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Abstract

As a series of maglev (magnetically levitated) vehicles travel over a flexible guideway with constant speeds, their
acceleration amplitudes will be amplified significantly at resonant or higher speeds. This paper intends to develop a neuro-
PI (proportional-integral) controller to control the dynamic response of the maglev vehicles around an allowable
prescribed acceleration. The maglev vehicle is simplified as a two-degree-of-freedom (two-dof) moving oscillator controlled
by an on-board PI controller and the guideway is modeled as a simply supported beam. Considering the motion-dependent
nature of electromagnetic forces working in a maglev system, this study presents an iterative approach to compute the
dynamic response of a maglev-oscillator/guideway coupling system based on the Newmark method. The proposed
neuro-PI controller is trained using back-propagation neural network in such a way that its PI gains are correlated
to the generated data set of moving speeds, mid-span acceleration amplitude of the guideway, and maximum
vertical accelerations of maglev oscillators. Numerical simulations demonstrate that a trained neuro-PI controller has the
ability to control the acceleration amplitude for running maglev vehicles within an allowable region of prescribed
acceleration.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The commercial operation of the Shanghai maglev transport system in 2002 marked the beginning of a new
era in maglev transport system. Compared with traditional wheel/track transit vehicles, a high-speed maglev
train can offer the advantages of low energy consumption, less environmental impact, as well as lower noise
and emissions. With the advanced maglev technology, powerful magnets are able to lift a vehicle up and
propel it forward along a guideway via electromagnetic forces. According to the suspension modes to guide a
maglev train moving on guideways, two kinds of maglev technologies have been developed: (1)
electromagnetic suspension (EMS, see Fig. 1(a)) with attractive mode; (2) electrodynamic suspension (EDS,
see Fig. 1(b)) with repulsive mode [1-3]. The EMS system can lift a train up using attractive forces by the
magnets beneath a guide-rail. The EDS system suspends a train above its guide-rail using magnetic repulsive
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Fig. 1. Schematic diagram of two maglev-vehicle systems: (a) electromagnetic suspension (EMS) and (b) electrodynamic suspension
(EDS).

forces to take the train off the U-shaped guideway. To suspend a maglev vehicle at a stable levitation gap (air
gap) between the on-board levitation magnets and the guideway, a controllable electromagnetic field is
generated in its maglev suspension system. Obviously, the response analysis of a maglev train moving on a
flexible guideway is related to not only the dynamics of vehicle/guideway interaction but also the control of the
maglev system.

With the recent development of high-speed rail in ground transportation, there are many literatures
on the study of train-induced vibration of railway bridges [4-15]. One of the important findings in these
research works is that as a train travels over a bridge at resonant speeds, the response of the bridge tends to
increase steadily as there are more loads passing the bridge [5,6,9]. This is the so-called ‘“‘resonance
phenomenon” for rail bridges. However, relatively little research attention so far seems to conduct the
dynamic interaction response of maglev trains running on guideways at resonant speeds. Cai and Chen [16]
and Cai et al. [17] investigated the response characteristics of different maglev-vehicle models traveling
over flexible guideways. They concluded that a concentrated-load vehicle model might result in larger
responses of both guideway deflections and vehicle accelerations than a distributed-load vehicle model.
In the literature review works conducted by Cai and Chen [18], various aspects of the dynamic characteristics,
magnetic suspension systems, vehicle stability, and suspension control laws for maglev/guideway
coupling systems were discussed. Zheng et al. [19,20] presented two kinds of vehicle/guideway coupling
models with controllable magnetic suspension systems to investigate the vibration behavior of a maglev
vehicle running on a flexible guideway. They observed the phenomena of divergence, flutter, and collision
on the dynamic stability of a maglev-vehicle traveling on a flexible guideway. By simulating a magnetic
force as an equivalent spring-dashpot system, Zhao and Zhai [21] modeled a TRO6 carriage as a
10-degree-of-freedom (10 dof) vehicle model with a rigid car body supported by four sets of magnet
bogies to investigate the vertical random response and ride quality of a maglev vehicle traveling on elevated
guideways.

