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Abstract

This paper presents the application of three-dimensional (3-D) spectral element method (SEM) to wave propagation
problems in plate structures for the purpose of damage detection. The excellent characteristic of the SEM is that the mass
matrix is diagonal because of the choice of Lagrange interpolation function supported on the Gauss—Lobatto—Legendre
(GLL) points in conjunction with the GLL integration rule. Therefore, numerical calculation can be significantly efficient
in comparison with the classical finite element method (FEM). By taking advantage of this characteristic, a 3-D spectral
finite elements (SFEs)-based model is developed to simulate the wave propagation in plate structures. Lamb waves,
propagating in aluminum plates with and without a crack are investigated. Responses from 3-D SFEs- and 2-D SFEs-
based models are compared. Different Lamb wave modes are generated using different excitation approaches and,
subsequently, characteristics of those modes are analyzed. The results demonstrate that the proposed model can offer
efficient and realistic simulation for Lamb wave propagation in plate structures, so as to detect damages in those
structures.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In practical applications of aerospace, civil and mechanical engineering infrastructures, abrupt impact or
growth of fatigue defects during the service life can result in catastrophic failure. Hence, various structural
health-monitoring techniques have been developed in the literature with the purpose of determining the health
status of a system [1]. Recently, elastic wave-based structural monitoring technology has attracted significant
attention in the research community. Lamb waves, with the advantages of long-range propagation and
sensitivity to a variety of damage types, can serve as an effective mechanism to interrogate plate structures for
damage detection [2-7].

Characteristics of the elastic wave propagation are usually required to develop monitoring strategies or
interpret damage detection results. A number of numerical methods have been applied to analyze propagation
of elastic waves, such as the finite difference method (FDM) [8,9], the finite element method (FEM) [10,11], the
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boundary element method (BEM) [12—15], the finite strip elements (FSE) [16,17], the mass-spring lattice model
(MSLM) [18-20], and the local interaction simulation approach (LISA) [21-25]. The merits and demerits of
each method are discussed by Lee and Staszewski [21,22].

Recently, two different kinds of spectral element method (SEM) have been proposed for analysis of wave
propagation, namely, fast Fourier transform (FFT)-based SEM and orthogonal polynomials-based SEM
[26,27]. The FFT-based SEM proposed by Doyle [26] is accurate with much less discretization within the
model and suited for simple one-dimensional (1-D) or two-dimensional (2-D) problems [28-30]. However, this
method becomes inefficient when the problems of the 2-D or 3-D structures with complex geometry are
analyzed. On the other hand, the orthogonal polynomials (e.g., Legendre or Cheybysev polynomials)-based
SEM, proposed by Patera [27], is much more suitable for analyzing wave propagation in structures with
complex geometry. This method is similar to the classical FE method when assembly of element matrices and
solution of equations are considered. The difference comes in that orthogonal polynomials are used as
approximation functions and, therefore, the mass matrix is diagonal, which is a very significant advantage
over FE methods. This method has been successfully applied to many problems such as fluid, seismology and
acoustics [31-34]. More recently, the SEM was used to simulate wave propagation in structures for damage
detection. For example, wave propagation in 1-D structures, such as rod and beam, were investigated by
Sridhar et al. [35] and Kudela et al. [36]. Results of numerical simulation of the transverse elastic wave
propagation in a composite plate were presented by Kudela et al. [37]. A 2-D spectral membrane finite
element-based model was developed by Zak et al. [38], and was used for the analysis of wave propagation in a
cracked isotropic panel.

However, it seems that the application of 3-D SEM to wave propagation problems in damaged structures
has not been widely reported in the literature so far. In this paper, a 3-D model on the basis of Legendre
polynomials-based spectral finite element is developed and Lamb wave propagation in an aluminum plate is
analyzed for damage detection. Lamb wave propagation in the plate with and without a crack is simulated, so
as to analyze the influence of the crack. Results from 3-D SFEs- and 2-D SFEs-based models are compared.
Finally, characteristics of different Lamb wave modes generated using three excitation approaches are
investigated by taking advantage of the proposed model.

