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Abstract

This paper presents a novel morphological undecimated wavelet (MUDW) decomposition scheme for fault diagnostics

of rolling element bearings. The MUDW scheme is developed based on the morphological wavelet (MW) theory for both

the extraction of impulse features and noise smoothing in signal processing. The analysis operators and the synthesis

operator of MUDW strictly satisfy the pyramid condition. The MUDW scheme is used to extract impulse features from

rolling element bearing defect signals imposed with noise. The efficiency of the MUDW scheme used for noise smoothing

and the extraction of impulse components is evaluated using the simulated data and measured signals from the bearing test

rig. Compared with enveloping demodulation analysis, the MW transform and the traditional wavelet transform (WT), the

MUDW decomposition scheme is more effective and suitable for the on-line diagnostics of bearings in rotating machines.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rolling element bearings are among the most important and frequently encountered components in the vast
majority of rotating machines, their carrying capacity and reliability being prominent for the overall machine
performance. Therefore, quite naturally, the fault identification of rolling element bearings has been the
subject of extensive research.

When a fault in one surface of a bearing strikes another surface, a force impulse is generated which excites
resonances in the bearing and the machine. The successive impacts produce a series of impulse responses which
may be amplitude modulated as a result of the passage of the fault through the load zone or of the varying
transmission path between the impact point and the vibration measurement point. This physical effect has
been exploited by several vibration analysis methods [1], based either on detailed models of the vibration
response, or on signal processing methods. A comprehensive model for the nature of vibrations induced by the
fault in a rolling element bearing, taking the detailed account of imperfections, wear and lubrication, has been
proposed in Refs. [2,3]. Several frequency domain signal processing methods have been developed to extract
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the useful information contained in the signals from the overall response, the envelope analysis being the most
widely accepted one [4]. Improvement in this direction has been recently proposed, based on joint
time–frequency domain methods, mainly on wavelet transforms (WTs), Hilbert–Huang transforms, as well as
on cyclostationary analysis. This paper considers as a possible alternative, the application of a purely time
domain analysis procedure, based on morphological wavelet (MW) decomposition concepts.

Morphological signal processing comprises a broad collection of theoretical concepts and mathematical
tools for signal analysis, nonlinear signal operators, design methodologies and application systems that are
related to mathematical morphology (MM) [5,6]. Morphological signal processing was firstly used to analyze
binary image data and was then extended to gray-level images [7]. The traditional tools of linear systems and
Fourier analysis are of limited use for solving geometry-based problems because they do not directly address
the issues of how to quantify the shape and the size of the signals. Contrarily, morphological signal processing
is perfectly able to quantify all aspects. However, applications of morphological filters in one-dimensional time
series have been quite limited, restricted practically to biomedical EEG signals [8,9]. It has been recognized
that multi-resolution signal decomposition schemes provide convenient and effective ways to process
information. Most of the modern multi-resolution decomposition schemes are based on the theories of
pyramid and wavelet, using the convolution and time–frequency domain transformations. However, the linear
filtering approaches to multi-resolution signal decomposition have not been theoretically justified. In
particular, the operators used for generating various levels of signal components in a pyramid must crucially
depend on an application. Therefore, in recent years, a number of researchers have proposed nonlinear multi-
resolution signal decomposition schemes based on morphological operators. However, until Goutsias and
Heijmans presented a set of fundamental theories named morphological pyramid (MP) and MW, which were
derived from traditional wavelet and pyramid theories, there are not a unified standpoint and framework for
nonlinear pyramids, filter banks and wavelets, including MPs and wavelets construction [10,11]. MP and MW
extend the original wavelet and pyramid from the linear domain to the nonlinear domain. Moreover, they do
not require the time–frequency domain analysis.

