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Abstract

In this paper, image method and wave function expansion method are applied to investigate the multiple scattering of

flexural waves and dynamic stress concentration from a cylindrical inclusion in a semi-infinite thin plate, and the analytical

solution of this problem is obtained. The semi-infinite plate with roller-supported boundary is considered, and the image

method is used to satisfy the boundary condition. The addition theorem for Bessel functions is employed to accomplish the

translation of wave fields between different local coordinate systems. As an example, the numerical results of dynamic

stress concentration factors around the inclusion are graphically presented and analyzed. Analysis shows that the angular

distribution of the dynamic stress around the inclusion shows great difference when the distance between the inclusion and

the semi-infinite edge is different. The effects of the elastic modulus, density, Poisson’s ratio, and the thickness of the

inclusion on the shadow side of the inclusion are greater when the distance between inclusion and the semi-infinite edge is

small. In the region of lower frequency, the effects of the elastic modulus, density, Poisson’s ratio, and the thickness of the

inclusion on the dynamic stress are little. Comparisons with other existing models are also discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Plate structures are widely used in aviation, aerospace, shipping, and civil construction engineering.
Inhomogeneities such as inclusions, cavities, or cracks in plates strongly affect the serving life of the structure.
If the inhomogeneities are embedded in a plate, it is definitely vital to determine them and analyze their effects.
The knowledge of stress concentration analysis is very important for a reliable design of the plate, so the stress
concentration problems in the plate have received a considerable amount of interest over the past few decades.

It is known from the literature on wave dynamics that in a certain range of wave frequency, the dynamic
stress around the inhomogeneities is much greater than the static stress. So, to increase the bearing capacity of
structures and the service life of structures, the investigations on elastic waves scattering and dynamic stress
concentrations in plate structures are more important.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Up to present time, stress concentration caused by cutouts or inclusions in an infinite plate has been an
interesting research topic. First, Kirsch [1] pioneered the study of the stress concentration around a circular
hole in the infinite plate under a uniform longitudinal tension. Subsequently, Ying and Truell [2] studied the
scattering of sound waves by a spherical scatterer in an elastic medium. Kato [3] and White [4] considered the
effect of a cylindrical obstacle on wave scattering. Afterwards, Pao and Chao [5] and Pao [6] investigated
the flexural wave diffractions by a cavity in an elastic plate based on Mindlin’s theory. Using a combined finite
element and analytical method, Paskaramoorthy et al. studied the scattering of slow flexural waves by
arbitrary-shaped cavities [7] and a finite through-crack [8] in the infinite elastic plate. The analogous problem
of scattering of flexural waves by circular inclusions was solved by Vemula and Norris using the Mindlin plate
theory [9] as well as the lower-order Kirchhoff plate theory [10]. Recently, Leviatan et al. [11] presented a
source-model technique to investigate the scattering of time-harmonic flexural wave in a heterogeneous thin
plate.

To the author’s knowledge, the researches on flexural waves and dynamic stress in plates mainly focused on
the models of infinite structures. However, the models of semi-infinite plates are more familiar in engineering
application [12]. Due to the complexity of multiple scattering and reflection of elastic waves between the
inhomogeneities and the boundary, an alternative, and possibly simpler, point of view is to ignore edge effects
as a first approximation. This approach is only suitable for large plates with distant edges, and leads to much
simplification. To accurately describe the dynamic stress distribution, the boundary effect of the plate should
be considered. In the past, only a few papers about the dynamic stress in the semi-infinite plate are reported.
The scattering of time-harmonic plane longitudinal, shear, and Rayleigh waves by a crack in two dimensions
embedded in a homogeneous isotropic elastic half-space was investigated by Shah et al. [13]. In a series of
detailed study, Fang and his co-workers have investigated the multiple scattering and reflection of anti-plane
shear waves from cavities in the semi-infinite plate [14,15] and a semi-infinite slab [16], and the boundary effect
were analyzed.