In this study, a simplified model of a two-dof maglev oscillator controlled by a PI controller [22-24] is
employed to simulate a maglev vehicle moving on a flexible guideway. The guideway is modeled as
a simply supported beam. Based on the maglev theory, the maglev-oscillator system is lifted up above
the guideway with a stable levitation gap via a motion-dependent electromagnetic force (see Fig. 1).
By employing Galerkin’s method to convert the governing equations containing moving maglev oscillators
into two sets of generalized differential equations, the computation of dynamic response for the
vehicle/guideway coupling system was carried out using an iterative approach [15] with Newmark’s f
method [25]. To control the dynamic response of a series of maglev oscillators running on a flexible
guideway with various speeds, a neuro-PI controller based on back-propagation algorithm [26,27] is
developed, in which it can provide suitable control gains in reducing the response of maglev oscillators.
Numerical simulations indicate that the dynamic response of maglev vehicles traveling over a flexible
guideway at resonant speed can be restricted to a preset acceleration using the proposed neuro-PI
controller.
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2. Formulation
2.1. Basic considerations

Generally, the lateral flexural stiffness of a guideway is much larger than the vertical one. For this reason,
the lateral vibrations of the guideway due to moving maglev vehicles will also be smaller than the vertical
motions. To simplify the formulation of vehicle/guideway interaction with the maglev system, only vertical
vehicle motion is considered in this study because it can dominate the dynamic behavior of vehicle/guideway
interactions [17]. The following are the assumptions adopted for the maglev-vehicle/guideway system:

(1) The flexible guideway is modeled as a linear elastic Bernoulli—-Euler beam with uniform cross-section.

(2) A maglev train passing over the guideway is modeled as a sequence of identical maglev vehicles with equal
intervals.

(3) The maglev vehicle is modeled as a one-dimensional and two-dof oscillator model that consists of two
concentrated masses, with the top one representing the mass lumped from the car body and the bottom
one the mass of a magnetic wheel-set.

(4) The effect of time delay between the input voltage and the output current on a maglev suspension system is
negligible.

2.2. Governing equations of motion

As shown in Fig. 2, a sequence of identical maglev oscillators with equal intervals d is crossing a single-span
flexible guideway at constant speed v. The maglev-oscillator model is composed of a lumped mass (car body)
supported by a spring-dashpot system connected with a magnet bogie, from which a controllable
electromagnetic force is generated to lift the vehicle model up at a stable levitation gap. Here, we shall use
the following symbols to denote the properties depicted in Fig. 2: m = mass of the guideway girder,
¢ = damping coefficient, EI = flexural rigidity, m; = lumped mass of magnetic wheel-set, n, = lumped mass
of car body, ¢, = primarily damping coefficient, and k, = primarily stiffness coefficient. The equation of
motion for a simple beam carrying multiple moving oscillators is [9,15]

miig + ciug + Elu"" ; = p(x, 1), (1)

N
P60 =Y Grlix, )d(x — x)[H (1 — ) — H(t — 1y — L/v)] 2)
k=1

with the following boundary conditions:

uq(0,7) = uq(L, 1) = 0,

Elu” 4(0,¢) = Elu" (L, 1) = 0, (3a,b)
where (@) = 0(®)/0x, (¢) = 0(e)/0t, u x, t) = vertical deflection of the beam, py = lumped weight of maglev
vehicle = (m; +my)g, g = gravity acceleration, é(®) = Dirac’s delta function, H(¢) = unit step function, k = 1,
2, 3, ..., Nth moving load on the beam, f#; = (k—1)d/v = arrival time of the kth load into the beam,
x; = position of the kth load along the guideway, y, = vertical displacement of the kth lumped mass m,

(magnetic wheel), and y,;, = vertical displacement of the kth lumped mass m, (car body). The equations of
motion for the kth maglev oscillator with two-dofs are [4,9]

mp 0 | [ Vi & =G| | Vi ky =k || Yk — Gylix, h
LA i Z{Po 1e(ik k)}. 4
0 m Yok —Cy Cy Yok —k, ky Yok 0
Here, G (i, hi) denotes the control electromagnetic force between the magnetic wheel-set and the guideway,

which is given by [2,3]
Gr(ir, i) = Ko(ix(t) /(1)) (5)
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Fig. 2. A flexible guideway under moving maglev train loads.