Based on the MW theory, a multi-resolution signal decomposition scheme, the morphological undecimated
wavelet (MUDW) decomposition scheme is presented in this paper. The analysis operators and synthesis
operators of the MUDW scheme are constructed according to the morphological coupled wavelet theories.
Such a scheme, composed of morphological operators, totally inherits the simple computation property of
MM operators. One of the analysis operators in the MUDW scheme is constructed from two parts, one
extracts the impulsive components and the other fulfills the noise reduction. Such a construction is efficient for
extracting features from the defective bearing signals with noise disturbance. The characteristic frequency of
the bearing defect is very obvious by the frequency spectrum analysis of the approximate signals. Compared
with the enveloping method, the MUDW decomposition method is more valuable, as demonstrated by the
results using the simulated data and measured signals in the rolling element bearing test rig.

This paper is organized as follows. In Section 2, we briefly introduce the concepts of the morphological
operators, the MP condition and the morphological coupled wavelet. The construction of the proposed
MUDW decomposition scheme is discussed and its properties are analyzed in Section 3. In Section 4, the
effects of the MUDW decomposition scheme are examined using simulated impulsive signals with noises and
harmonic components. The comparison is made with the current enveloping demodulation method. The
proposed procedure is evaluated in Section 5, using three vibration signals from defective rolling element
bearings measured in the bearing test rig, which presents an outer race fault, an inner race fault and a rolling
element fault, respectively. Finally, Section 6 lays out the conclusive remarks.

2. Basic concepts of MUDW decomposition scheme

In contrast with Fourier transform and wavelet analysis, MM is developed from set theory and integral
geometry, and is concerned with the shape of a signal waveform in the complete time domain rather than the
frequency domain. MM is a nonlinear approach and has been widely used in the areas of image processing,
machine vision and pattern recognition, due to its robustness in preserving the shape while suppressing noise.
The mathematical calculation involved in MM includes only addition, subtraction, maximum and
minimum operations without any multiplication and division. When acting upon complex shapes of signal,
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MM operations are capable of decomposing a signal into meaningful parts and separating them from the
background, as well as preserving the main shape characteristics.

2.1. Morphological preliminaries

Dilation and erosion are the two basic operations in MM. By combing these two operators in different
orders, many other morphological operations are formed. They can be defined in terms of topology theory.

In topology, a set Z with a partial ordering p is defined as a complete lattice if every subset K of Z has a
supremum (least upper bound) 3K and an infimum (great lower bound) 4K [10]. Let Z and M be two
complete lattices, and let e:Z-M and d:M-Z be two operators, one can say that (e, d) constitutes an
adjunction between Z and M if

dðyÞpx3yp�ðxÞ; x 2 Z; y 2M.

If (e, d) forms an adjunction between Z and M, then e has the property

� ^
i2I

xi

� �
¼ ^

i2I
�ðxiÞ (1)

for any family fxiji 2 Ig � Z of signals. Operator d has the dual property

d _
i2I

yi

� �
¼ _

i2I
dðyiÞ (2)

for any family fyiji 2 Ig �M of signals. An operator e that satisfies Eq. (1) is called an erosion, whereas an
operator d that satisfies Eq. (2) is called an dilation. We denote the identity operator on Z or M by id. With
every erosion e:Z-M, there corresponds a unique dilation d:Z-M such that (e, d) constitutes an adjunction.
If (e, d) is an adjunction between two complete lattices Z and M, then

�dXid; d�pid and �d� ¼ �; d�d ¼ d. (3)

If c is an operator from a complete lattice Z into itself, then c is idempotent, if c2
¼ cc ¼ c. If c is increasing

and idempotent, then c is called a morphological filter. A morphological filter c that satisfies cpid is an
opening, whereas a morphological filter c that satisfies cXid is a closing. If (e, d) is an adjunction between two
complete lattices Z and M, then ed is a closing on M and de is an opening in Z. Given a complete lattice T and
a nonempty set E, the set Fun(E, T) ¼ TE comprising all functions x:E-T is a complete lattice under the
pointwise ordering

xpy; if xðpÞpyðpÞ and 8p 2 E,

where y is a function in the set Fun(E, T). Based on the definition of Fun(E, T), the dilation dA and the erosion
eA are given by

dAðxÞðnÞ ¼ ðx� AÞðnÞ ¼ _
k2A

xðn� kÞ, (4)