The multiple scattering and reflection of flexural waves at the boundary of plates are more complicated than
those of single-mode waves such as the acoustic and shear waves due to the generation of non-geometrically
induced evanescent waves and the effects of higher-order boundary conditions [17]. Therefore, very few papers
have investigated this problem. Only recently, Fang and his co-workers have studied the multiple scattering of
flexural waves from a cutout [18] and two cutouts [19] in the semi-infinite plate.

The main objective of this paper is to extend the work of Hu et al. [18] to the case of the multiple scattering
of flexural waves from an embedded inclusion in a semi-infinite thin plate with roller-supported boundary. The
image method is applied to satisfy the boundary conditions of the semi-infinite structure. Based on Mindlin’s
theory of transverse motion in thin plates, the wave function expansion method is employed to express the
wave fields around the actual and image inclusions. The analytical solutions of the problem are obtained. As
an example, the numerical results of dynamic stress concentration factor (DSCF) around the inclusion are
graphically presented and discussed.
2. Governing equation of flexural waves in thin plates and its solution

Consider a semi-infinite thin plate with a cylindrical inclusion, which is perfectly bonded to the
exterior region along the boundary of the inclusion, as depicted in Fig. 1. For simplicity, the properties
of the inclusion are assumed to be uniform through their thickness. Let D, r, and h be the bending
stiffness, density and thickness of the plate, and D0, r0, and h0 those of the inclusion. The radius
of the cylindrical inclusion is a. The distance between the center of the inclusion and the semi-infinite edge
is d. The incidence of plane flexural waves over the surface of the semi-infinite thin plate in the x direction is
considered.

For sufficiently thin plates, approximate theories are applied. These theories take into account that the plate
is thin and so the dependency of displacement field on the thickness coordinate may be neglected or supposed
to be polynomial. Mindlin’s approximate theory for flexural waves in plates is well known, and can be found
in many textbooks, for example [17,20]. The theory includes shear-deformation and rotary-inertia effects, as in
the Timoshenko beam theory.
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Fig. 1. Sketch of elastic waves incident upon a semi-infinite plate with a cylindrical inclusion.
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Based on Mindlin’s theory, the flexural wave equation in elastic thin plates may be described as [20]

Dr2r2wþ rh
q2w
qt2
¼ q, (1)

where t is the time, q the externally applied transverse pressure, w the transverse displacement, and D the
bending stiffness of the plate with

D ¼ Eh3=12ð1� n2Þ (2)

in which E, n, h are the elastic modulus, Poisson’s ratio, and thickness of the plate. In the case of this paper, q

is defined as q ¼ 0.
Steady periodic solutions of the problem are investigated. Let w ¼ Re[W exp(�iot)], then the displacement

components determined by steady flexural waves are

ux ¼ �z
qw

qx
; uy ¼ �z

qw

qy
; uz ¼ w ¼ Re½W ðx; yÞe�iot�, (3)

where o is the incident frequency, Re( � ) denotes the real part, and i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit.
According to Eqs. (1) and (3), W(x, y) should satisfy the following equations:

r2r2W � k4W ¼ ðr2 þ k2
Þðr2 � k2

ÞW ¼ 0, (4)

ðr2 þ k2
ÞW 1 ¼ 0 ðr2 � k2

ÞW 2 ¼ 0. (5)

Here, k is the wavenumber of elastic waves in the plate, and k ¼ (rho2/D)1/4.
In Eq. (5), it is noted that W1e

�iot denotes the propagating elastic waves in plates and W2e
�iot denotes the

localized evanescent wave motion. The two parts are integrated and form the motion of flexural waves and
vibration modes in thin plates.

According to Eq. (4), the general solution of the scattered waves resulting from the cylindrical inclusion can
be described as

W s ¼W s
1 þW s

2 ¼
X1

n¼�1

½A1
nH ð1Þn ðkrÞeiny þ A2

nKnðkrÞeiny�, (6)

where A1
n and A2

n are determined by satisfying the boundary conditions are the mode coefficients of scattered
waves from inclusions, Hn

(1)( � ) is the nth-order Hankel function of the first kind, and Kn( � ) is the nth-order
modified Bessel function of the second kind. The superscript s denotes the scattered waves. It should be noted
that H ð1Þn ð�Þ and Kn( � ) denote the outgoing waves.