where Ky = poN3Ay/4 = coupling factor [1-3], o = vacuum permeability, Ny = number of turns of the
magnet windings, Aq = pole face area, i () = iy + 1,(f) = control current, 1,(f) = deviation of control current,
(1) = ho+ y1(t)—ulxi) + r(x;) = levitation gap, r(x) = irregularity of guideway, and (i, 9) = desired values
of control current and levitation gap around a specified nominal operating point for a maglev wheel-set. By
expressing the electromagnetic force in Eq. (4) in terms of the inertial forces of the maglev oscillator, one can
obtain Gy (ix, hk) = py — M1, — Maj. Considering the static equilibrium for the suspended maglev oscillator
in Eq. (5) yields [19,20]

Grlio, ho) = Koio/ho)* = (m1 + ma)g = po, (6)

where the coupling factor K, is equal to po(ho/ip)>. From the theory of electromagnetic circuits, the
electromagnetic equation for the magnet current and control voltage in the kth maglev system is given
by [1-3]

d(ix /)
dr

where I'g = 2K, = initial inductance of the coil winding the suspension magnet, Ry = coil resistance of
electronic circuit, and V) = control voltage. Let us adopt the variable transformation as y, = i,/h;, Eq. (7) can
be rewritten as

Iy + Roix = Vi, (7N

Loy + Rohi(t)yy = V. ®)

Consider the control error of e, = iy/hy—ii/hi = yo—7yi for the parameter y,, the control voltage of V. can be
expressed using the PI tuning algorithm as [22-24]

t
VkZerk+Ki/ e, dt, (9)
0

where K, = proportional gain and K; = integral gain [22-24]. Then substituting Eq. (9) into Eq. (8) and
differentiating this equation with respect to time, after some mathematical manipulation, one can achieve the
following differential equation for control error:

Toér + Kyér + Kiep = Rohkyo — Ro(hyéx + /zkek). (10)

Here, the nonlinear term of —Ry(héx +hkek) has been regarded as a pseudo excitation and removed
to the right-hand side of the differential equation. Let us suppose the proportional gain K, in Eq. (10)
as a damping coefficient in a dynamic equation. Then one can use the concept of proportional damping
to represent the proportional gain in terms of (I'g, K;) as K, =2{/I'0K; [9]. Here, { = equivalent
damping ratio. Combining Egs. (4) and (10) yields the following equation of motion for the kth maglev
oscillator:

[my Wit} + [eol{iton} + [kv]{uvk} = {fuk}a (11)
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where
Vik mp 00 b T 0
fueh = Yo g fl=] 0 m 04, [e]=| —& & L (12a-¢)
€ 0 0 F() —R()W/O 0 2§«/F0K,~
ky, =k, —2py/7o —polex/70)
k]= |~k kb 0 |, ()= 0 . (12d,)
0 0 K; Royoli(xi) — tia(xic)] — Rolhieér + hiex]

To solve the nonlinear dynamic coupling equations shown in Egs. (1), (2), (11) and (12), an incremental-
iterative procedure will be presented in Section 3.

3. Applications of the incremental-iterative approach

According to the homogeneous boundary conditions shown in Egs. (3) for a simple beam, the guideway
deflection (u,) can be expressed as follows [10]:

ug(x, ) = ; 4,(0) sin?, (13)

where ¢,(f) means the generalized coordinate associated with the nth assumed mode of the simple beam. From
the coupling equations in Eqs. (1) and (11), the substitution of Eq. (13) into Eq. (1) and the application of
Galerkin’s method [10,14] may yield the following equations of motion for the nth generalized system of the
guideway associated with the kth vehicle equation:

0 [mu] {i/lvk} + 0 [Cv] {uvk} * 0 [kb] {uvk} B {ka} ’ ( )

where k, = El(nn/L)*, and the generalized force p, is

N
pn = Z[Fk(wl’la U, t) - ka(wn; Ua [)]’
k=1

[ lylkL 2y2k] l//n(wn, t),

W, (@, 1) = sinw,(t — t)[H(t — tx) — H(t — t; — L/v)]. (152 — d)

2
Fk(wl’la U’ l) = %‘pn(wnn t): ka(wna U, Z‘) =

Here, w, = nnv/L = driving frequency of vehicle loads to the guideway [9].

