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Abstract

In this paper, the method of superposition or the Gorman method is employed to obtain an analytical solution for free

and forced vibrations of cantilever plates carrying point masses. The free lateral vibration analysis is carried out by

employing five building blocks—four for the cantilever plate and one for the point mass. Computed eigenvalues show that

the proposed scheme is accurate and convergent for free vibration analysis. Once the eigen-analysis is completed, the

modal summation method is then used to deal with the base-induced lateral vibration of cantilever plates carrying a point

mass. Effects of mass ratios and locations of the point mass on eigenvalues and modal participation factors are investigated

for square and rectangular plates.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many energy scavenging devices are designed to capture the ambient energy surrounding the electronics and
convert it into usable electrical energy. There are a number of sources of harvestable ambient energy including
vibration [1]. According to Anton and Sodano [2], the structural and biological communities have placed an
emphasis on scavenging vibrational energy with piezoelectric materials although many other sources of energy
can also be effectively used. When a piezoelectric material is strained, it produces an electric field. Cantilever
piezoelectric panels and beams carrying heavy concentrated masses are commonly used in some portable and
wireless devices as an efficient and compact way to generate electricity from base motion induced by human
movement. The piezoelectric panels consist of a passive elastic material (core) and two thin layers of
piezoelectric materials. For this type of application, the thickness of the cantilever structure is very small
compared to its length and width. The in-plane material properties of the piezoelectric material and the core
are essentially isotropic. Therefore, the classical plate theory can be used to deal with lateral vibration and
design of thin piezoelectric panels.

Heavy masses are usually placed near the free edge of a cantilever plate to reduce the fundamental frequency
of the plate-mass system to a desired value. To eliminate the electrical cancellation due to higher modal
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. A cantilever plate carrying a point mass.
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responses, the dynamic strains on either side of the piezoelectric panel must be homogeneously tensile or
compressive. Participation of high vibration modes adversely affects the net charge production, and is not
desirable. To ensure that maximum amount of electrical energy is produced for a given base motion, the
fundamental frequency of the panel is designed to be near the source frequency; frequencies of higher
vibration modes are designed to be away from the fundamental frequency. Design of frequencies for
promoting fundamental mode response requires free and forced vibration analyses of cantilever plates
carrying point masses (Fig. 1).

There are several papers dealing with free vibration problems of cantilever plates carrying single and
multiple concentrated masses. Ciancio et al. [3] studied the free vibration problem of a cantilever anisotropic
rectangular plate carrying a concentrated mass using the Rayleigh–Ritz method, or the Ritz method
recommended by Leissa [4] for use in the vibrations research community after a thorough review of historical
notes by Lord Rayleigh and Walter Ritz concerning the development of the energy-based approximate
method. Singhal and Gorman [5] studied free vibration of point-supported plates with attached masses. Chiba
and Sugimoto [6] presented a comprehensive study of coupled and decoupled free vibration analyses of an
isotropic cantilever thin rectangular plate carrying a spring–mass system attached on an arbitrary point by
using the Ritz method. As a limiting case, they also investigated the influence of an attached mass by setting
the spring constant to be infinity.

To obtain an analytical solution for free vibration of a plate subjected to various boundary and interior
conditions, one needs to construct a series of building blocks, for which exact analytical solutions may be
obtained easily using the generalized Levy method. For a rectangular plate, a Levy type solution can be
obtained if it has a pair of opposite edges subjected to combinations of simple support and slip-shear
boundary conditions. For a rectangular plate having homogeneous classical boundary conditions on its edges,
four building blocks are required. The number of building blocks is equal to the number of edges whose
boundary conditions are neither simple support nor slip-shear.