Likewise, the refracted wave field in the inclusion is a standing wave, which can be described as

W r ¼W r
1 þW r

2 ¼
X1

n¼�1

½Cn1Jnðk0rÞe
iny þ Cn2Inðk0rÞeiny�, (7)
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where k0 ¼ (r0h0o
2/D0)

1/4 is the wavenumber of elastic waves in the inclusion, Cn1 and Cn2 determined by
satisfying the boundary conditions are the mode coefficients of refracted waves from inclusions, Jn( � ) is the
nth-order Bessel function of the first kind, and In( � ) is the nth-order modified Bessel function of the first kind.
The superscript r denotes the refracted waves.

3. Excitation of incident waves and total wave field in the plate

Assume that a plane flexural wave propagates along the positive x direction in the semi-infinite plate. One is
the propagating wave and the other is the localized vibration. According to the wave function expansion
method, the incident waves may be described as

W i
1 ¼W 10e

ikdeikx þW 20e
�kde�kx

¼W 10e
ikd
X1

n¼�1

inJnðkrÞeiny þW 20e
�kd

X1
n¼�1

InðkrÞeiny, (8)

where W10, W20 are the transverse vibration amplitudes of incident flexural waves. Note that the superscript i

denotes the incident waves.
When the flexural wave propagates in the semi-infinite structure, it is scattered by the inclusion at first.

Then, the outgoing scattered wave from the inclusion is reflected by the semi-infinite edge, and the reflected
waves W1

f arise. The reflected waves are scattered by the inclusion again. This complex phenomenon is shown
in Fig. 1.

A semi-infinite thin plate with roller-supported boundary is considered. To satisfy the boundary conditions
at the semi-infinite edge, the image method is applied. The reflected waves at the edge of the semi-infinite plate
are described by the virtual image inclusion. For the image inclusion, the incident flexural waves propagate in
the negative x0 direction, and can be expressed as

W i
2 ¼W 10e

ikde�ikx0 þW 20e
�kdekx0

¼W 10e
ikd
X1

n¼�1

i�nJnðkr0Þeiny
0

þW 20e
�kd

X1
n¼�1

ð�1ÞnInðkr0Þeiny
0

. (9)

When the exciting source is enough far from the inclusions, one may consider W20 ¼ 0, and then the
incident waves for the actual and image inclusions are described as

W i
1 ¼W 10e

ikdeikx ¼W 10e
ikd
X1

n¼�1

inJnðkrÞeiny, (10)

W i
2 ¼W 10e

ikde�ikx0 ¼W 10e
ikd
X1

n¼�1

i�nJnðkr0Þeiny
0

. (11)

Considering the multiple scattering between the actual and image inclusions, the scattered fields of flexural
waves produced by the actual inclusion in the localized coordinate system (r, y) are described as

W s
1 ¼

X1
n¼�1

Ān1H
ð1Þ
n ðkrÞeiny þ

X1
n¼�1

Ān2KnðkrÞeiny, (12)

where Ānj ¼
P1

l¼1A
l
nj for j ¼ 1, 2 are the total scattering coefficients of the actual inclusion, and the superscript

s denotes the scattered waves. Note that l denotes the lth mode coefficients of scattered waves.
Similarly, the scattered waves produced by the image inclusion in the localized coordinate system (r0, y0), are

described as

W s
2 ¼

X1
n¼�1

B̄n1H ð1Þn ðkr0Þeiny
0

þ
X1

n¼�1

B̄n2Knðkr0Þeiny
0

, (13)
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where B̄n1; B̄n2 are the total mode coefficients of scattered waves of the image inclusion. They are determined
by satisfying the boundary conditions of the inclusions. In fact, they are also related to the boundary
conditions of the edge of plates.

