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Abstract

In the stabilization and control of the vibration of flexible structures, a knowledge of the system’s vibration spectrum is
crucial. In the past, we developed a perturbation approach that, when coupled with the asymptotic wave propagation
method of Keller and Rubinow, yields highly accurate estimates for the vibration spectra of certain beam problems. Here,
we extend this method to a stand-alone method, applied to the Timoshenko beam problem; it is seen that the wave
propagation method is a special case of this method, as are all other asymptotic results that we have found in the literature.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Timoshenko beam equations constitute a model for a thick beam, as they incorporate the effects of
rotary inertia and deformation due to shear. An asymptotic estimation of the vibration spectrum of the
Timoshenko beam was performed in Ref. [1], and asymptotic expressions for the spectrum also have been
derived in Refs. [2-7], with Refs. [5-7] treating the case with coefficients which are non-constant, spatially.
However, as these estimates are asymptotic, they are least accurate for the lowest frequencies and, in
particular, for the fundamental frequency—the frequencies associated with the highest vibration energies.
Here, we extend a perturbation approach, developed for the Euler—Bernoulli [8] and slewing [9] beams, to the
case of a clamped—clamped Timoshenko beam. In the process, we see that this method actually is a stand-
alone method, for which the zeroth approximation reduces to the asymptotic wave propagation method of
Keller and Rubinow [10,11], as well as to other results in the literature [2-4]. Of course, these and similar
problems are solvable using commercially available software packages. The disadvantage is that these
packages generally employ FEM or similar numerical methods, and thus do not offer the analytical and
physical insights provided by asymptotic methods. Further, if this method can be made rigorous, it may
become part of the arsenal of routines used by commercial packages. Here, although we consider only
clamped—clamped geometry, the method applies similarly to any combination of energy-conserving boundary
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conditions. We begin by introducing the Timoshenko beam eigenvalue problem; we then apply the
perturbation method to the problem, and we end with examples.

2. The problem

We consider a Timoshenko beam of length L, with both ends strongly clamped. We let W (x, 7) be the lateral
displacement at point x at time ¢, and @(x, t) the bending angle at point x at time ¢. The Timoshenko beam
equations, then, are [1-7,12]

,Oth - KWxx + K(Dx = 07 (1)

1,8, — EID, + K[®— W,]=0, 0<x<L. )

Here, EI is the flexural rigidity, p the mass density, K the shear stiffness, I, the rotary inertia, and
W.=0W/0x, etc. We assume that these parameters are constant, and that the beam’s cross section is
uniform throughout.

The boundary conditions are

W(O,t) = ®0,1) = W(L,t) = &(L,1) =0, t>0. (3)
In order to find the eigenfrequencies —i&%, we let
W) = wx)e ™, (1) = px)e <", “
Then, eliminating ¢ from Egs. (1) and (2), we have the ODE
Gy L (EL L o iy — P et Pl o2
w (x)+EI (K + ) E'W'(x) Elé W(x)+EIKé wx)=0, O0<x<L. &)

Now, following Ref. [12], we introduce dimensionless variables and parameters:

X
X1 = Zy
w
wp = Za
2= P 1282
\VE ¢,
1y
ﬂl pL2 s
EI
By = X2 (6)
In this case, Eq. (5) becomes
w(14)(x1) + 2,281 (x) + (512 = 2MHwi(x) =0, 0<x <, (7
where
27 =B+ By st =Pipa (®)

Further, the w boundary conditions become, as in Ref. [12],

wi(0) = Bow(0) + (1 + f22HW(0) = 0,

wi(1) = Bow (1) + (1 + 325w (1) = 0. 9)
Now we let w; = e in Eq. (7) and find that

= i’y £i2%,,
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where

ylz\/r2— M st 108 Vz=\/r2+m~ (10)

Applying the boundary conditions equation (9) to the general solution
wi(x) = Ae¥ 1 4 Bl 4 Cem iy penitv (11)
leads to the system