To compute the nonlinear dynamic responses of both the maglev oscillators and the guideway, an iterative
method is used in numerical simulation. With respect to the total responses of (¢, a;» @usiar dnsvar) and
(toks+ae}s {tok r+-A}s {ituie i+a¢}) 10 Eq. (11) at time ¢+ Az, one can use Newmark’s f method [9] to relate them to
their responses at time ¢ as

Gnrrat = Dy + Aqm
Qn,t+At = qn,t + a6én,t + a7én,t+Al’
qn,rJrAt = aOAqn - a2q.n,t - a3é].n,t (16a - C)
and
{uvk,tJrAt} = {uuk,l} + {Auvk}a
{avk,H—At} = {uvk,t} + a6{ﬁvk,t} + a7{1;iyk,r+Ar},
{tk+ac = aofAune} — ar{ito,} — asfiivg, } (17a = ¢)
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with the following integration constants [9,25]:

1 Y 1 1 | 7
CTpar A T BT MTpT
as = % (B - 2> as = (1 —p)At, a7 =yAt (18a — h)

and f = 0.25 and y = 0.5. Then the equivalent stiffness equations for the incremental step from time 7 to 7+ At
with the feature of iteration are written by [15]

Kieq % Aqf't,H—At Apn z+Az’[ v,eti]{A“ik,t-kAt} {Afbk A} (19a,b)
where i = iterative number, and the equivalent stiffness terms of K, .q and [K, o] are
Kyeq = aom + aic + ky, [Koeq] = aolmy] + ailco] + [ko] (20a,b)

and  (Ap} \ap (Af okt +A,}) are interpreted as the wunbalanced forces during the following iterative
steps. The unbalanced force ApiLa is equal to the difference between the external force pi !,

- Form equivalent stiffness equations from Eq. (19) by Newmark’s method
- Calculate the total action time ¢,,, (=(L+Nd/v)) for multiple maglev loads running on
the guideway at constant speed v

Data preparation
|4

Determinate the location for maglev oscillators moving on the guideway [

- Give the values of PI parameters for maglev system

Iteration

4

Convergence

e Predictor:

1.Compute the effective incremental forces from Eqgs. (21)

2.Solve the incremental responses of generalized systems for the guideway from Eq. (19a)
3.Calculate the total responses of the guideway

4.Find the corresponding guideway deflection and the air gap under the k-th maglev oscillator
5.Find the Current magnetic force vector {f,,} for the k-th maglev oscillator.

6. Compute the incremental responses of the k-th maglev oscillator from Eq. (19b)

e Corrector:
1. Update the total response of the maglev oscillators and guideway from Egs. (16) & (17)

Data collection of
max, responses

2. Update the Current generalized forces acting at the generalized systems of the guideway

3. Calculate the effective internal resistances forces from Eqa. (21b) & (21d)

o Equilibrium-checking:
1. Compute the unbalance forces from Eqs. (21a) & (21c¢)
2. Calculate the tolerance f;,; from Eq. (22)

.
®

Fig. 3. Flow chart of the incremental-iterative procedure.



190 J.D. Yau | Journal of Sound and Vibration 321 (2009) 184-200

and the effective internal forces f°-
t+At ie.,

e s for the nth generalized system of the simple beam at time

i—1 i—1
Apn t+At = PuitAr _fn,z+Az’

i1 2l i Lol i .
k”qn,t+At — (@, o ar + 3Gy n) — sy ya, + A5Gy 1a,) fOr =1,

Sodiar = A o N . (21a,b)
’ k"qiljf}km + mq;ﬂ,_l,_m + quz,t}ﬁ-At for i>1.