From Eqs. (10) and (11), the total incident wave Wt
i, the original incident wave plus its image as the

reflected wave from the roller-supported edge, can be written as

W i
t ¼W 10e

ikd ðeikx þ e�ikx0 Þ ¼W 10e
ikd

X1
n¼�1

ðin þ e�2ikd i�n
ÞJnðkrÞeiny

" #
. (14)

Then, the total field of elastic waves in the semi-infinite plate should be produced by the superposition of the
incident field, the scattered fields and the reflected fields at the edge of the plate, i.e.,

W ¼W i
1 þW s

1 þW
f
1 ¼W i

1 þW s
1 þW s

2. (15)

Now, for the straight roller-supported edge, the boundary conditions at the edge are considered:

qW ðtÞ

qx
¼

q3W ðtÞ

qx3
¼ 0 at x ¼ �b. (16)

From Eq. (14), it is clear that the total incident wave has satisfied these conditions.
Applying the boundary conditions (16) to Eq. (15), and from the fact that r ¼ r0, y0 ¼ p�y on the plane

boundary of the semi-infinite structure, and the identity Hn
(1)einp ¼ H�n

(1), the following relations between the
total mode coefficients of scattered waves are obtained:

B̄n1 ¼ Ā�n1; B̄n2 ¼ ð�1Þ
�nĀ�n2. (17)

From Eq. (17), the relations between the total scattering coefficients of the image inclusion and those of the
actual inclusion are obtained.

Then, by using the following translational addition theorems of Bessel functions [21]

H ð1Þn ðkr0Þeiny
0

¼
X1

m¼�1

ð�1Þm�nH ð1Þm�nð2kdÞJmðkrÞeimy, (18)

Knðkr0Þeiny
0

¼
X1

m¼�1

ð�1ÞmKm�nð2kdÞImðkrÞeimy, (19)

the scattered fields W2
s of the image inclusion can be represented in the local coordinate systems (r, y).

After some manipulations, the total scattered field Ws around the actual inclusion is expressed as

W s ¼
X1

n¼�1

Ān1H
ð1Þ
n ðkrÞeiny þ

X1
n¼�1

X1
m¼�1

Ām1_mnJnðkrÞeiny

þ
X1

n¼�1

Ān2KnðkrÞeiny þ
X1

n¼�1

X1
m¼�1

Ām2kmnInðkrÞeiny, (20)

where

_mn ¼ ð�1Þ
nþmH

ð1Þ
nþmð2kdÞ and kmn ¼ ð�1Þ

nþmK
ð1Þ
nþmð2kdÞ.

4. Boundary conditions around the inclusion in the plate

There are four continuous conditions around the inclusion. It is required that Wt, qWt/qr, Mrr and Vr are
continuous across the boundary of the inclusion. The expressions of Mrr and Vr are given by

Mrr ¼ �D
q2W t

qr2
þ v

1

r

qW t

qr
þ

1

r2
q2W t

qy2

� �� �
, (21)
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V r ¼ Qr þ
1

r

qMry

qy
¼ �D

q
qr
ðr2W tÞ �Dð1� vÞ

1

r2
q
qy

q2W t

qrqy
�

1

r

qW t

qy

� �
, (22)

where Mrr and Vr are the bending moment and the equivalent shear force around the inclusions, respectively.

5. Solution of scattering mode coefficients of elastic waves

By substituting the expressions of wave fields into the boundary conditions of the actual inclusion, four
equations determining the mode coefficients are obtained. Multiplying by e�isy and integrating from 0 to 2p on
both sides of the equations, one can obtain a set of system of linear equations for the unknown mode
coefficients fĀn1; Ān2;Cn1;Cn2g,

Ān1H
ð1Þ
n ðkaÞ þ JnðkaÞ

X1
m¼�1

_mnĀm1 þ KnðkaÞĀn2 þ InðkaÞ
X1

m¼�1

kmnĀm2

� Jnðk0aÞCn1 � Inðk0aÞCn2 ¼ �W 10e
ikd ðin þ e�2ikd i�n

ÞJnðkaÞ, (23)

Ān1_
1
H þ _1J

X1
m¼�1

_mnĀm1 þ _1K Ān2 þ _1I
X1

m¼�1

kmnĀm2

� _2JCn1 � _2I Cn2 ¼ �W 10e
ikd ðin þ e�2ikd i�n

Þ_1J , (24)