2. Formulation of 3-D spectral finite element

The Legendre polynomials-based 3-D spectral finite element discretization proceeds as follows. The domain
Q in three dimensions is firstly meshed to a number of non-overlapping hexahedrons, ., as in the classical FE
method. These elements are subsequently mapped into a reference domain A = [—1,1]>, a cube in three-
dimension, using an invertible local mapping f. On the reference domain A, a set of basis functions consisting
of Legendre polynomials of degree, N, are introduced, subsequently, a set of nodes are defined. These nodes,
denoted by ¢ e[—1,1], iel,...,N+1, are the Gauss—Lobatto—Legendre (GLL) points which are the
(N+1) roots of

(1-&)Py() =0 (1
where P) (&) is the derivative of the Legendre polynomial of degree V. The definition of element notes result in
an irregular distribution of nodes, as shown in Fig. 1, which is different from the classical FE method with
uniformly spaced element nodes within elements or on the element boundary.

On the reference domain A, the Lagrange interpolation function, u$,, supported by the defined nodes, can be
expressed as

m_o np  n3

UG = DY > Uy Eons N 1) OB, ()

m=1 n=1 r=1
ny ny n3
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where N, 1s the orthogonal shape functions in 3-D; £,,(¢) denotes the mth 1-D Lagrange interpolation at the
(N+1) GLL points ¢; introduced above; £,,(£;) equals 1 at i = m and equals 0 at all other points i%m. From
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Fig. 1. A 108-node spectral element in the local coordinate.

this definition, we obtain the fundamental property
hn(&;) = Omi 3)
where J,,; denotes the Kronecker delta. n,, i = 1, 2, 3, is the number of GLL points in each direction in local

coordinate.
Similar to the classical FE method, the element matrices, M, K¢, and F°, are calculated numerically as

follows:
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where p is the mass density, D° is termed material stiffness matrix [39], and P is a distributed load. The matrix
B¢ is the strain—displacement matrix which can be calculated by

B = LNe(éh '/Ijs yk) (7)
where L denotes a differential operator matrix:
&% 0 0 8, 0 o7"
L=|0 9o 0 o o 0
0 0 o 0y Oy

The weights w;, independent of the elements, are determined numerically by [40]
2
w; = 7
n(n — D[Pp-1(&)]

iel,....,n,n=N+1 (8)



H. Peng et al. | Journal of Sound and Vibration 320 (2009) 942-954 945

J. is the Jacobian matrix associated with the mapping f from the domain €, to the reference domain A:
aéx agy ag“Z
J, = |0x 0y 0Oz
0x 0,y 0,z

Then the element matrices are assembled to the global coordinate system and a wave propagation modeling
problem is transformed to an ordinary differential equation in time. Let U denote the global vector of
unknown displacement in the medium. The ordinary differential equation can be written in a matrix form:

MU +CU+KU =F )

where M denotes the global mass matrix, C the global damping matrix, K the global stiffness matrix, and F the
vector of time-dependent excitation signals.

The second-order ordinary differential equation is solved here using central difference time integration
scheme, which is conditionally stable. Zero initial conditions, U = 0 and U =0 at =0, are assumed to be
implemented as initial displacement and velocity field in the central difference time integration scheme [39]:

(AIZZM—kZLZC)UHA,:F,— (K—;M)U,— (AlﬂM_;AzC>U’_A’ (10)
where the symbol ¢ denotes time, Ar denotes the time step of integration. When A< At = L/c, the central
difference time integration scheme is stable, where L is the minimum distance between two adjacent nodes and
¢ is wave speed in elastic medium.

The excellent characteristics of the SEM used here is that the mass matrix M is diagonal because of the
choice of Lagrange interpolation supported on the GLL points in conjunction with the GLL integration rule,
which allows for a significant reduction in the computational effort. It constitutes a major difference compared
with classical FEM. The efficiency of SEM was verified using two 3-D models based on SFEs and FEs with the
same degrees of freedom and a reduction of about 65% in CPU time used for calculation was observed.

3. Numerical calculations

Lamb waves, propagating in a plate, are investigated using 3-D SFEs illustrated in the previous section.
Sketch of the plate with the geometric configuration of 1000 mm x 1000 mm x 2 mm is shown in Fig. 2, which
is an aluminum plate (Young’s modulus E = 71 GPa, Poisson ratio v=0.33 and mass density
p =2700kgm™). In this model, damping is not considered and the boundaries are free. A Hanning-
windowed five-cycle sinusoidal toneburst is used as excitation signal. Waveforms of the excitation signal in
both the time domain and frequency domain are shown in Fig. 3.