Similarly, the unbalanced force vector {Af } and the effective internal force vector {r'7!, , } for the kth

maglev oscillator at time ¢+ At are

vk, t+At vk, t+AI

i i—1
{Afak t+At} =V uk, A — {rvk,H—At}’

[k ]{uuk r+At [mv](aZ{a;;,lHA;} + aB{iii‘;,lHA,}) for i = 1,
it =14 —led@alingal + astinga)) (lc.d)

e luiy by ark + ity oat + lelliizh ) for i1

The flow chart for incremental-iterative dynamic analysis including the three phases, predictor, corrector,
and equilibrium checking, has been outlined in Fig. 3. The predictor phase is concerned with the solution of
the structural response increments of (Aqn AP {Aubk ) for given loadings (Apn AL {Aka HA[}) from the
equlvalent stiffness equations; the corrector phase relates to the recovery of the internal resistant forces

nHA[, {rvk,JrAt}) from the displacement increments of (Ag,, . 4, {Au, }) and the total responses of

vk, t+At
(4, vors @y roaes G pnr) and (7P, (U 1y ar)> {uvk +a/}) made available in the predictor; the equilibrium-

checking phase is used to calculate the unbalanced forces (Ap/ ! ,,, (Af ot \.a)) from the differences between

the effective internal forces (7, ,+A,,{rbk \+a}) and the external loads (p!, e Ul L.a)- Whenever the root
mean square of the sum of the generalized unbalanced forces, that is,

y 1/2

Biol = {Zk L (Af o) +Z (Apn i+A0) (22)

is larger than a preset tolerance, say 1073, iteration for removing the unbalanced forces involving the two
phases of the predictor and the corrector should be repeated.

4. Applications of back-propagation network to pi controllers

Using a PI controller to control a structure, one needs to tune the PI gains so that its output can exhibit an
oscillation behavior through the process of trial and error [22]. In this section, an artificial neural network
(ANN) model based on back-propagation learning algorithm is proposed to determine the PI gains for a
controlled maglev vehicle. The present PI controller with a trained ANN will be called a neuro-PI controller.
A back-propagation network (BPN) with feed-forward architecture has been widely applied to various
engineering areas for its simplicity and straightforward nature [26,27].

The BPN model is trained using the supervised learning algorithm and its basic architecture (see Fig. 3)
includes three layers of processing units: input layer, hidden layer, and output layer. Among these layers, they
are interconnected with the neurons that each of them is linked via weighted connections. Here, W, and W,
are the weighted matrices of the output and hidden layers, respectively. The input phase is to feed information
to the neural network system through the neurons of the input layer. Then, each neuron of the hidden and
output layers processes its input by multiplying its weight through a nonlinear activation function. The
sigmoid function of f{x) = 1(1+e ") is chosen as the activation function of the BPN model for its
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differentiability and continuity, i.e., df(x)/dx = f(x)(1—f{(x)), which is rather easy to calculate when performing
the gradient steepest procedure using the back-propagation algorithm. The error between the target outputs
and the predicted results is iteratively minimized through the weights adjusted at each training cycle in the
neural network computations. The error function is defined by the following half-sum of squared error:

1
Er= EZ@ ~ ) (23)

(32

where T; = target output for pattern */”, Y; = predicted output. Here, the predicted output Y; is defined as
follows:

Yi=f(x), x = Z(Wlfi Yi—by), (24)

where w;; denotes the connective weight between neurons 7 and j and b; is the bias associated with the jth
neuron of the hidden layer. To minimize the error function E,, the present BPN model adopts the following
weight update rule [27]:

Awyk +1) = —n OF, + aAwy(k), (25)
G
where k = learning cycle, n = learning rate, and « = momentum term. The momentum term is used to avoid
oscillation problems and to keep the training process stable by treating the previous weight change of Aw(k)
as a parameter of the new weight change of Aw;(k+1). Once the target outputs (training phase) and the
predicted results (testing phase) are found to be in good agreement with each other, the output predictions
from the trained BPN model can produce reliable output results for the inputs within the range of the training
set (Fig. 4).

To determine the PI gains from a trained BPN model, let us denote @, m,x as the maximum mid-span
acceleration of the guideway and a, .« as the maximum vertical acceleration of the moving maglev oscillators.
Considering different pairs of PI gains in maglev systems, the dynamic response analysis of vehicle/guideway
interaction can be carried out using the incremental-iterative procedure presented in Section 3. Then the
generated information of (v, @y max> dgmax> Kp, K;) are collected as an initial off-line learning database to train
the proposed BPN model for predicting the control gains of neuro-PI controllers. In this study, three
parameters (v, dgymax, and g, max) are used as the input patterns to feed the BPN learning model while the PI
gains of (K, K;) as the output predictions.