<1
HĀn1 þ<

1
J

X1
m¼�1

_mnĀm1 þ<
1
K Ān2 þ<

1
I

X1
m¼�1

kmnĀm2 �
D0

D
½<2

JCn1 þ<
2
I Cn2�

¼ �W 10e
ikd ðin þ e�2ikd i�n

Þ<1
J , (25)

I1
HĀn1 þ I1

J

X1
m¼�1

_mnĀm1 þ I1
K Ān2 þ I1

I

X1
m¼�1

kmnĀm2 �
D0

D
½I2

JCn1 þ I2
I Cn2�

¼ �W 10e
ikdðin þ e�2ikd i�n

ÞI1
J . (26)

Here, the following notations are used:

_1X ¼ ½nX nðkaÞ � kaX nþ1ðkaÞ�, (27)

_2X ¼ ½nX nðk0aÞ � k0aX nþ1ðk0aÞ�, (28)

<1
X ¼ ½n

2ð1� vÞ � ðkaÞ2�X nðkaÞ � ð1� vÞkaX 0nðkaÞ, (29)

<2
X ¼ ½n

2ð1� v0Þ � ðk0aÞ
2
�X nðk0aÞ � ð1� v0Þk0aX 0nðk0aÞ, (30)

I1
X ¼ n2ð1� vÞX nðkaÞ � ½n2kað1� vÞ � ðkaÞ3�X 0nðkaÞ, (31)

I2
X ¼ n2ð1� v0ÞX nðk0aÞ � ½n2k0að1� v0Þ � ðk0aÞ

3
�X 0nðk0aÞ, (32)

where the upper and lower signs refer to X ¼ H(1), J and X ¼ K, I, respectively.
After arrangement, Eqs. (23)–(26) can be simplified as

EA ¼ f, (33)

where E is the coefficient matrix of (8n+4)� (8n+4), f the vector of (8n+4) ranks, and A the mode
coefficients.

According to the definition of DSCF, the dynamical bending moment concentration factor is the ratio
of amplitude hoop bending moment around the inclusion and the maximum bending moment in the
incident direction of elastic waves [22]. Thus, the expression of the DSCF around the cylindrical inclusion
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described as

DSCF ¼Mn

yy ¼Myy=M0 ¼ �
1

W 10k2
½r2W � ð1� vÞq2W=qr2�, (34)

where M0 is the maximum amplitude of bending moment of incident waves and M0 ¼ Dk2W10.
Then, the DSCF around the inclusions a and b are, respectively, written as

DSCF ¼
1

k2a2
eikd

X1
n¼�1

ðin þ e�2ikd i�n
ÞTJe

iny þ
X1

n¼�1

Ān1THeiny þ
X1

n¼�1

X1
m¼�1

Ām1_
ð1Þ
mnTJe

iny

"

þ
X1

n¼�1

Ān2TKe
iny þ

X1
n¼�1

X1
m¼�1

Ām2kð1ÞmnTIe
iny

#
. (35)

Here, the following notations are used:

TX ¼ ð1� vÞkaX 0nðkaÞ � ½ð1� vÞn2 � vðkaÞ2�X nðkaÞ, (36)

where the upper and lower signs refer to X ¼ H(1), J and X ¼ K, I, respectively.

6. Numerical examples and discussion

Fatigue failures often occur in the regions with high stress concentration, so an understanding of the
distribution of the dynamic stress around the inclusion is quite useful in structural design. According to the
expression of DSCF, the DSCFs around the cylindrical inclusion are simulated by using MATLAB.

In the following analysis, it is convenient to make the variables dimensionless. To accomplish this step, a
representative length scale a, where a is the radius of inclusion, is introduced. The following dimensionless
variables and quantities have been chosen for computation: the incident wavenumber is k* ¼ ka ¼ 0.01–2.0,
the distance between the center of the inclusion and the semi-infinite boundary is d* ¼ d/a ¼ 1.1–10.0, the
ratio of elastic modulus E* ¼ E0/E ¼ 0.1–5.0, the ratio of mass density r* ¼ r0/r ¼ 0.1–2.0, the ratio of
thickness h* ¼ h0/h ¼ 1.0–2.0, v ¼ 0.3, and v0 ¼ 0.2, 0.3, 0.4.