�AðxÞðnÞ ¼ ðxYAÞðnÞ ¼ ^
k2A

xðnþ kÞ, (5)

where � is a dilation operator and Y is an erosion operator; n is an element of the function; A is a given set
so-called structuring element (SE) and k is an element of A. Thus, we may conclude that the composition
aAðxÞ ¼ dA�AðxÞ ¼ x � A is an opening operation, whereas the composition bAðxÞ ¼ �AdAðxÞ ¼ xdA is a closing
operation. This proposition plays an important role in simplifying the analysis and synthesis operators of the
MUDW decomposition scheme.

2.2. MP condition and coupled wavelet

Signal decomposition has been regarded as an important branch in information processing. The
time–frequency domain analysis method is widely used in signal processing. It has also been investigated
using MM in which the pyramid condition and coupled wavelet have been proposed [10,11]. In Goutsias and
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Heijmans’ work, they distinguished between two types of multi-resolution decomposition. One is the pyramid
scheme and the other is the wavelet scheme. Both of them consist of a number of levels such that the amount
of information decreases towards a higher level. Each step toward a higher level is implemented by an analysis
operator, whereas each step toward a lower level is implemented by a synthesis operator.

The synthesis and analysis operators must satisfy the pyramid condition which plays an important role in
constructing the operators of the decomposition scheme. Consider a family Vj of signal spaces where j is a
finite or an infinite index set. Here the signals consist of two families of operators, a family c"j of analysis
operators mapping Vj into Vj+1 and a family c#j of synthesis operators mapping Vj+1 back into Vj.
The analysis and synthesis operators c"j , c

#

j are said to satisfy the pyramid condition if c"j c
#

j ¼ id on V jþ1

where id is an identity operator. The pyramid condition guarantees that no information is lost in two
consecutive steps: synthesis and analysis. It is the fundamental principle used to construct pyramid and
wavelet operators.

The coupled wavelet is constructed according to the pyramid condition. A coupled wavelet comprises of two
analysis operators and one synthesis operator. The analysis operators include a signal analysis operator and a
detail analysis operator. Fig. 1 shows the coupled wavelet decomposition scheme. In Fig. 1, Vj and Wj are two
sets: Vj is the signal space at level j and Wj is the detail space at level j; c"j : Vj ! Vjþ1 is the signal analysis
operator, o"j : V j !W jþ1 is the detail analysis operator and C#j is the synthesis operator mapping the
information back to the lower level. In order to guarantee that no information is lost and the decomposition is
non-redundant, the analysis operators c"j ;o

"

j and synthesis operator C#j of the coupled wavelet must satisfy
the pyramid condition below

c"j ðC
#

j ðx; yÞÞ ¼ x; if x 2 V jþ1; y 2W jþ1, (6)

o"j ðC
#

j ðx; yÞÞ ¼ y; if x 2 V jþ1; y 2W jþ1. (7)

In order to yield a complete signal representation, the maps ðc"j ;o
"

j Þ : V j ! Vjþ1 �W jþ1 and C#j :
V jþ1 �W jþ1! V j are the inverses of each other. This leads to the following perfect reconstruction
condition:

C#j ðc
"

j ðxÞ;o
"

j ðxÞÞ ¼ x; if x 2 V j. (8)

Furthermore, given an input signal x0AV0, considering the following recursive analysis scheme:

x0! fx1; y1g ! fx2; y2; y1g ! fxk; yk; yk�1; . . . ; y1g ! � � � , (9)

where

xjþ1 ¼ c"j ðxjÞ 2 Vjþ1, (10)

yjþ1 ¼ o"j ðxjÞ 2W jþ1; jX0. (11)
Fig. 1. One stage of coupled wavelet decomposition scheme.
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The original signal x0 can be exactly reconstructed from xk and y1; y2; . . . ; yk by means of the following
recursive synthesis scheme:

xj ¼ C#j ðxjþ1; yjþ1Þ; j ¼ k � 1; k � 2; . . . ; 0, (12)

which shows that the decomposition (9) and (12) are invertible. The signal representation scheme governed by
Eqs. (6)–(12) is referred to as the coupled wavelet decomposition scheme. The coupled wavelet provides a
standard structure for the multi-resolution signal decomposition schemes. Based on this structure, the
MUDW scheme is presented by regenerating the analysis operators and synthesis operator.

