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Abstract

This paper presents the energy-based method for the vibration identification of non-uniform Euler–Bernoulli beams

having multiple open cracks. The method includes significant modifications for the energy-based method presented by

Yang et al. [Crack identification in vibrating beams using the energy method, Journal of Sound and Vibration 244 (2) (2001)

339–357.] The distribution of the energy consumed is determined by taking into account not only the strain change at the

cracked beam surface as in general but also the considerable effect of the stress field caused by the angular displacement of

the beam due to bending. The Rayleigh–Ritz approximation method is used in the analysis. The method is adapted to the

cases of multiple cracks with an approach based on the definition of strain disturbance variation along the beam. Examples

are presented on cantilever beams having different truncation factors. When the results are compared with a commercial

finite element program and with the results of Zheng and Fan [Natural frequencies of a non-uniform beam with multiple

cracks via modified Fourier series, Journal of Sound and Vibration 242 (4) (2001) 701–717], good agreements are obtained.

The effects of truncation factors and positions of cracks on the natural frequency ratios are presented in graphics.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Flaws in the components of a structure can influence the dynamic behaviour of the whole structure. It is well
known from the literature that one form of damage that can lead to catastrophic failure if undetected is fatigue
cracking of the structure elements. The recognition of the vibration effects of cracks is important in practise
since vibration monitoring has revealed a great potential for investigation of cracks in the last three decades.
Detailed review on the vibration of cracked structure was given by Dimarogonas [1].

In the literature, cracks were assumed always open or breathing in time. The nonlinear effect of a breathing
crack on the flexural vibration of cracked structures was discussed in some papers [2–4]. They concluded that
the difference of solutions between the open and breathing crack models was quite small when the amplitude
was not so large, and the difference became large as the amplitude increased. Thus, most researchers assume
the crack remains open in their models to simplify the problem by lifting the nonlinear influences. The effect of
crack on dynamic behaviour of the beam was simulated by the definition of local flexibility in several models
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a crack depth
A cross-section area
b width of a beam
b1 width of a beam at the root
b2 width of a beam at the tip
BE energy balance equation
CE the energy consumed
E modulus of elasticity
G strain energy release rate
h height of a beam
h1 height of a beam at the root
h2 height of a beam at the tip
I second moment of inertia
k stiffness of which type is specified by the

superscripts
K1 stress intensity factor for the first mode

crack
KE maximum kinetic energy
L length of the beam
m total number of terms of polynomial

mode shape function
M bending moment
n total number of cracks
PE maximum potential energy
r ratio between crack depth and height of a

beam at the crack location
w coordinate axis along the beams height

W the transverse vibration mode shape of
the beam

y coordinate axis along the beam’s width
z coordinate axis along the beam’s length
a truncation factor of beam’s height or width
G distribution of the energy
Du linear displacement at the crack-edge
DU change in strain energy
Dv inverse linear displacement at the crack

tip with the effect of material stress
DV change in stress energy
Dy angular displacement at the crack tip
Df angular displacement of the beam due to

the bending at the crack location
k coefficient of the term of polynomial

mode shape function.
n Poisson ratio
r mass density
j term of polynomial mode shape function
o circular frequency
o0 natural frequency of the uncracked beam
c subscript abbreviation for the word

‘‘crack’’ to relate the parameters with
the cracks

d difference between the numerators of
crack and part

i crack and part numerator
j numerator of the mode shape terms
p abbreviation for the word ‘‘part’’
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that use massless rotational spring or reduced cross-section. Magnitudes of the flexibility changes were
estimated by the fracture mechanics methods [5,6] or by experimental works. Changes in the dynamic
characteristics defined by the local flexibilities were obtained by several ways.

In many works including crack models with rotational springs, the solution of equation or equation set was
generally obtained by means of compatibility and continuity conditions at the crack locations. Either
numerical [7–9] or analytical [10,11] approaches could be straightforwardly used in continuous models for
uniform beams. However, analytical solution is very difficult for non-uniform beams because of the nonlinear
equations resulting from the geometric nonlinearities. These approaches also suffer from the lack of the fact
that the modification of the stress field induced by the crack decays with the distance from the crack.
Chondros discussed the effects of decaying stress fields on crack models evaluated with rotational springs [12].