To validate the present dynamical model, Figs. 2 and 3 are given. Fig. 2 shows the angular distribution of
the DSCFs around a hole in the infinite thin plate. The DSCFs obtained from Ref. [7] are represented by line
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Fig. 2. Comparison of the angular distribution of dynamic stress concentration factors (k* ¼ 0.5, d* ¼ 10.0).
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with dots. The bold line obtained from the method in this paper represents the DSCFs in the thin plate
without any inhomogeneities. Excellent agreement with Ref. [7] can be observed in Fig. 2. A thin plate without
any inhomogeneities is identical to the plate with an inclusion which has the same mechanical properties and
thickness as the plate itself. As expected, the DSCFs in this case are uniformly 1.0, and this also can validate
the dynamical model.

Fig. 3 illustrates the DSCF at the position of y ¼ p/2 as a function of the dimensionless wavenumber with
E0 ¼ h0 ¼ 0. When the distance ratio is d* ¼ 8.0, the wave field close to the edge of the plate is almost the
same as that of the semi-infinite plate with no inclusion. E0 ¼ h0 ¼ 0 means that the inclusion in the plate
reduces to a cavity. From Fig. 3, one can see that when the incident wavenumber is k*-0, the DSCF is the
maximum, and its value is about My* ¼ 1.90, which is consistent with the numerical results of infinite plates in
Refs. [18,22]. It can be seen that peaks and troughs occur in Fig. 3. This is due to the variation in wavenumber
changing the distance between the inclusion and the nodal line in the total standing wave field created by the
incident, reflected, and scattered waves. At some frequencies, the inclusion is at nodal line, while at others it is
at an anti-nodal line.

Figs. 4–9 illustrate the angular distribution of DSCFs around the inclusion when the values of d*, E*, r*,
and v0 are different.

In Fig. 4, the inclusion in the plate reduces to a cavity. From Fig. 4, it can be seen that when the distance
between the inclusion and the semi-infinite edge is great, the dynamic stresses at the positions around the
cavity show little variation. The dynamic stress at the positions of y ¼ 0 is the maximum. If the distance
between the inclusion and the semi-infinite edge becomes small, the DSCF at the position of y ¼ p is the
maximum. The DSCF at the position of y ¼ 0 is the minimum. The maximum value of DSCF is much greater
than that at other positions.

In Fig. 5, the elastic modulus and density of the inclusion are greater than those of the plate. It can be
observed that when the distance between the inclusion and the semi-infinite edge is small, the DSCF at the
position of y ¼ p is still the maximum. Comparing the results with those in Fig. 4, it is clear that if the distance
between the inclusion and the semi-infinite edge is great, the effects of the elastic modulus and density of the
inclusion on the DSCFs are little. However, when the distance between the inclusion and the semi-infinite edge
is small, the effects of the elastic modulus and density of the inclusion on the DSCFs become great, especially
on the shadow side of the inclusion. Due to the effect of the elastic modulus and density of the inclusion, the
dynamic stresses on the shadow side of the inclusion become great.

In Fig. 6, the elastic modulus and density of the inclusion are less than those of the plate. It can be observed
that when the distance between the inclusion and the semi-infinite edge is small, the DSCF at the position of
y ¼ p is still the maximum. Comparing the results with those in Fig. 4, it can be seen that if the distance
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Fig. 5. Angular distribution of dynamic stress concentration factors around the inclusion with different values of d*; k* ¼ 0.5, E* ¼ 5.0,

r* ¼ 2.0, h* ¼ 1.0, v ¼ v0 ¼ 0.3.
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Fig. 4. Angular distribution of dynamic stress concentration factors around the cavity with different values of d*; k* ¼ 0.5, E0 ¼ r0 ¼ 0.

X.-Q. Fang, X.-H. Wang / Journal of Sound and Vibration 320 (2009) 878–892886
between the inclusion and the semi-infinite edge is great, the effects of the elastic modulus and density of the
inclusion on the DSCFs are little. However, when the distance between the inclusion and the semi-infinite edge
is small, the effects of the elastic modulus and density of the inclusion on the DSCFs become great, especially
on the shadow side of the inclusion. Due to the effect of the elastic modulus and density of the inclusion, the
dynamic stresses on the shadow side of the inclusion become little.