3. MUDW decomposition scheme based on morphological gradient (MG)

The proposed MUDW decomposition scheme is based on the synthesis and analysis operators. It adopts
not only multi-stage and varying-scale coupled wavelet, but also the undecimated algorithm. The undecimated
algorithm is based on the idea of no decimation. It applies the WT and omits both down-sampling in the
forward and up-sampling in the inverse transform. More precisely, it applies the transform at each point of the
signal. In signal processing, this algorithm may give the best results, in terms of high quality filtering, by
avoiding information loss and with less distortion that may be caused from noise removal.

The synthesis and analysis operators of the MUDW decomposition scheme are constructed using
morphological dilation and morphological erosion, as well as morphological opening and closing,
respectively. It is shown that

xjþ1 ¼ c"j ðxjÞ ¼
1
2
½ðgfþ fgÞðd� �Þ�ðxjÞ, (13)

yjþ1 ¼ o"j ðxjÞ ¼ ½id�
1
2
ðgfþ fgÞðd� �Þ�ðxjÞ, (14)

C#j ðc
"

j ðxjÞ;o
"

j ðxjÞÞ ¼ c"j ðxjÞ þ o"j ðxjÞ ¼ idðxjÞ ¼ xj. (15)

It is obvious that the MUDW decomposition scheme satisfies the conditions (6)–(8). The signal analysis
operator is composed of two parts: (gf+fg) and (d�e). The first part is a mixture of morphological opening
and closing filters and it can smooth and suppress the noises by selecting multi-scale SEs. The latter part is a
MG operator that plays an important role in extracting the periodic impulse features. The way to determine
the shape and length of the SEs can be referred in Ref. [12]. Then, the MUDW decomposition scheme not only
smoothes the noises but also strengthens the impulsive components in the signals. Considering the
idempotence property of morphological opening and closing, the multi-stage and varying-scale MW
decomposition procedure was adopted. The approximate signal in the lowest stage of the decomposition was
the expected signal that contained useful feature information. Moreover, the length of the approximate signal
was the same with that of the original.

4. Simulation analysis

In order to verify the effectiveness of the MUDW decomposition scheme on noise suppression and
impulsive feature extraction, a simulated signal is processed using the aforementioned method firstly. The
simulated signal is formulated as follows (the sampling frequency is 1024Hz and the sampling time is 1 s):

xðtÞ ¼ 2x1ðtÞ þ 9x2ðtÞ þ x3ðtÞ, (16)

where x1(t) is the sum of two harmonic waves: x1ðtÞ ¼ sinð2p � 30tÞ þ cosð2p � 50tÞ; x2(t) is a typical series of
exponentially decaying impulses with the impulse function of f ðtÞ ¼ e�20t sinð20ptÞ and the impulse frequency
of 20Hz; x3(t) is the Gauss white noises: x3ðtÞ / Nð0; 1Þ. The purpose of the MUDW decomposition is to
extract the impulse components and suppress the harmonic waves and white noises.

The time domain waveform of the simulated signal and its frequency spectrum by means of FFT are shown
in Fig. 2(a) and (b). From Fig. 2(a) the impulse components cannot be clearly seen which were mixed with the
harmonic waves and Gauss white noises. Fig. 2(b) is the partially enlarged frequency spectrum of the signal in
Fig. 2(a), from which the harmonic waves of 30 and 50Hz are more obvious than the impulse signal of 20Hz
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Fig. 2. (a) Time waveform of simulated signal, (b) frequency spectrum of (a), (c) time waveform of (a) with MUDW decomposition and

(d) frequency spectrum of (c).
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and its high-order harmonic components (40, 60, 80, 100Hz). From the amplitude of frequency spectrum, it
can be seen that the harmonic waves are main components and the periodic impulse signal is emerged in the
harmonic waves and noises.