The methods, including exponentially decaying stress/strain functions based on a variational principle, were
proposed to develop vibration equations for continuous models [13–16]. Christides and Barr [13] firstly
presented an exponential-type crack disturbance function to model the stress/strain variation around the crack
zone for one or more pairs of symmetric cracks. Shen and Pierre [14] proposed a similar approach for single-
cracked beams by using many termed Galerkin’s method. Chondros et al. [15] developed another crack
disturbance function for the vibration of simply supported beams having one or two cracks. Another
approach based on the stiffness definition of cracked beams using strain energy variation around the crack was
proposed by Yang et al. [16], for single- and double-cracked beams. The case where two or more cracks lie in
close proximity to each other was not analysed in this study. These approaches suffer from the overlap of
exponential functions when the multiple cracks interact with each other.
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Many of the other energy-based approaches were used in the finite element models. Finite element models
may be preferable since they can be applied to any structural member. However, there are so many parameters
that can be varied in the flexural vibration of structural members with cracks that it would be very difficult to
present and compare results for all cases. Parameters may vary mainly with modelling of the crack and
meshing properties. Indiscriminate application of the frequencies calculated using the finite element methods,
without consideration of the assumptions under which the crack models were derived, might lead to gross
errors. On the other hand, careful observation of the behaviour of these damage models can lead to the
extension of their utility in practical engineering. Behaviour of the damages could be observed by the special
element or connection models [17–22]. If the FEM includes no special models for the cracks, the method
should be supported by extremely refined meshes near the cracks for an accurate solution even though the
computation time will increase.

A few studies were presented on numerical and analytical solution of non-uniform beams. An approach was
presented by Li [23,24] for determining the natural frequencies and mode shapes of cracked stepped beams
having varying cross-sections and cracked non-uniform beams having concentrated masses, respectively.
However, only some specific forms of non-uniformities could be solved in these papers. Coudhari and Maiti
[25,26] proposed a method for defining transverse vibrations of tapered beams and geometrically segmented
slender beams with a single crack using the Frobenius technique. Even though the beam had a single crack,
their results were quite coarse. Energy-based numerical approaches were also presented for non-uniform
beams. Zheng and Fan [27] determined the approximate natural frequencies of multiple-cracked non-uniform
beams using the modified Fourier series. El Bikri et al. [28] presented a semi-analytical model based on an
extension of the Rayleigh–Ritz method to nonlinear vibrations, which is mainly influenced by the choice of the
admissible functions. This study was also restricted with a single crack and fundamental frequency.

This paper presents the vibration analysis of multiple-cracked non-uniform beams using the distributions of
the energies consumed caused by the open cracks. The energy consumed is obtained by the change of the strain
energy distribution given by Yang et al. [16] for the cracked surface of the beam, together with the effect of
stress field due to the angular displacement of the beam. The energy consumed is also determined by arranging
the variation of the strain disturbances for defining the vibration of the multiple-cracked non-uniform beams.
Results obtained by the present method are compared with the results of Zheng and Fan [27] and a
commercial finite element program (ANSYSr) for several non-uniform cantilever beams.

2. Vibration of the beams with a crack

According to the fracture mechanics theory, structural strain energy increases with crack growth. Increase
in strain energy, which is assumed equal to the energy consumed, under the constant external bending moment
is defined as follows [5,6]:

DU ¼ CE ¼

Z a

0

Gbc da. (1)

G is called the strain energy release rate, which can be written as G ¼ K2
1=E0 for the transverse vibration of

the beam by taking only the effects of bending stresses into account and neglecting the effects of shear stresses
on the crack. E0 is equal to E for plain stress, or E/(1�v2) for plain strain. The stress intensity factor for the
first mode crack (K1) is given as

K1 ¼
6MðzÞ

ffiffiffiffiffiffi
pa
p

bch2
c

F ðrÞ, (2)

M(z) is the bending moment that can be defined as

MðzÞ ¼ E0IðzÞ
d2W ðzÞ

dz2
, (3)

F(r) is the function that is valid for r ¼ a/hco0.6, and defined as follows:

F ðrÞ ¼ 1:12� 1:4rþ 7:33r2 � 13:8r3 þ 14r4. (4)
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Finally, the energy consumed can be written using Eq. (1) [16] as

CE ¼ DðrÞ½MðzÞ�2, (5)

where

DðrÞ ¼
18pF ðrÞ2a2

Ebch
4
c

. (6)