Output predictions

Input patterns

v ag,max av,max

Fig. 4. Architecture of a typical three-layered neural network.
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5. Numerical verifications

Fig. 2 shows a series of identical maglev oscillators with equal intervals d crossing a single-span guideway at
constant speed v. It was well known that if the acceleration response, rather than the displacement response, of
a simple beam is of concern, higher modes have to be included in the computation [15]. In this study, the first
16 modes of shape functions are employed to compute the acceleration response of the simply supported
guideway and two-dof maglev oscillators by using the time step of 0.001s and the ending time of
fend = (L + Nd)/l)

Moreover, to account for the random nature and characteristics of guide-rail irregularity in practice, the
following power spectrum density function [9] is given to simulate the vertical profile of guideway geometry
variations:

B A2
@+ Q)@+ Q)
where Q = spatial frequency, and 4, (= 1.5 x 107" m), Q, (= 2.06 x 10~°rad/m), and Q. ( = 0.825 rad/m) are

relevant parameters. Fig. 5 shows the vertical profile of track irregularity for the simulation of guide-rail
geometry variations in this study.

S(Q)

(26)

5.1. Response for a maglev vehicle traveling on a single-span concrete guideway

For the purpose of verification for the proposed maglev-vehicle/guideway interaction model, a TR06
maglev vehicle is treated as an eight-set of two-dof sprung mass systems with equal intervals (d = 3m), as
shown in Fig. 2. The main data for the TR06 maglev vehicle with length 24 m and a single-span concrete
guideway with span 24.854m [21,32] are given as follows: EI =24.56 x 10°kNm?, m = 3760kg/m,
m; = 4000 kg, m, = 3700kg, ¢, = 10.6kNs/m, k, = 85kN/m, hy = 8mm, iy =37 A, and Ry =1.10Q. Let
the maglev oscillators travel on the smooth guideway with a constant speed of 400 km/h. Considering three
pairs of adjusted PI gains, i.e., (K; = 6.0, K, = 0.01), (K; = 6.0, K, = 0.03), and (K; = 7.0, K, = 0.01), the time
history responses for mid-span guideway deflection and the vertical acceleration of the first maglev oscillator,
together with the numerical results obtained from Ref. [21], have been plotted in Figs. 6 and 7, respectively.
They indicate that the proposed vehicle/guideway model with PI gains of (K; = 6.0, K, = 0.01) has the ability
to simulate the dynamic behavior of a TR06 maglev vehicle running on a concrete guideway. From the
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Fig. 5. Guide-rail irregularity (vertical profile).
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Fig. 7. Time history response of vertical acceleration for maglev oscillators.

Table 1

Properties and natural frequency of the guideway

L (m) EI (Nm?) m (kg/m) ¢ (N's/m/m) fo* (Hz) Ures (km/h)
30 7.9 x 10" 1.5 x 10* 3.77 x 10 4 360

#fo = the fundamental frequency of the guideway.

response curves in Fig. 6, little difference exists between the acceleration responses of the guideway subject to
the three types of moving maglev oscillators. The reason is that the inertia force of (mj,; + m2j,;) induced by
a moving maglev oscillator is much lower than its static load (py) acting at the guideway [17]. From the
response curves in Fig. 7, the larger proportional gain is helpful to mitigate the response amplitude of the
maglev oscillator and the integral gain plays the role of energy dissipation to damp out the residual vibration
of the moving maglev vehicle after passing through the guideway.
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Table 2

Properties of the maglev oscillator

N d (m) Po (N) my (kg) m; (kg) ¢, (N's/m) k, (N/m) ho (m) io (A) Ro () Ty (m*H)
12 25 1.28 x 10° 3% 10° 10* 1.5x 10* 3% 10° 0.01 25 0.8 0.041

with K, = 0.12, K; = 0.56
@ ik, =024, k=228
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5.2. Resonance response of a flexible guideway