By taking advantage of symmetry and antisymmetry of modes with respect to the centerline running normal
to the clamped edge, Gorman [7] studied one half of a cantilever plate. This approach reduces the number of
building blocks required in an analysis to three. However, one has to construct two sets of building blocks for
determining natural frequencies and mode shapes for the two families of modes. Using the four building block
scheme [8] without consideration of symmetry and antisymmetry of modes during the construction stage, only
one set of four building blocks is required. The complete natural frequencies of the cantilever plate can be
determined and arranged in an ascending manner. If it is desirable to identify the symmetry or antisymmetry
of modes, the corresponding transcendental eigen-matrix can be modified by simply deleting rows and
columns from the general eigenvalue matrix, which are disassociated with a particular family of modes of
interest.

In this paper, analytical solutions for free and forced vibrations of a cantilever rectangular plate with an
attached mass are obtained using the method of superposition [9] and the modal summation method [10].
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To obtain an accurate analytical solution for the cantilever plate, a total of four building blocks are
utilized. The superposition scheme based on the use of four building blocks is valid for arbitrary locations
of attached masses. The driving quantities in the building blocks are chosen to be the bending moment
for the clamped edge and the slopes taken normal to the three free edges. This choice of driving quantities
eliminates the rejection modes encountered when the bending moments were chosen for free edges [9].
Although the rejection modes can be easily recovered, it is preferable not to run into the rejection modes
in the first place. Numerical results are obtained using the proposed scheme are in excellent agreement with
those of Gorman [9] for cantilever plates without point masses and those of Ciancio et al. [3] for plates
carrying a point mass.

2. Governing differential equations

When a base motion is introduced to the clamped edge of a thin plate, the governing differential equation
for lateral vibration of the plate-mass system may be written as

Dr4wþ r €w ¼ �m €wdðx� x̄; y� ȳÞ � r €yb

�m €ybdðx� x̄; y� ȳÞ � aDr4 _w, (1)

where r4 ¼ q4=qx4 þ 2q4=qx2y2 þ q4=qy4; a is the structural damping coefficient; yb is the reference lateral
position of the clamped edge, measured from a space-fixed inertial coordinate frame; w is the lateral deflection
of the plate, measured from the reference base position; m is the mass of the attached point mass; x̄; ȳ are the
location of the point mass; dðx� x̄; y� ȳÞ is a two-dimensional Dirac delta function; D is the plate flexural
rigidity, defined as Eh3/[12(1�v2)] for a single isotropic layer of material; r is the plate density per unit area;
x,y are the Cartesian coordinates of material points on the midplane; h is the plate thickness; E is Young’s
modulus of the plate material; n is the Poisson’s ratio of the plate material. It should be noted that rotary
inertia of the mass is not taken into account in this paper.

In the free vibration analysis of the undamped plate-mass system, the lateral displacement is assumed to
vary sinusoidally with time at a natural frequency, on. The amplitude of plate free vibration, normalized to the
plate side length, a, is governed by the following equation:

Dr4W � ro2
nW ¼ mo2

nW ðx̄; ȳÞdðx� x̄; y� ȳÞ. (2)

To maximize the use of computed results, it is often desirable to work with non-dimensional quantities.
Using x ¼ x/a and Z ¼ y/b, where a and b are the plate dimensions in the x and y directions, respectively. The
preferred non-dimensional governing differential equation may be written as

r̃
4
W � l̄

4
W ¼ P b

D
dðx� x̄; Z� Z̄Þ or

r̃
4
W � l̄

4
W ¼ Pndðx� x̄; Z� Z̄Þ;

(3)

where P� ¼ Pb/D; P ¼ mao2
nW ðx̄; Z̄Þ; r̃

4
¼ f2q4W=qx4 þ 2q4W=qx2Z2 þ f�2q4W=qZ4; l̄

2
ð¼ onab

ffiffiffiffiffiffiffiffiffi
r=D

p
Þ is

the non-dimensional eigenvalue parameter; f ð¼ b=aÞ is the plate aspect ratio. The non-dimensional

magnitude of the concentrated force due to the attached mass is Pn ¼ ml̄
4
W ðx̄; Z̄Þ, where m is the ratio of the

attached mass to the plate mass. The non-dimensional eigenvalue parameter introduced in this paper is slightly
different from the traditional definition of l2 ¼ ona2