The expressions given above for the energy consumed [16] are valid only when the increase in strain energy
through the cracked side of the beam is taken into account. Increase in strain energy through the cracked
beam surface can correspond to the energy of linear springs located along the crack-edge, which can be
transformed into the energy of rotational springs placed along the crack tip:

DU ¼
1

2bc

Z bc

~y¼0
kðuÞc ðDucÞ

2 d ~y; DU ¼
1

2bc

Z bc

~y¼0
kðyÞc ðDycÞ

2 d ~y. (7,8)

However, when slope change at the crack location of the beam is considered, angular displacement of
the crack (Dyc) also results with the angular displacement of the beam (Dfc) at the crack location as shown in
Fig. 1. Angular displacement of the beam causes the additional stress field in the vicinity of crack tip. Similar
to the additional strain energy definitions, stress energy change (DV) can also be defined by using linear or
rotational spring models kðvÞc ; k

ðfÞ
c seen in Fig. 1. As the strain caused by the crack decreases the potential

energy, additional stress field increases it. Thus, angular displacement of the beam due to the bending
decreases the energy consumed. Here, it should be noted that negative compressive strain field required to be
considered under the neutral layer in the vicinity of crack is assumed to be approximately equal to strain at the
crack tip. These minor effects neutralise each other and thus can be neglected in the model. Consequently, the
energy consumed can be written as follows:

CE ¼
1

2bc

Z bc

~y¼0
ðkðyÞc ðDycÞ

2
� kðfÞc ðDfcÞ

2
Þd ~y, (9)
Fig. 1. Angular displacement of the beam caused by a crack.
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where Dfc ¼ ða=hcÞDyc. The stiffness relation can also be established by providing bending moment
equivalence as

1

bc

Z bc

~y¼0
ðkðyÞc Dyc � kðfÞc DfcÞd ~y ¼ 0, (10)

which results in kðfÞc ¼ ðhc=aÞkðyÞc .
Thus, Eq. (6) can be redefined for rp0.5, to include the effects of stress field caused by the angular

displacement of the beam:

DðrÞ ¼
18pF ðrÞ2a2

Ebch4
c

ð1� rÞ. (11)

The energy consumed is distributed along the beam as follows [16]:

GCE ¼
Qðr; zcÞ

1þ ½ðz� zcÞ=ðqðrÞaÞ�
2
, (12)

where Q(r, zc) and q(r) are the terms that can be defined as follows [16]:

Qðr; zcÞ ¼
DðrÞ½MðzÞ�2

qðrÞafarctan½ðL� zcÞ=ðqðrÞaÞ� þ arctan½zc=ðqðrÞaÞ�g
, (13)

qðrÞ ¼
3p½F ðrÞ�2ðhc � aÞ3a

ðh3
c � ðhc � aÞ3Þhc

. (14)

According to the principle of conservation of energy, maximum potential and kinetic energies should be
equal along the beam when there is no crack. If a crack exists on a beam, the energy consumed results with the
decrease in maximum potential energy with the assumption of no mass loss at the crack location. As a
consequence, the balance of maximum energies can be obtained as follows:Z L

z¼0

ððGPE � GCEÞ � GKEÞdz ¼ 0, (15)

where GPE and GKE represent the distributions of the maximum potential and kinetic energies as

GPE ¼
1

2
EIðzÞ

d2W ðzÞ

dz2

� �2

; GKE ¼
1

2
rAðzÞo2ðW ðzÞÞ2. (16,17)

Eq. (15) can be approximated to zero using the Rayleigh–Ritz method. In this method, approximation to
zero is provided by differentiating Eq. (15) with the coefficients of the admissible mode shape function as

q
Z L

z¼0

ððGPE � GCEÞ � GKEÞdz

� ��
qkj ¼ 0. (18)

If jj(z) are a series of functions satisfying end conditions, the mode shape function can be written as
W ðzÞ ¼

Pm
j¼1kjjjðzÞ.

3. Energy balance in a multiple-cracked beam

In the case of multiple cracks, parameters in Eqs. from (1) to (12) can be modified as ri, ai, zc(i), hc(i), bc(i)

where i ¼ 1 to n. The effect of interference of cracks on the distribution of the energy consumed for a multiple-
cracked beam is considered throughout the beam length. Typical distributions are shown in Fig. 2 for the case
of three cracks as an example. It can be noticed that the distributions cannot be directly superposed, because
the overlap of the distributions is considerably influential on the result, especially when the cracks approach
each other. Therefore, the contribution of each crack to the maximum potential energy can be arranged
according to the change of strain disturbance at other crack locations. In this respect, although the energy
consumed caused by crack 1 results in the decrease of maximum potential energy in parts 1 and 2, strain
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Fig. 2. Example distributions of the energies consumed caused by three cracks and contributions of these distributions to the maximum

potential energy.