3.1. Lamb wave propagating in aluminum plates

Lamb waves propagating in the aluminum plates with and without a crack are addressed in the present
study, using the proposed 3-D SFEs-based model. The plates are meshed to 100 x 100 x 1 SFEs and the
number of GLL points in local coordinate is 6 x 6 x 3, as shown in Fig. 1. A through-thickness crack is
modeled by reducing element stiffness, as described in [41]. The location and size of the crack are shown in Fig. 2.
Length of the crack is 100 mm. It has been assumed that the crack locates 200 mm away from the horizontal
center and 50mm away from the vertical center. Lamb wave is excited using a single shear force with the
central frequency of 200 kHz at point 4 on the upper surface of the plate in the y direction.

The components of displacement response, u;, in the x direction and, u,, in the y direction of the plate
without and with a crack at the time of 0.050, 0.075, and 0.122 ms are presented in Figs. 4 and 5, respectively.
The longitude waves and the shear wave appear under the excitation of the shear force and then are reflected
by the boundaries. Significant differences between Figs. 4 and 5 can be observed due to the existence of a
crack, and obviously reflections from the direction perpendicular to the crack are dominant.
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Fig. 2. The geometry of the aluminum plate with a crack (mm).
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Fig. 3. The waveform (a) in the time domain and (b) in the frequency domain.

The displacement responses at the points B, C, and D on the upper surface, denoted by B, C’, and D/,
respectively, are investigated. To show the wave propagation features of the plate with a crack more clearly,
the response of undamaged plate are subtracted from the response of damaged plate. In practical applications,
the differences of the responses are usually used in damage detection. The normalized differences of responses
are presented in Figs. 6-8. It is obvious that the crack has more influence on displacement response at point C'
and D', contrastively, less influence at point B'. This is because the points C' and D’ locate under the crack and,
therefore, the reflected waves in that direction are dominant. On the contrary, point B’ locates right at the
crack and a reflected wave with smaller amplitude is captured in that direction.
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Fig. 4. Displacement responses of the plate without crack: (a) uy, in the x direction and (b) uy, in the y direction.

Generally speaking, waves contributed by the damage carry the information of the damage location and
size. The information about the damage location relates to the location of the source point 4 and the measure
points (i.e., B', C', and D’), time delay and propagating velocities of those waves. On the other hand, size of the
damage is determined by the changes of amplitude of response signals. In engineering applications, a sensor
array is usually introduced in the damage detection scheme.

3.2. Comparison with 2-D SFEs

As a comparison, a plate without crack is further modeled using 2-D membrane SFEs proposed in [38], in
which 100 x 100 elements are introduced. The number of GLL points is 6 x 6. A single shear force parallel to
the y direction is applied to the upper surface of point A.

The displacement responses at point B from 3-D and 2-D models are compared. In the 3-D model, two
responses are measured on the upper and the lower surfaces of each point, denoted by B’ and B’, respectively.
A little difference between the responses from 3-D and 2-D models can be observed from Fig. 9(a and b). This
is because when the plate is modeled using 3-D SFEs, the thickness of the plate is considered. Meantime,
displacement responses of B’ and B” in 3-D model are not always equal. Moreover, displacement component
u3, in the z direction, can be obtained from 3-D model and the symmetric and asymmetric Lamb modes can be
observed in that direction, as shown in Fig. 9(c). However, only two in-plane displacements are calculated
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Fig. 5. Displacement responses of the plate with a crack: (a) uy, in the x direction and (b) u,, in the y direction.
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Fig. 6. Normalized differences of displacement responses at point B': (a) u;, in the x direction and (b) u,, in the y direction.
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Fig. 7. Normalized differences of displacement responses at point C": (a) u;, in the x direction and (b) u,, in the y direction.
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Fig. 8. Normalized differences of displacement responses at point D': (a) uy, in the x direction and (b) uy, in the y direction.

within the plate in 2-D model. Therefore, a 3-D SFEs-based model can offer better results than a 2-D SFEs-
based model. Additionally, 3-D SFEs have a potential to model structures with more complex geometry.