The MUDW decomposition procedure was applied to the simulated signal using three levels of analysis
operation with varying scales. The flat SEs were selected, the value of each unit in the SE was zero and the
element length was three, five and seven units, respectively. The determination of the SE length depended on
distribution of the noise and the frequency of the harmonic waves. The positive impulse component was kept,
moreover, the negative impulse and the noise, as well as the harmonic waves were suppressed by using the
mixed opening–closing filters and MG operation. Fig. 2(c) is the approximate part of the decomposed signal.
The length of the approximate signal is the same with that of the original signal. The frequency spectrum in
Fig. 2(d) indicates clearly the effects of the MUDW decomposition. The components of harmonic waves and
white noises are suppressed markedly compared with that in Fig. 2(b), the impulse characteristic frequency
and its multiples are dominant. It can be seen that the results of the MUDW decomposition are useful to the
impulsive feature extraction by designing proper morphological operators and wavelets.

The enveloping demodulation analysis is a widely used method for extracting the periodic impulse signal. In
order to compare the effectiveness of the enveloping demodulation with that of the MUDW decomposition,
the time waveform and frequency spectrum of the enveloped signal are shown in Fig. 3. The frequency of the
impulse signal and its harmonic frequencies, as well as the fractional–multiple frequency (10Hz) and the
harmonic wave frequencies are all in evidence in Fig. 3(b), whereas, the impulse feature is not very clear.
Compared with the results in Fig. 2(d), the effect of the enveloping demodulation method is not perfect
enough for the simulated signal.

The WT is a traditional time–frequency analysis method. It can reveal the frequency distribution along the
time with multi-resolution for a non-stationary signal. In order to extract the impulse characteristics, the
Morlet wavelet has been employed for thresholding de-noising and time–frequency characteristic analysis that
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Fig. 3. (a) The enveloping waveform of the simulated signal and (b) the frequency spectrum of (a).
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utilizes the similarity between the Morlet wavelet and the impulse [13]. The so-called ‘‘sparse code shrinkage’’
de-noising method proposed by Hyvarinen was used to select the transformed wavelet coefficients, which was
based on the maximum likelihood estimation (MLE) technique [14]. By reconstructing the filtered wavelet
coefficients, the de-noised signal can then be obtained. Those methods that are based on orthogonal WTs are
not suitable for vibration signal analysis from gearbox or rolling bearings because the impulses to be isolated
are not smooth. The Morlet wavelet is non-orthogonal. Hyvarinen’s thresholding rule with non-orthogonal
WTs for impulse detection works better than soft-thresholding or hard-thresholding rule of orthogonal WTs
[15]. The de-noised signal based on Morlet WT with MLE thresholding was shown in Fig. 4(a). The impulse
components cannot be seen clearly which are mixed by the harmonic waves. Because the impulse frequency
(20Hz) is very close to the harmonic wave frequencies (30 and 50Hz), the WT filtering just removes the noises
and the harmonic waves are not suppressed. From the time domain waveform of the de-noised signal, it can be
seen that the effect of the WT filtering is not ideal for the impulse extraction.

The time–frequency distribution can reveal more information about the signal. Fig. 4(b) is the scalogram of
the de-noised signal with continuous Morlet transform. The reason for selecting the Morlet wavelet function
as mother wavelet is the same as that of the de-noising process for the simulated signal aforementioned.
The procedure of continuous Morlet WT is carried out by the function ‘‘Scalo_Morl(Sig,SampFreq,
TimeSup,N,f0,iShow)’’ which was compiled by Matlab. From the scalogram, it can be seen that there
are 20 impulses within 1 s. This is in accordance with the impulse frequency of 20Hz. The harmonic
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waves (50 and 30Hz) are also visible in the scalogram which are mixed with the impulse frequencies. The
time–frequency analysis based on Morlet WT for the de-noised signal can detect the impulse components in
the simulated signal. Since the aim is to extract the impulse characteristics and suppress the other components
in the simulated signal, the Morlet WT and the MUDW decomposition are all effective to impulse detection
and noise removing. Moreover, the MUDW decomposition can suppress the harmonic waves in the
meanwhile. Because the MUDW decomposition is nonlinear WT and its algorithm is simple, the MUDW
method is more suitable to the non-stationary signal processing.