K. Mazanoglu et al. / Journal of Sound and Vibration 320 (2009) 977–989982
disturbance as a result of crack 1 changes the phase at zc(2), and the energy consumed caused by crack 1 results
in the increase of maximum potential energy in part 3. Strain disturbance changes the phase again at zc(3), and
crack 1 negatively affects the maximum potential energy in part 4. Similarly, contributions of other cracks on
maximum potential energies are seen in Fig. 2.

As a consequence, if n cracks exist on the beam surface, the following equations can be written for n+1
parts:

BE1 ¼

Z L

zcð1Þ

ððGPE � GCE
cð1Þ þ GCE

cð2Þ � � � � � GCE
cðnÞÞ � GKEÞdz,

BE2 ¼

Z zcð1Þ

zcð2Þ

ððGPE � GCE
cð1Þ � GCE

cð2Þ þ GCE
cð3Þ � � � � � GCE

cðnÞÞ � GKEÞdz,

BE3 ¼

Z zcð2Þ

zcð3Þ

ððGPE þ GCE
cð1Þ � GCE

cð2Þ � GCE
cð3Þ þ GCE

cð4Þ � � � � � GCE
cðnÞÞ � GKEÞdz,

..

.

BEn�1 ¼

Z zcðn�2Þ

zcðn�1Þ

ððGPE � GCE
cð1Þ � � � � þ GCE

cðn�3Þ � GCE
cðn�2Þ � GCE

cðn�1Þ þ GCE
cðnÞÞ � GKEÞdz,

BEn ¼

Z zcðn�1Þ

zcðnÞ

ððGPE � GCE
cð1Þ � � � � þ GCE

cðn�2Þ � GCE
cðn�1Þ � GCE

cðnÞÞ � GKEÞdz,

BEnþ1 ¼

Z zcðnÞ

0

ððGPE � GCE
cð1Þ � � � � þ GCE

cðn�1Þ � GCE
cðnÞÞ � GKEÞdz. (19)

Thus, the energy balance can be obtained by satisfying the following equation:

Xnþ1
i¼1

BEi ¼ 0. (20)

Eq. (20) can also be approximated to zero using the Rayleigh–Ritz method.

4. Results and discussion

Results are represented by applying the method on several non-uniform cantilever beams that are
dimensioned as seen in Fig. 3. Relations between heights and length, or widths and length for tapered beams
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Fig. 3. Geometry of a beam.

K. Mazanoglu et al. / Journal of Sound and Vibration 320 (2009) 977–989 983
can be defined as follows:

hðzÞ ¼ h2 þ ðh1 � h2Þz=L,

bðzÞ ¼ b2 þ ðb1 � b2Þz=L, (21, 22)

Four different cantilever beams have the same density, r ¼ 7800kg/m3, and modulus of elasticity, E ¼ 210GPa.
The beams have also the following geometric and material properties:

Beam1 : L ¼ 0:6m; h1 ¼ b1 ¼ 0:02m; ah ¼ h2=h1 ¼ 0:25; ab ¼ b2=b1 ¼ 1; n ¼ 0:3,

Beam2 : L ¼ 0:6m; h1 ¼ b1 ¼ 0:02m; ah ¼ 2; ab ¼ 1; n ¼ 0:3,

Beam3 : L ¼ 0:6m; h1 ¼ b1 ¼ 0:02m; ah ¼ 0:25; ab ¼ 0:5; n ¼ 0:3,

Beam4 : L ¼ 0:8m; h1 ¼ b1 ¼ 0:02m; ah ¼ 0:5; ab ¼ 1; n ¼ 0.