A+B+C+D=0,
S1A+f,B—-fC—f,D=0,
Ae¥ N 4 BelF1 4 Ce N 4 Pt = ),

Af @47 4 Bf e — Cf (e — Df e 1 = ). (12)
Here,
3, p2 1 .
fi:—ﬁl%‘l‘ﬁl“/i‘f‘)—ﬂn i=12 (13)
The eigenfrequencies, then, are determined by the condition that
1 1 1 1
A fa —f —/>
0=detM = ol i e i
F1E57 freF T —f e _f e

= (f, _fz)zeuz(wrh'b) —(f} +f2)2ei}'2(y'7y2) —(f1 +f2)zeii2(h"rvl) +(fy _fz)zefuz(y'#h) +8f /5. (14)

3. Perturbation method

Standard asymptotic methods now would neglect all terms of O(1 /14), as in Ref. [1]. Here, instead,
we choose as our perturbation parameter

:;i (15)
Then,
=) = \/’”2 — V=5t
N R AN N (16
and

-1
72 =72(e) = V2 + Vit — st + {4 12N — st — S“] &+ 0(). (17)

Using Eq. (8), we have
Vit —st =11 = Bl (18)
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Thus, upon simplification, for f;, > f8,, Egs. (13) and (14) become, respectively,

1@ = VB + 2V (B~ )] e+ 06) (19)
and
7 = VB + [2VF (- 8] et 06, (20)

Similarly, for §; <f,, we just interchange the two expressions. Thus, WLOG, we consider the case f; > f3,.
We use Eqgs. (19) and (20) to rewrite Eq. (13) as

4 2.2 4
20 — Sayor; + o

fi(e) = Ofld%(dg — ocf) + 1 — D) e+ O(e?)
and
, a2on 5
f2(8)= 2 28+0(8 )a (21)
oy — o

where a; = /f, and a0 = /f,. Further, we expand the eigenvalues as

A= o+ e+ O(?) (22)
and, upon simplification, we have
. - ] )2 )
et — eiMﬂ“f{l +ei {2/10}40([ + %} } +0E), j=1,2. (23)
200 (oy — 03)

Finally, after very much, but straightforward, simplification, we may write the determinant equation (14) as

D(e) = det M(e)
_ Cl[eizg(alJraz) — elm—m) _ oiglo—m) 4 e—izﬁ(ocl-&-az)]

+ 8{ [2(Cz — C3) + 21C1Ag A1 (o + o) — iC /17(2)] elo( )
20q00(00 + o2)
ph
2ayan(ay — o)
2

Y .
+ {-2((?2 + C3) + 2iC1 A0 (a0 — o) +iC) 70] eHia—m)
2ay0n(ay — o)

2

+ {—2(@ + C3) — 2iC1 20010 — o) — iC ]e%(m—“z)

+ [2((?2 — C3) = 2iC1 2gh (o + o) +1C) }e_ué(“‘m) — &ﬁag} + 0. (24

.
20100 (ot + a2)

Here,
s o 200t — o203 + o} ol o
C1=OC10( (OC —O(), C2=—, C3= .
2\ 1 B 2 2 2 2
oo — o3) oy — 03

We now require that the coefficients of ¢* and ¢! in Eq. (24) be zero; thus /o must satisfy
hhantn) _ e=ifgln—u) _ gifga—m) | g=ikn+n) — () (25)

then A, is determined from Eq. (24) to be

s _J(h)
9(%)’
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where
f(i()) - _ 2C1[(C2 _ C3)ei/15(11+<x2) _ (C2 + C3)eii§(o<2711) _ (C2 + C})eilg(alfocz) + (C2 _ C})efiig(zxﬁraz)]
s 292
1Cvlj“O 1 ei/lé(zl-k—o:z) + 1 ei/lé(zz—oq) + 1 eiié(m—az) _ 1 e—ilg(al-&-o:g)
2001000 |org + o2 Oy — 0l o] — 0 o1 + o
and

g(20) = 2AC 2001 + o2)e 00 4 (o — o) 00271 (o) — 01} — (o) 4 sp)e )],

Finally, we set

1O =2 e=g¢ =(/1(z))4,
as the zeroth approximation. The first approximation, then, is
2V = o + g0l
We continue inductively, setting
1
&y = W
and updating the approximation via
20D = 0+ el (26)
It is easily seen that Eq. (25) is equivalent to
sin o sin A3op = 0. 27