The wavelet packet transform is suitable to distinguish the close frequency components in the original signal
by selecting the proper decomposition level. However, if the components of the original signal are not known
beforehand, the number of the decomposition levels cannot be determined in advance. The WT analysis in this
work is only used to remove the noise and show the time–frequency distribution characteristics. Its low-pass
and band-pass filtering function is not utilized because the frequency components of the signals are unknown
hypothetically.

5. Application on defective rolling element bearings

When a fault in one surface of a rolling element bearing strikes another surface, it produces an impact,
which excites natural frequencies of the bearing and of the entire machine. Therefore, the typical response
resulting from these periodic impacts, which are produced by bearing faults, usually comprises a sharp rise
that corresponds to the impact between the rolling surfaces at the location of the defect and a gradual decay
that corresponds to the vibration damping of the bearing outer ring. There are location-dependent
characteristic frequencies of the fault which make it possible to identify the nature of a fault, like the outer race
defect frequency (ORDF), the inner race defect frequency (IRDF), the rolling element defect frequency
(REDF) or the cage train defect frequency (CTDF).

5.1. Data acquisition

The vibration data used in this study were collected from an experiment conducted on a test rig as shown in
Fig. 5. The shaft of the test rig was supported by two journal bearings and driven by an AC motor through a
V-belt. The test bearing was mounted at the end of the shaft. A two-step loading lever mechanism was
employed to apply a load to the test bearing. A B&K 4096 accelerometer and a conditioning amplifier were
used to pick up the vibration signals. Three bearings of the model GB6220 were tested. The specifications of
these bearings were as follows: number of rolling element, 11; diameter of the rolling element, 22.8mm; pitch
diameter, 149mm and the contact angle, 01. The rolling element bearings were seeded with defects using
electro-discharge machining (EDM). The defects with three different sizes of 1.0, 2.0 and 1.5mm in diameter
were introduced separately on the rolling element, inner raceway and outer raceway. Vibration signals were
picked up from each test configuration at a fixed shaft rotation speed of 1680 rpm and a constant load of
5880N. The signals were collected at the sampling rate of 10 kHz and the sampling time of 0.5 s. Under the
Fig. 5. Experimental setup for bearing test.
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present test condition, the characteristic defect frequencies of the three defective bearings were computed using
the formulas:

f ORDF ¼
z

2
1�

d

D
cos a

� �
f s, (17)

f IRDF ¼
z

2
1þ

d

D
cos a

� �
f s, (18)

f CTDF ¼
D

2d
1�

d

D

� �2

cos2 a

" #
f s, (19)

where z is the number of rolling element, d the diameter of the rolling element, D the pitch diameter, a the
contact angle and fs the rotating frequency of the shaft. The corresponding characteristic defect frequencies
were: IRDF ¼ 158Hz, REDF ¼ 137Hz, ORDF ¼ 105Hz and CTDF ¼ 12Hz.
5.2. Analysis of the MUDW decomposition for defective vibration signals