The mode shape function of the beams can be assumed as

W ðzÞ ¼
Xm

j¼1

kjðz=LÞj�1ð1� z=LÞ2. (23)

Results of the method are compared with the results of the commercial finite element program (ANSYSr)
for Beam1, Beam2, and Beam3. Cracks are considered as the slots causing discontinuities on the beams. They
are formed by subtracting thin transverse blocks from ‘‘solid95’’ beams in the program. Element size is set to
0.009m with the ‘‘esize’’ command, and crack widths are chosen as 0.0004m. Much smaller-sized elements are
unavoidable in the vicinity of cracks to observe the effects of discontinuities. Smaller sizes are automatically
provided by the use of the ‘‘smrtsize,1’’ command in the free meshing procedures. Resultantly, modal
frequencies are obtained by using ‘‘modal analysis’’ as the analysis type. It should be noted that changes in the
element number caused by variation of crack location and crack size have negligible effects on the results.
Natural frequencies of the uncracked beams obtained by the Rayleigh–Ritz approximations and the finite
element program can be seen in Table 1.

Vibrations of the beams defined above are inspected in the cases of single, double, and multiple cracks as
represented in the following examples.

Example 1. Tapered beams with a crack
Beam1, Beam2, and Beam3 are examined by following crack properties:

ac ¼ 0:15h1; 0:3h1; zcðvariableÞ.

Results of the method are in good agreement with the results of the finite element program for single-crack
cases of different beams as shown in Figs. 4–6. The method is valid for the crack depth ratio rp0.5 as defined
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Fig. 4. Natural frequency ratios for the (i) first, (ii) second, and (iii) third mode vibration of Beam1 with variably located crack having

depths (a) a ¼ 0.15h1, and (b) a ¼ 0.3h1. (J) Ansys results, (—–) approximation with 4 terms, (– –) approximation with 5 terms, (- - -)

approximation with 6 terms.

Table 1

Natural frequencies of the uncracked beams (oo)

Beams Vibration
modes

Frequencies (Hz)
obtained by
Rayleigh–Ritz (4 terms)

Frequencies (Hz)
obtained by
Rayleigh–Ritz (5 terms)

Frequencies (Hz)
obtained by
Rayleigh–Ritz (6 terms)

Frequencies (Hz)
obtained by finite
element program

Beam1 1 55.3163 55.3157 55.3153 55.350
2 215.4652 214.4026 214.4007 214.183
3 – 520.6647 514.4896 511.814

Beam2 1 43.4178 43.3889 43.3870 43.4305
2 374.8819 373.7616 373.7518 369.933
3 – 1146.4491 1146.4276 1114.86

Beam3 1 66.0191 66.0146 66.0144 66.036
2 230.7768 228.8314 228.8170 228.550
3 – 540.6372 529.9834 527.355

Beam4 1 28.4894 28.4866 28.4863 –
2 136.7583 136.6345 136.4713 –
3 – 355.5734 354.0987 –

K. Mazanoglu et al. / Journal of Sound and Vibration 320 (2009) 977–989984
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before. It is for this reason that normalised crack locations of Beam1 and Beam3 are considered between 0.2
and 1 for a ¼ 0.15h1, and between 0.5 and 1 for a ¼ 0.3h1. Application of the Rayleigh–Ritz approximation
with 4, 5, and 6 terms is sufficient to obtain the best agreement with the first, second, and third mode of
vibrations, respectively. It is clear that higher vibration modes require the use of a larger number of terms.

If the trends of the natural frequency ratios are comparatively examined for the cracks on Beam1 and Beam2,
some distinctions can be obtained. Natural frequency reductions of Beam1 is lower than that of Beam2 when
non-dimensional crack locations are lower than 0.8. Besides, node points, where no natural frequency reduction
is obtained, are shifted from the root to the tip with the decrease in truncation factor. On the other hand,
relatively minor influences of second taper on natural frequency ratios can be observed when Fig. 4 is compared
with Fig. 6. Variation of the mass and inertia moment together with the variation of crack depth ratio along the
beam are all influential on the observation of the natural frequency ratios seen in the figures.

Example 2. Tapered beam with two cracks
Beam3 is examined by the following crack properties:

a1 ¼ 0:3h1; a2 ¼ 0:15h1; 0:3h1; zcð1Þ ¼ 0:91L; zcð2ÞðvariableÞ.
Fig. 5. Natural frequency ratios for the (i) first, (ii) second, and (iii) third mode vibration of Beam2 with variably located crack having

depths (a) a ¼ 0.15h1, and (b) a ¼ 0.3h1. (J) Ansys results, (—–) approximation with 4 terms, (– –) approximation with 5 terms, (- - -)

approximation with 6 terms.
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Fig. 6. Natural frequency ratios for the (i) first, (ii) second, and (iii) third mode vibration of Beam3 with variably located crack having

depths (a) a ¼ 0.15h1, and (b) a ¼ 0.3h1. (J) Ansys results, (—–) approximation with 4 terms, (– –) approximation with 5 terms, (- - -)

approximation with 6 terms.
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Natural frequency ratios obtained by the method are also quite agreeable with those obtained by the finite
element program for the double-cracked Beam3 as shown in Fig. 7. It can be observed that as crack 2 comes
closer to crack 1, the natural frequency ratios of the double-cracked beams have a tendency of approaching
the natural frequency ratio of beams having a single crack at zc(1).