Comparing the results in Fig. 6 with those in Fig. 5, it is interesting to note that no matter whether
the elastic modulus and density of the inclusion is greater than those of the plate, the dynamic stresses on the
shadow side of the inclusion become great. When the distance between the inclusion and the semi-infinite edge
is small, the dynamic stress on the position of y ¼ p is greater in the case of E*41.0, r*41.0 than that in
the case of E*o1.0, r*o1.0. When the distance between the inclusion and the semi-infinite edge is great, the
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Fig. 6. Angular distribution of dynamic stress concentration factors around the inclusion with different values of d*; k* ¼ 0.5, E* ¼ 0.1,

r* ¼ 0.2, h* ¼ 1.0, v ¼ v0 ¼ 0.3.
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Fig. 7. Angular distribution of dynamic stress concentration factors around the inclusion with different values of d*; k* ¼ 0.5, E* ¼ 5.0,

r* ¼ 2.0, h* ¼ 1.5, v ¼ v0 ¼ 0.3.
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dynamic stress on the position of y ¼ 0 becomes greater in the case of E*o1.0, r*o1.0 than that in the case of
E*41.0, r*41.0.

The effect of increasing the thickness of the inclusion on the angular distribution of DSCF is shown in
Fig. 7. It can be seen that when the distance between the inclusion and the semi-infinite edge is small, due to
the effect of the thickness of the inclusion, the dynamic stress on the shadow side of the inclusion become
much greater, especially at the position of y ¼ p. However, if the distance between the inclusion and the semi-
infinite edge is great, the dynamic stresses on the illuminated side of the inclusion become much greater. The
dynamic stresses at the positions of y ¼ p/2 and �p/2 show little variation with the thickness of the inclusion.

The effect of Poisson’s ratio of the inclusion on the angular distribution of DSCF is shown in Figs. 8 and 9.
In Fig. 8, Poisson’s ratio of the inclusion is greater than that of the plate. In Fig. 9, Poisson’s ratio of the
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Fig. 8. Angular distribution of dynamic stress concentration factors around the inclusion with different values of d*; k* ¼ 0.5, E* ¼ 5.0,

r* ¼ 2.0, h* ¼ 1.0, v ¼ 0.3, v0 ¼ 0.2.
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Fig. 9. Angular distribution of dynamic stress concentration factors around the inclusion with different values of d*; k* ¼ 0.5, E* ¼ 5.0,

r* ¼ 2.0, h* ¼ 1.0, v ¼ 0.3, v0 ¼ 0.4.
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inclusion is less than that of the plate. Comparing the results with those in Fig. 5, it can be seen that only if the
distance between the inclusion and the semi-infinite edge is small, does a change of the inclusion’s Poisson’s
ratio have any observable effect of on the DSCFs around the inclusion. The effect at the position of y ¼ p is
the maximum. When Poisson’s ratio of the inclusion is greater than that of the plate, the dynamic stress
becomes small. When Poisson’s ratio of the inclusion is less than that of the plate, the dynamic stress becomes
great.

Fig. 10 illustrates the DSCFs at the position of y ¼ p/2 of the inclusion as a function of the incident
wavenumber when the values of E* and r* are different. It can be seen that the dynamic stress at the position
of y ¼ p/2 decreases with the increase of dimensionless wavenumber. In the region of low frequency, the
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Fig. 10. Dynamic stress concentration factors versus dimensionless wavenumber with different values of E* and r* at y ¼ p/2 (h* ¼ 1.0,

d* ¼ 1.5, v ¼ v0 ¼ 0.3).
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Fig. 11. Dynamic stress concentration factors versus dimensionless wavenumber with different values of E* and r* at y ¼ p (h* ¼ 1.0,

d ¼ 1.5, v ¼ v0 ¼ 0.3).
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dynamic stress decreases with the increase of the values of E* and r*. In the region of higher frequency, the
dynamic stress increases with the increase of the values of E* and r*.