This expression, in turn, essentially is the expression derived in Ref. [4] and, if modified to the free—free
problem, will give the results in Refs. [2,3]. Expression (26) leads to the two branches

R="wprr 2, n=12,..., (28)
o1 Iﬂ
2 __nhm | K —
o = n = nnl Er n=12,.... (29)
The corresponding dimensional values, from the fact that &> = (1 J/L*)+\/(EI] 0)2% (Eq. (6)), are
o _nm [EI -
=7 T n=12..., (30)
nn |K
gng > n=12,..., (31

which are seen to be equivalent to the branches A, and A, respectively, in Ref. [1] (where, as the right end is
clamped, we let o = f§ = 00). Further, they are equivalent to the expressions given in Refs. [5-7], when the
coefficients therein are constant.

The choice of parameters for our examples is restricted by the fact that, from Eq. (9) we need to have

1 1
s =z(/31 —52)2>%
(correcting a minor error in Ref. [1]), i.e., that
1 (EI 1, 2 p n’n?
—|=——=L) ——>1 2
%0 1 o
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and

T >1 (33)

4 EI [*

1 (EI 1,,)2 K n’r?
4

for the first and second branches, respectively.

4. Examples

We present two sets of examples. The first set uses “simple” values for the parameters in order to illustrate
the method, and to allow both branches to be exhibited clearly, while the second set uses the parameter values
for a typical steel beam, including realistic values for the beam’s length.

To begin, then, we illustrate the perturbation method using the same parameters that were used in the first
example in Ref. [1]. However, we allow the length L to vary, in order to investigate what happens vis-a-vis the
restrictions in Eqgs. (31) and (32). Thus we choose p =1, I =3, E = 2.5 and K = 1.5, and consider the three
cases L = .01, .1 and .5. We compare the perturbation results with those resulting from applying the Legendre-
tau spectral method to the results. This method entails transforming the problem equations (1)—(3) to one on
the interval —1<x<1, letting W(x, 1) = e!'w(x) and ®(x, 1) = e ¢(x), and setting

N
w(x) = Zanpn(x)a
n=0

N
¢(X) = anpn(x)-
n=0

Here, P, is the Legendre polynomial of degree n. Computations at n = 100 and 110 show that the first 50
eigenfrequencies converge to at least nine decimal places at n = 100.

In Table 1, we give comparisons between the numerical (N) and Oth-order perturbation (P) results, for
L =.01,.1and .5. For L = .01, we see excellent agreement, to at least six decimal places, even at the low end of
the spectrum. As expected from Egs. (31) and (32), the Oth-order perturbation results become less accurate as
L increases; so, for L = .5, we have only three-decimal-place agreement for the lowest frequencies. Table 2,
then, gives a comparison between the numerical results and the perturbation results for the first seven
frequencies for the case L = .5, that is, for those frequencies with agreement to less than five decimal places in
Table 1. Here, we see that the updates (EM? = (1 JL*)\/(EI] ,0)(1(”))2 give exact agreement for the last four
results and near agreement for the second and third frequencies. We also see that, for the lowest frequency, the

Table 1
The first 10 frequencies for L = .01, .1 and .5

L =.01 L=.1 L=15 B
N P N P N p

384.7649 384.7649 38.4759 38.4765 7.6912 7.6953 11

608.3671 608.3670 60.8398 60.8367 12.183 12.167 1

769.5301 769.5300 76.9547 76.9530 15.399 15.391 I
1154.294 1154.295 115.421 115.430 23.085 23.086 I
1216.735 1216.734 121.684 121.673 24.341 24.335 I
1539.060 1539.060 153.904 153.906 30.783 30.781 I
1825.100 1825.100 182.514 182.510 36.504 36.502 1
1923.825 1923.825 192.381 192.383 38.476 38.476 I
2308.5897 2308.5897 230.858 230.858 46.172 46.172 I1
2433.4674 2433.4672 243.347 243.347 48.669 48.669 1