Example 3. Tapered beam with four cracks

Beam4 has the following crack properties:

a1 ¼ 0:3h1; a2 ¼ 0:2h1; a3 ¼ 0:1h1; a4 ¼ 0:1h1; 0:2h1; 0:3h1ðvariableÞ,

zcð1Þ ¼ 0:95L; zcð2Þ ¼ 0:9L; zcð3Þ ¼ 0:85L; zcð4ÞðvariableÞ.

Natural frequency ratios of Beam4 having four cracks are seen in Figs. 8 and 9 for the first and second mode
of vibration, respectively. Good agreement with the results of Zheng and Fan [27] is obtained by using four-
term approximation for the first mode of vibration as seen in Fig. 8. However, small differences between the
results of two methods for a beam with four cracks can be seen in Fig. 9, which depicts the second mode
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Fig. 7. Natural frequency ratios for the (i) first, (ii) second, and (iii) third mode vibration of double-cracked Beam3 with variably located

second crack having depths (a) a2/h1 ¼ 0.15, and (b) a2/h1 ¼ 0.3. (J) Ansys results, (—–) approximation with 4 terms, (– –) approximation

with 5 terms, (- - -) approximation with 6 terms.
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natural frequency ratios. Negligible differences increase as the crack depth increases. It can be observed that as
the number of terms in the deflection function increases, the difference between the results decreases as
expected. In Fig. 9, the natural frequency ratios coincide for all considered crack depths at the normalised
locations 0 and 0.75.

It should be noted that performing the finite element program with the acceptable number of elements that
results in the correct solution is not possible for Beam4 having four cracks. Furthermore, processes can exceed
the memory limitations of computers with the previously defined crack and meshing properties, especially
when the cracks are too close to each other.
5. Conclusion

The energy-based method presented by Yang et al. [16] is modified to obtain the vibration of multiple-
cracked non-uniform Euler–Bernoulli beams. Effects of the stress field caused by the angular displacement of
the beam in addition to strain energy change caused by the crack are both taken into account in the energy
consumed. In the cases of multiple cracks, the energy consumed caused by one crack varies with the influence
of other cracks. Examples are presented on several tapered cantilever beams. The results of the method
presented agree well with the results of the finite element program when the beam has single or double cracks.
Additionally, the first mode frequencies obtained for the multiple-cracked Beam4 has an excellent agreement
with the results of Zheng and Fan [27], although small differences are obtained in the second mode.

Instead of the analytical methods, uses of the energy distributions in numerical approaches simplify the
solution of non-uniform beams. However, these approaches suffer from the interaction of crack effects in
multiple-cracked beams. Proposal for the solution of this problem is presented in this paper. It is observed that
a double-cracked beam behaves like a single-cracked beam when both cracks come closer to each other, as one
would expect.

Coupling effects are neglected in this study. It should be remembered that bending–torsion coupling cannot
be influential on the lower vibration modes of non-uniform Euler–Bernoulli beams. Furthermore, when the
beams have cracks with acceptable depth ratios, bending–torsion coupling has still negligible influence on the
lower vibration modes as seen in the figures representing the comparatively examined method results.
However, this coupling may be more influential on the vibration of the stepped beams.

Significant advantage of the method can be performing the processes in quite short durations in the order of
seconds. Thus, natural frequencies required for the frequency-based inverse methods like prediction schemes
or contour graphs can be easily obtained for each different beam. In practical applications, natural frequencies
may be measured in some error interval that can be kept in minimum by taking large sampling frequencies.
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Effects of truncation factors are evaluated with respect to variation of the natural frequency ratios. Results
show that cracks cause lower natural frequency ratios when the beam has lower truncation factors except for
the cracks near the root of the beam. It is clear that the truncation factor of a beam’s height is much more
effective than the truncation factor of the beam’s width. Another finding can be the shift of node points from
the root to the tip with the decrease in truncation factor.
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