As a series of moving loads with equal intervals (d) travel over a bridge at the resonant speed v, = fod, the
dynamic response of the bridge will build up continuously as there are more vehicular loads passing through
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the bridge [10-15]. To demonstrate this resonance phenomenon, let us consider the dynamic model
(the EDS system) in Fig. 2 with the properties of the guideway and maglev oscillator shown in Tables 1 and 2.
Two pairs of constant PI gains, i.e., (K, =0.12, K; = 0.56) and (K, = 0.24, K; = 2.28), are selected for the
controlled maglev oscillators, respectively. Fig. 8 shows the time history responses of mid-span acceleration of
the guideway induced by the two types of maglev oscillators moving at resonant speed. Fig. 9 depicts the
vertical acceleration responses of the sprung masses (m1,) for the first and the last (N = 12) maglev oscillators.
Since the guideway response shown in Fig. 8 is built up continuously as there are more moving loads
passing through the guideway, the last maglev oscillator entering the vibrating guideway in resonance just
right experiences the portion of larger vertical guideway excitations than the first one and its response
is also amplified significantly. Of interest in the vehicle responses is the fact that the acceleration amplitude
of a controlled maglev oscillator with larger PI gains is significantly smaller than that with smaller PI gains
since a controller with larger control gains can offer more control efforts in mitigating the response of a
vibrating oscillator.

0.25 —
7 O Maglev oscillators with Pl gains
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5.3. Training and testing of the proposed BPN model

In this study, the response curve of the maximum mid-span acceleration (@, max) of the guideway vs. moving
speed (v) is denoted as the a,max—0v plot and the maximum vertical acceleration (@, max) of the maglev
oscillators vs. moving speed as the a, max—0 plot. For the purpose of training the BPN learning model, this
study uses the data set of (v, @pmax. @gmax) as three input patterns and the control gains of (K, K;) as two
output predictions. Prior to the preparation of the learning database, an equivalent damping ratio ({) of a
neuro-PI controller is set to 0.4 for the proportional parameter K ,(= 2{+/T(K;) and the integral gain K; ranges
from 0.25 to 10 with a step size of 0.25. Let the maglev oscillators travel over the guideway with speeds (v)
from 100 to 600 km/h with an increment of 10 km/h. Figs. 10 and 11 show the distribution of the a, max—v plot
and the a, ymax—v plot, in which the entire database of (v, @y max, @gmax> Kp, K;) is carried out by computing the
nonlinear analysis procedure of vehicle/guideway interaction response shown in Section 3. Since the inertia
forces of moving maglev oscillators acting on the guideway are much lower than their static loads, the
coupling effects of vehicle/guideway have littlie difference [17] on the @, max—v plots shown in Fig. 10. From
Fig. 11, peak amplitudes in the a, nm.x—0 plots still exist at the resonant speed of 360 km/h even for the maglev
oscillators with the largest PI gains (K, = 0.51, K; = 10).

With the training database depicted in Figs. 10 and 11, 2040 data patterns are generated and collected from
the present computing results, in which the total data pairs are used as training data while a subset of 1020
data pairs randomly selected from the total data set is used to test the prediction capability of the trained BPN
model. To obtain the simplest BPN model that can fit the present study of interest, a basic training strategy is
outlined as follows [27-31]: (1) the increase of hidden layers may produce complex error surfaces and raise the
possibility containing local minima, but the more hidden units can increase the accuracy of output predictions;
(2) a BPN learning model with a single hidden layer and sufficient neurons is capable of providing an
approximate but accurate solution of practical interest; and (3) the use of Gaussian-based random initial
database and a noise factor (0.01) in the updating weights can help avoid possible local minima on the error
surface during the training process. Considering the BPN parameters of n = 0.95, « = 0.5, and k& = 1000 for
the weight updating equation given in Eq. (25) and trying different combinations for the number of neurons in
the hidden layer based on the previous training strategy, this study adopted a three (input pattern):16 (hidden
neuron): two (output prediction) three-layered BPN architecture with a convergent rate of 0.03. Fig. 12 depicts
the scattering diagrams of the predicted data set vs. the target data set for testing PI gains (K;, K,,), in which the
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Fig. 12. Scattering correlation diagram for target and predicted outputs.
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correlation coefficient is defined as

p= Zi:l(Tl - T)(Pl - P) , (27)
(n— lorop
where T means the symbol for target data and P for predicted data; n = number of predicted data,
(T, P) = average value, ande = standard deviation. The scattering diagram shows that the correlation data
are uniformly distributed along the diagonal line for the PI gains, from which the predicted outputs are quite
close to the target ones.