Fig. 11 illustrates the DSCFs at the position of y ¼ p of the inclusion as a function of the incident
wavenumber when the values of E* and r* are different. It can be seen that the dynamic stress at the position
of y ¼ p decreases with the increase of dimensionless wavenumber. In the region of low frequency, the
dynamic stress increases with the increase of the values of E* and r*. In the region of higher frequency, the
dynamic stress decreases with the increase of the values of E* and r*. Comparing with the results in Fig. 10, it
is observed that the effect of the values of E* and r* on the dynamic stress at the position of y ¼ p is greater.

Figs. 12 and 13 illustrate the DSCFs as a function of the incident wavenumber with different values of v0 at
the positions of y ¼ p/2 and p of the inclusion, respectively. It can be seen that in the region of low frequency,
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Fig. 12. Dynamic stress concentration factors versus dimensionless wavenumber with different values of v0 at y ¼ p/2 (E* ¼ 5.0, r* ¼ 2.0,

h* ¼ 1.0, d* ¼ 1.5).
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Fig. 13. Dynamic stress concentration factors versus dimensionless wavenumber with different values of v0 at y ¼ p (E* ¼ 5.0, r* ¼ 2.0,

h* ¼ 1.0, d* ¼ 1.5.
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the dynamic stress shows little variation with the value of v0. However, in the region of higher frequency, the
dynamic stress decreases with the increase of the value of v0. Comparing the results in Figs. 12 and 13, it is
observed that the effect of the value of v0 on the dynamic stress at the position of y ¼ p is greater.

Figs. 14 and 15 illustrate the DSCFs as a function of the incident wavenumber with different values of h* at
the positions of y ¼ p/2 and p of the inclusion, respectively. At the position of y ¼ p/2, the dynamic stress
increases with the increase of the value of h* in the region of higher frequency; the dynamic stress shows little
variation in the region of low frequency. However, at the position of y ¼ p, the dynamic stress increases
greatly with the increase of the value of h* in the region of low frequency; the dynamic stress shows little
variation in the region of higher frequency. Comparing the results in Figs. 14 and 15, it is observed that the
effect of the value of h* on the dynamic stress at the position of y ¼ p is greater.
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Fig. 14. Dynamic stress concentration factors versus dimensionless wavenumber with different values of h* at y ¼ p/2 (E* ¼ 5.0, r* ¼ 2.0,

v ¼ v0 ¼ 0.3, d* ¼ 1.5).
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Fig. 15. Dynamic stress concentration factors versus dimensionless wavenumber with different values of h* at y ¼ p (E* ¼ 5.0, r* ¼ 2.0,

v ¼ v0 ¼ 0.3, d* ¼ 1.5).
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7. Conclusion

In this study, based on the dynamical equation of flexural waves in elastic thin plates, and applying the
image method and the wave function expansion method, the multiple scattering of flexural waves and dynamic
stress from a cylindrical inclusion in a semi-infinite thin plate are investigated. The semi-infinite edge with
roller-supported boundary conditions is considered. Analytical solutions and numerical results of the problem
are presented and analyzed. Comparisons with previous literature demonstrate the validity of the analytical
method.

It can be seen that the analytical results of dynamic stress in semi-infinite plates are different from those in
infinite plates. Comparing with the results in Hu et al. [18], the existence of the inclusion has great effect on the
distribution of the dynamic stress in the semi-infinite plate, especially in the region of higher frequency. If the
distance between the inclusion and the semi-infinite edge is small, due to the multiple scattering of elastic
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waves, the DSCF at the position of y ¼ p around the inclusion is the maximum. The effects of the elastic
modulus, density, thickness, and Poisson’s ratio of the inclusion on the DSCFs are greater when the distance
between the inclusion and the semi-infinite edge is small, especially on the shadow sides of the inclusion. In
contrast to the elastic modulus, density, thickness of the inclusion, the effect of Poisson’s ratio of the inclusion
on the angular distribution of DSCF is less.

The analysis of this paper can provide a theoretical basis and reference data for strength designs and
non-destructive evaluation of plate structures with holes near their edges.
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