In each case, the numerical (N) frequency appears first, followed by the Oth-order perturbation (P) frequency 53 = (l/Lz)\/(El/p)),é,
I signifies that the frequency is from the branch given by Eq. (29); 11, that it is from Eq. (30).
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Table 2

The first seven frequencies for L =.5

N Py P P, P Py Ps
7.6912 7.6953 7.6934 7.6925 7.6921 7.6920 7.6920
12.183 12.167 12.177 12.181 12.181

15.399 15.391 15.396 15.398 15.398

23.085 23.086 23.085

24.341 24.335 24.339 24.340 24.341

30.783 30.781 30.783

36.504 36.502 36.504

The first column gives the numerical (N) results, while subsequent columns give the perturbation approximations P, = (™).

Table 3
The frequencies from each branch Egs. (29) and (30), for the values n = 1,..., 10,20, 30,40, 50 therein, for the cases L = 1 and 3
n L=1 L=3
Branch 1 Branch 2 Branch 1 Branch 2
N P N P N P N P
1 6.1143 6.0837 3.8395 3.8477 2.1035 2.0279 1.2588 1.2826
2 12.261 12.167 7.7126 7.6953 4.2512 4.0558 2.6286 2.5651
3 18.288 18.251 11.472 11.543 6.1872 6.0837 3.7203 3.8477
4 24.358 24.335 15.369 15.391 8.1802 8.1116 5.0700 5.1302
5 30.424 30.418 19.224 19.238 10.144 10.139 6.3729 6.4128
6 36.521 36.502 23.076 23.086 12.222 12.167 7.6662 7.6953
7 42.600 42.586 26.927 26.934 14.238 14.195 8.9578 8.9779
8 48.681 48.669 30.788 30.781 16.257 16.223 10.292 10.260
9 54.766 54.753 34.620 34.629 18.290 18.251 11.516 11.543
10 60.847 60.837 38.470 38.477 20.310 20.279 12.805 12.826
20 121.68 121.67 76.949 76.953 40.574 40.558 25.640 25.651
30 182.51 182.51 115.43 115.43 60.847 60.837 38.465 38.477
40 243.35 243.35 153.90 153.91 81.125 81.116 51.298 51.302
50 304.19 304.18 192.38 192.38 101.40 101.39 64.124 64.128

As in Table I, the numerical (N) results are compared to the Oth-order perturbation (P) results.

Table 4

The first three frequencies from each branch, for L = 3

N Best approximation
2.1035 2.0820 = Py

4.2512 42112 = Py
6.1872 6.1414 = Pg

1.2588 1.2671 = Pg

2.6286 2.6151 = Py

3.7203 3.7523 = Py

The first column gives the numerical (N) results, while the second column gives the number to which the perturbation approximations
converge. Again, P, = (E™)?, the nth perturbation update.

updates give much more accurate results than the Oth-order approximation. Next, we test the limitations of the
method by looking at what happens for L = 1 and 3. Table 3 is similar to Table 1, in that it lists the numerical
and perturbation results for L =1 and 3. However, here we separate the two branches, and we list the
frequencies for n = 1,...,10, 20, 30,40 and 50 (for n given in Egs. (30) and (31)). Here we see as little as one
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decimal place agreement for a few of the lower entries (for L =3, n=1,2 on Branch I and n =3
on Branch II), although, as expected, there is much better agreement for higher values of n. In Table 4,
then, we apply the perturbations to each of the n = 1,2, 3 frequencies for L = 3. We see that the perturbation
method gives much improved approximation for these lowest frequencies. We have performed these
same calculations for various larger values of L. For L = 10, the accuracy of the perturbation approximation
is not much different than for the case L = 3. However, for L>20, the approximations become progressively
worse, as expected, although, asymptotically, there still is good agreement for n large enough vis-a-vis
Egs. (32) and (33).