To verify the prediction capability of the trained BPN model, one pair of constant P1 parameters (K, = 0.24,
K; = 2.28) used in Section 5.2 is selected as the actual PI gains for the maglev system of controlled maglev
oscillators. The data set of (v, @y max> @gmax) 15 utilized as the input patterns to feed the trained BPN model.
Then the predicted PI gains (K, K;) learned from the present BPN model were generated and are plotted in
Fig. 13. Generally, the plot of the predicted outputs vs. speed is distributed irregularly around the constant PI
parameters (K, = 0.24, K; = 2.28) since the BPN model searched for a pair of optimal PI gains that can
achieve the minimum vertical acceleration response of maglev oscillators from the input patterns. A
comparison of the a, ma.x—v plot for the maglev vehicles controlled by the actual PI controllers with that by the
trained neuro-PI controllers has been shown in Fig. 14. It can be seen that the predicted response curve of the
a,.max—V plot agrees very well with the target one.
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5.4. Performance of the proposed BPN model

As illustrated in Example 5.3, the increase of PI gains (K, K;) for a controlled maglev system is helpful to
mitigate the dynamic response of moving maglev vehicles. But the peak amplitude at the resonant speed of
360 km/h still exists in the a, max—v plot for maglev vehicles. In addition, to ensure the ride quality and running
safety of maglev vehicles, acceleration amplitudes are needed to be restricted. For these reasons, let us restrict
the maximum acceleration amplitude of moving maglev oscillators to a preset acceleration amplitude (a,, ).
Then the data set of (v, @y max, @vrst) 18 Used as input patterns to feed the trained BPN model for yielding a
specific data set of predicted PI gains that can change its control parameters along with moving speeds to
satisfy the requirement of the preset acceleration. In this example, two cases of restricted accelerations, say,
0.05 and 0.10 m/s?, are employed to verify the prediction capability of the trained BPN model. Under the two
restricted acceleration amplitudes, the predicted values of (K;, K,) against moving speeds for the trained neuro-
PI controllers have been depicted in Fig. 15, respectively. The output predictions of PI gains indicate that both
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the predicted PI gains of (K;, K,) may reach their maximum at the resonant speed of 360 km/h. It means that
the maglev vehicles moving at resonant speed require more control efforts to keep the vehicle responses
around the restricted acceleration (a, ). Meanwhile, the distribution of the predicted a, ,.x—0 plots shown in
Fig. 16 indicates that both the peak acceleration amplitudes for the maglev oscillators have been effectively
controlled within an allowable region determined by the prescribed requirement. On the other hand, as
moving speeds are lower than 300 km/h, the most maximum acceleration amplitudes are around 0.05m/s> for
the case of a,, s = 0.10 m/s® since the corresponding PI gains shown in the training database of Aymax—0 plots
in Fig. 10 are able to offer enough control forces to maintain the vertical acceleration response of maglev
oscillators within the prescribed maximum acceleration.

6. Concluding remarks

In this study, the nonlinear dynamic analysis for a maglev-vehicle/guideway coupling system with PI
controllers was carried out using an incremental-iterative procedure involving three phases of predictor,
corrector, and equilibrium checking. Based on the present study, some observation on the vibration control of
maglev vehicles traveling over a guideway using the proposed neuro-PI controller can be drawn as follows:

(1) As the passage frequencies (v/d) caused by a series of moving maglev oscillators coincides with the natural
frequency of a guideway, larger responses will be developed on both the maglev vehicles and the guideway
at this resonant speed.

(2) The numerical examples demonstrate that the proposed neuro-PI controller can reasonably simulate the
control behavior of an actual PI controller for the maglev oscillators moving on a flexible guideway.

(3) To restrict the peak accelerations for maglev vehicles around a prescribed acceleration amplitude, the
proposed neuro-PI controller has the ability to change its control gains along with moving speeds to satisfy
the requirement based on ride quality and running safety of maglev vehicles.

(4) Even though the allowable bound of acceleration to be restricted for maglev oscillators is over the
acceleration amplitudes in training database for some moving speeds, the proposed neuro-PI controller
has the ability to search a set of available P1 gains that can offer enough control forces to control the
acceleration response of maglev oscillators within the allowable region of the prescribed acceleration.
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