Fig. 6(a), (c) and (e) show the vibration signals with an inner race defect, a rolling element defect and an
outer race defect, respectively, which were measured at the test rig. From the time domain waveforms,
different defect characteristics cannot be distinguished easily. According to the sampling rate and the defect
characteristic frequency, the MUDW decomposition aforementioned was applied to the signals with four
stages of decomposition and the length of the flat SEs were 3, 6, 9 and 12 units. The frequency spectrums of the
approximate signals of the MUDW decomposition were shown in Fig. 6(b), (d) and (f). It can be seen that the
defect characteristic frequencies and their multiples are obvious. The values of the characteristic frequencies
shown in Fig. 6 are close to the calculated IRDF, REDF and ORDF. Theoretically, the shaft rotating
frequency fs and the sidebands with the interval of fs must be detected in Fig. 6(b) and the cage train rotating
frequency fc and the sidebands with interval of fc must be detected in Fig. 6(d). However, the amplitude of the
modulated signal caused by the damage and its sidebands cannot be detected properly in Fig. 6(b) and (d). The
inconsistent phenomenon arises from the bearing test rig. Considering the assembly errors, the bearing house
was not driven vertically by the drag bar of the lever mechanism. Therefore the tested bearing (6220 deep
groove ball bearing) was acted by not only the radial load but also the axial load. For the inner race defect and
rolling element defect, the impact region caused by the damage was not just the top of the ring but around the
whole ring. So the fs, fc and sidebands were not clear in the frequency spectrum. If the bearing house was acted
by only the radial load, this drawback would be overcome and the results would be better.

The kurtosis value analysis is a very reliable time domain diagnostic technique for the impulse detection in
the signals [13]. For the defective signals with MUDW transform, the kurtosis values were calculated by the
kurtosis function in Matlab toolbox. They were 7.1472 for defective signals of inner race, 6.3596 for defective
signals of rolling element and 5.1835 for defective signals of outer race, respectively. For the normal signal
with no defects in the bearing, the kurtosis value was 2.8792 by using the same method. It can be seen that the
kurtosis value is a good index to judge whether or not the defect is existent in the bearing. Moreover, by means
of selecting many measured data as the learning samples, the kurtosis value can be used to bearing defect
classification if it is combined with the artificial neural network (ANN) or support vector machine (SVM)
algorithm. However, the accurate classification criterion based on kurtosis value for different types of defect
cannot be established. It depends on the regional distribution of the kurtosis value. Whereas, the bearing
defect characteristic frequency (IRDF, REDF and ORDF) is an exact value of reference which can be
calculated by the shaft speed and the bearing structure specificity in advance. By using the FFT analysis of the
MUDW transformed signal, the different types of defect can be obviously identified corresponding to the
IRDF, REDF and ORDF. The FFT analysis based on defect characteristic frequency is an effective method
for defect diagnosis, but its identification process is more complicated than that of kurtosis value analysis.
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Fig. 6. The original vibration signals and local frequency spectral diagrams of defective rolling element bearings using the MUDW

decomposition scheme: (a) the signal with an inner race defect, (b) the spectral diagram of (a) under the MUDW decomposition, (c) the

signal with a rolling element defect, (d) the spectral diagram of (c) under the MUDW decomposition, (e) the signal with an outer race

defect and (f) the spectral diagram of (e) under the MUDW decomposition.
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5.3. Enveloping analysis for the defective vibration signals

In order to compare the enveloping demodulation analysis with the MUDW decomposition scheme, the
vibration signals were preprocessed by a low-pass filter with 2.5 kHz and a band-pass filter with 800–2000Hz
according to the calculated natural frequency of the outer race. The enveloping spectrums were shown in
Fig. 7(a), (b) and (c). Compared with the frequency spectrums in Fig. 6(b), (d) and (f), the performance of the
enveloping demodulation method is not ideal enough, especially for the inner race and rolling element defects.
The enveloping demodulation analysis procedure includes the low-pass filtering and band-pass filtering and
the selection of the frequency band is determined by the natural frequency of the bearing parts, which is
different for every part of the bearing, therefore the enveloping demodulation method is greatly affected by the
man-made errors. Whereas, the MUDW decomposition method only includes addition, subtraction and
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extreme value operations, the algorithm is not affected by the properties of the bearing parts and it not only
smoothes the noises but also extracts the impulse features in the signals. The simplicity and validity of the
MUDW decomposition is preponderant for the diagnostics of rolling element bearing defects, especially for
real-time processing in the on-line diagnostics.