Next, we consider a steel beam as described in Ref. [13], with modulus of elasticity E = 3.0 x 107 psi (Ib/in?)
and shear stiffness K = 9.84 x 10°1b in/s>. (Note: We use the British system because (a) in c-g-s, the very large
values of E and K result in unreliable numerical results, while (b) in m-k-s, the lengths will be of the same order
as those in the examples above.)

We treat a solid, circular cylindrical beam with a radius of r = 21in, linear mass density p = 3.561b/in and
resulting moment of inertia of 7 = 2.01 x 10? in*. We consider the three cases L = 10, 20 and 30in, thus, with
length-per-radius ratios L/r = 5,10 and 15, respectively. Numerical computations at » = 100 and 110 show
that the first 50 eigenfrequencies converge to at least seven decimal places at n = 100.

Table 5

The first 15 frequencies, along with the 21st, 28th, 35th and 42nd frequencies, for L = 10, 20 and 30

L=10 L=20 L=30 B
N P N P N P

521.75 522.58 259.66 261.29 171.77 174.19 11
1042.8 1045.2 518.12 522.58 342.07 348.38 11
1566.4 1567.7 781.16 783.86 518.58 522.58 11
2089.1 2090.3 1042.8 1045.2 693.32 696.77 11
2612.0 2612.9 1304.7 1306.4 868.36 870.96 11
31343 3135.5 1565.8 1567.7 1042.6 1045.2 I
3262.3 3234.6 1671.6 1617.3 1157.5 1078.2 1

3657.4 3658.0 1827.7 1829.0 1217.4 1219.3 11
4180.1 4180.6 2089.3 2090.3 1392.0 1393.5 11
4702.7 4703.2 2350.6 2351.6 1566.2 1567.7 11
5225.3 5225.8 2612.0 2612.9 1740.6 1741.9 11
5747.9 5748.3 2873.3 2874.2 1914.9 1916.1 I1
6270.5 6270.9 3134.7 3135.4 2089.2 2090.3 11
6482.8 6469.2 3261.8 3234.6 2197.0 2156.4 I

6793.2 6793.5 3396.1 3396.7 2263.6 2264.5 11
9712.9 9703.7 4870.1 4851.9 3261.9 3234.6 I

12945.0 12938.0 6482.8 6469.2 4333.2 4312.8 1

16178.0 16173.0 8097.4 8086.4 5399.5 5391.0 1

19412.0 19407.0 9712.9 9703.7 6582.9 6469.2 1

In each case, the numerical (N) frequency appears first, followed by the Oth-order perturbation (P) frequency g’g =(1/L)/(EI] p)).%.
I signifies that the frequency is from the branch given by Eq. (30); II by Eq. (31).

;i:lgr(;t frequency from each branch for the example with results given in Table 5
L=10 L=20 L =30
N B N B N B
521.75 521.98 = Ps 259.66 260.28 = Ps 171.77 172.57 = Ps
3262.3 32542 =Py 1671.6 1646.6 = Py 1157.5 11251 =Py,

Again, N represents the numerical result, and B the “best approximation” from the perturbation results P, = (£™)°.
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The format of Table 5 is identical to that of Table 1, except that we include the first 15 frequencies
and, in addition, the next four frequencies from branch I (as the majority of these lower frequencies are from
branch II).

We see that, for L = 10, there is agreement in two decimal places for the very lowest frequencies on each
branch, improving to three and four decimal places for the remaining frequencies. This agreement seems
to get progressively worse as the length increases, suggested by our earlier set of examples and by the results in
Ref. [1]. Of course, the greater the ratio L/r, the more accurate the prediction of the simpler Euler—Bernoulli
model become.

Finally, in Table 6, we apply the perturbations to the lowest frequency from each branch, for each of the
three cases L = 10,20 and 30. We see here, too, that the perturbations lead to much improved estimations for
these lowest frequencies.
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