The
solid lines denote the response amplitudes and the dashed denote the boundary of instability. The inner region
of the boundary of instability is unstable and the outer is stable. Thus a jump phenomenon appears.

4. Conclusions

In this investigation, nonlinear vibrations under weak and strong external excitations of axially moving
beam on simple supports are studied based on the Timoshenko beam model. A partial-differential nonlinear
equation is derived from Newton’s second law. The multiple-scale method is used to discuss nonsyntonic
excitations, superharmonic resonances, and subharmonic resonances. The nontrivial steady-state response and
its existence conditions are presented. The system shows a typical muti-valued nonlinear phenomenon. The
numerical examples investigated reveal the following.

The natural frequencies decrease with an increase in the axial speed for simple supports. The first natural
frequency vanishes at the critical speed and afterwards the system is unstable about the zero equilibrium.

The assumption that the primary response with the possible contributions of modes does not involve
resonance is wrong. The modes have only zero stationary solution, which decays to zero exponentially.
Therefore, the modes have actually no effect on the stability.

For the efforts of different parameters about nonlinear vibrations under weak and strong external
excitations, the response amplitudes increase with decreasing nonlinear effects, and with increasing external
excitation amplitudes.
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