3.3. Generation of different Lamb wave modes

The 3-D SFEs provide an efficient tool in analyzing the propagation characteristics of different Lamb wave
modes. In most cases, multiple Lamb modes exist simultaneously and, moreover, dispersive properties of those
Lamb modes are not identical even for the same mode in different frequency ranges. It is necessary to carry
out the damage detection strategies based on a certain wave propagation mode. Practically, the fundamental
symmetric Lamb wave mode, SO, and the fundamental asymmetric Lamb wave mode, A0, are usually used for
damage detection in plate structures. In this section, the Lamb modes are generated with three excitation
approaches, as shown in Fig. 10, in the aluminum plate modeled by 3-D SFEs. The results are shown in
Figs. 11 and 12.
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Fig. 9. Comparison of displacement responses from 3-D and 2-D SFE models at point B: (a) u;, in the x direction; (b) uy, in the

y direction; and (c) u3, in the z direction.

(b)

A F y © A F

|

A A

|

A” F F A"

Fig. 10. Excitation approaches of: (a) case 1, a single shear force, (b) case 2, dual forces with the same direction, and (c) case 3, dual forces

with the opposite direction.

In case 1, a single shear force, parallel to the y direction, is applied on the upper surface at point 4 of the
plate, as used in the previous section. The responses at the points B' on the upper surface are displayed in
Figs. 11 and 12, where the symmetric Lamb mode, SO, the shear mode, SHO, and the symmetric mode, A0,

simultaneously exist.

In case 2, dual forces with the same direction are applied on both the upper surface and lower surface of the
plate at point A. The symmetric Lamb mode, S0, and the shear mode, SHO, can be seen with enhanced
amplitudes, indicating that stronger wave energy is centralized on the SO mode and the SHO mode. Meanwhile,
the asymmetric mode, A0, cannot be observed.
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Fig. 11. Displacement responses at point B" under different excitation approaches (central frequency of excitation is 200 kHz): (a) u,, in
the x direction, (b) u,, in the y direction, and (c) u3, in the z direction.

In case 3, when the dual forces with the opposite direction, are applied, the asymmetric mode, AO, is
observed to be dominant, while the symmetric mode and the shear wave mode are suppressed. We can see that
the A0 mode has a deformed shape with about 10-cycle signal compared with the 5-cycle excitation signal,
while the SO and the SHO mode keep their original shapes.

Group velocities of different Lamb wave modes are usually not identical. It is evident from Figs. 11 and 12
that the group velocity of the SHO mode is smaller than that of the SO mode, but a little larger than that of the
A0 mode. Even, group velocities of single Lamb wave mode excited by signals with different central
frequencies are different. According to Figs. 11 and 12, the group velocity of the A0 mode is obviously
different under the applied excitation with central frequencies 100 and 200kHz, but there is no obvious
difference in group velocities of SO and SHO modes. In fact, the relation between group velocity and central
frequency of applied excitation can be illustrated using dispersion curves, as shown in Fig. 13. Those
dispersion curves also demonstrate the effectiveness of the proposed model because of the good agreement
between the analytical and simulated results in the frequency band of 0 Hz-300 kHz.

The symmetric or asymmetric Lamb wave modes are easily excited using the model based on the 3-D SFEs
and, therefore, the model can be significantly helpful in understanding the wave propagation phenomena, as
well as developing damage detection strategies and interpreting the features.
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Fig. 13. Dispersion curves in the frequency band 0 Hz-300 kHz using analytical and simulated methods.
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4. Conclusion

Interpretation of captured responses plays a vital role in Lamb wave-based damage detection. Lamb wave
propagation in aluminum plates with and without a crack modeled by 3-D SFEs is simulated in the present
study. The results obtained from 3-D SFE- and 2-D SFE-based model are compared. Characteristics of
different Lamb modes are therefore analyzed.

The present work shows that the 3-D SFEs provide an efficient tool to analyze wave propagation in
structures for damage detection. The advantages of the proposed model can be summarized as follows: (1) The
structures and the damages with complex geometry can be conveniently modeled using 3-D SFEs; (2)
calculation can be significantly efficient in comparison with classical FEM because of the diagonal form of
element mass matrix; (3) compared with 2-D SFEs, the 3-D SFEs can be more precisely and realistically model
the physical structures; therefore better results can be offered; (4) the generation of different Lamb wave
modes can be easily carried out by the 3-D SFEs-based model, therefore it can be significantly helpful in
developing damage detection strategies since a certain Lamb mode is usually used in practical implementation.
In summary, the proposed model can offer efficient and realistic simulation for Lamb wave propagation in
plate structures, so as to detect damage in those structures.

The 3-D SFEs will be extended to simulate Lamb wave propagation in multilayer composite plates or
Rayleigh wave in 3-D structures with more complex geometry for damage detection in the future work.
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