5.4. Morphological decimated wavelet (MDW) transform for the defective vibration signals

The MDW transform was widely used in the image processing. In one-dimensional signal analysis, the
MDW transform is a two-based decomposition method, and the decomposed signal length is decreased by 2n.
The major difference with the classical linear wavelet is that the linear signal analysis filter of the latter is
replaced by an erosion (or dilation), i.e., by taking the minimum (or maximum) over two samples. The typical
morphological Haar wavelet decomposition is defined as follows:

c"ðxÞðnÞ ¼ xð2nÞ ^ xð2nþ 1Þ, (20)

o"ðxÞðnÞ ¼ xð2nÞ � xð2nþ 1Þ, (21)

c#ðxÞð2nÞ ¼ c#ðxÞð2nþ 1Þ ¼ xðnÞ, (22)

o#ðyÞð2nÞ ¼ yðnÞ _ 0; o#ðyÞð2nþ 1Þ ¼ �ðyðnÞ ^ 0Þ. (23)

Here ‘‘4’’ denotes minimum and ‘‘3’’ denotes maximum, the analysis and synthesis operators satisfy
the pyramid conditions. The detail parts o"ðxÞðnÞ contain the signal information with different scales.
By reconstructing the detail parts using the formulas (22) and (23), the noises are removed and the edge
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information is preserved. The MDW transform was applied to the vibration signals of the defective bearings.
The frequency spectrums of the reconstructed signals are shown in Fig. 8(a), (b) and (c).

Compared with the analysis results in Fig. 6(b), (d) and (f), the defect characteristic frequency and its
multiples of the MDW transform are not as obvious as those of the MUDW decomposition for the defective
bearing signals. According to the property of analysis operators of the morphological Haar WT, the noises
were removed in the reconstruction procedure, whereas, the impulse components reflecting the defect
characteristics were not emphasized. It can be seen that the MDW transform does not as perfectly fit for the
impulse feature extraction as the MUDW decomposition does.
5.5. Traditional WT for the defective vibration signals

The same methods as those for the simulated signal aforementioned are used to analyze the measured data.
After the Morlet wavelet de-nosing processing, the scalograms are obtained and shown in Fig. 9. Among the
three plots, the periodic impulse characteristics caused by the outer race defect are the most obvious. The
frequency of the impulses is equal to the ORDF. The impulses caused by inner race defect are not very clear
and the periodicity characteristics are not as ideal as those of the outer race defect signal. The impulses caused
by the rolling element defect are blurry and the impulse frequency corresponding to REDF cannot be found at
all. Because the components of the measured signal are very complicated, which comprise the noises, periodic
impulses, the natural vibration of different parts of the bearing with high frequencies and other vibration
components from the machine, the impulses caused by the defects are mixed with the other non-stationary
signals from the test rig. Even though the noises are removed greatly, the results of the impulse extraction are
not very good, especially for the rolling element defect and the inner race defect. Compared with MUDW
decomposition and the enveloping demodulation analysis, the effect of Morlet WT is not so good.
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Fig. 9. Scalogram of the vibration signals with WT: (a) the inner race defect, (b) the rolling element defect and (c) the outer race defect.
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6. Conclusions

In this paper, a MM-based MUDW decomposition scheme has been proposed to effectively smooth noise
and extract the impulse components in the vibration signals of defective rolling element bearings. The
development of its analysis operator has been discussed in detail and the multi-stage and varying-scale
MUDW decomposition procedure has been analyzed. The efficiency of the MUDW decomposition scheme
has been evaluated in simulation studies and the experimental signals measured in the bearing test rig.
Compared with the enveloping demodulation analysis method, the MDW transform and the traditional WT,
the results show that the MUDW decomposition scheme performs satisfactorily and is able to extract the
impulse feature of defective rolling element bearing signals. Because of the simplicity of the MUDW
decomposition algorithm, this method is suitable for the on-line diagnostics of rolling element bearings in
rotating machines.
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