ffiffiffiffiffiffiffiffiffi
r=D

p
, e.g., used by Gorman [9]. The two eigenvalue

parameters are related by l2 ¼ l̄
2
=f. To evaluate the effect of a point mass on natural frequencies in a non-

dimensional manner, the frequency parameter, l̄
2
, can be used directly as a non-dimensional frequency if the

plate area is fixed.
The first four building blocks do not involve the point mass. Therefore, the governing equation is further

reduced to

r̃
4
W � l̄

4
W ¼ 0. (4)

For reference, the non-dimensional bending moments and lateral edge reactions along x ¼ constant and
Z ¼ constant, and the non-dimensional force at any of the plate corners are related to the lateral deflection as
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follows [9]:

�
Mxa

D
¼

q2W

qx2
þ nf�2

q2W
qZ2

; �
MZfb

D
¼

q2W

qZ2
þ nf2 q

2W

x2
,

�
Vxa2

D
¼

q3W

qx3
þ nnf�2

q3W
qxqZ2

; �
V Zfb2

D
¼

q3W

qZ3
þ nnf2 q3W

qZqx2
;

Rb

2Dð1� nÞ
¼

q2W

qxqZ
,

where nn ¼ 2� n.

3. Free vibration analysis

To obtain an analytical solution for free lateral vibration of a cantilever plate carrying a point mass, five
building blocks shown in Fig. 2 are employed. The first four building blocks are required by the clamped and
free edges in the cantilever plate; the fifth building block is required because of the point mass. An additional
building block similar to the fifth building block is required for each additional attached mass.

Each of the first four building blocks has a driving edge and three non-driving edges. The fifth building
block has a driving point corresponding to the point mass. For a non-driving edge, the boundary conditions
are either simple support (represented by a dashed line beside an edge) or slip-shear (represented by a pair of
small circles at the middle of an edge). For a driving edge corresponding to a free edge in the original
cantilever plate, the conditions are zero lateral edge reaction and prescribed slope of plate taken normal to the
edge. For a driving edge corresponding to the clamped edge in the original cantilever plate, the boundary
conditions are zero lateral displacement and prescribed bending moment.

3.1. Analytical solution for the first building block

The following boundary conditions are prescribed for the first building block: simple support at edge x ¼ 0,
slip-shear at edges Z ¼ 0 and x ¼ 1. Along the driving edge Z ¼ 1, the lateral edge reaction is set to zero, and
η

ξ

W2
W1

W3
W4

W5

F

F

F

C

Θ1

Θ2

Θ3

M4

×

Point force P
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y

Fig. 2. Building blocks employed for obtaining an analytical solution for free vibration of a cantilever plate carrying a point mass.
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the prescribed slope of plate taken normal to the edge is

H1 ¼
qW 1

qZ

����
Z¼1
¼
XK

m¼1;2

E1;m sin m̄px, (5)

where E1,m is a set of unknown coefficients, which determine the distribution of slope along Z ¼ 1 for a
vibration mode. Values of these coefficients can be determined when a solution to the original problem is
obtained.

A Levy type solution for this building may be written as

W 1 ¼
XK

m¼1;2

Y mðZÞ sin m̄px, (6)

where m̄ ¼ ð2m� 1Þ=2 and K is the number of terms employed in the series solution.
Substituting Eq. (6) into Eq. (4), one obtains the following ordinary differential equation:

Y
000

m � 2ðfm̄pÞ2Y
00

m þ ðfm̄pÞ4 � f2l̄
4

� �
Y m ¼ 0. (7)

An exact solution to the above equation may be written in the following form:

Y m ¼ Am cosh bmZ
� �

þ Bm sinh bmZ
� �

þ Cm cs gmZ
� �

þDm sn gmZ
� �

, (8)

where bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfm̄pÞ2 þ fl̄

2
q

; gm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfm̄pÞ2 � fl̄

2
q

or gm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fl̄

2
� ðfm̄pÞ2

q
, whichever is real; Am, Bm, Cm

and Dm are unknown constants to be determined from the boundary conditions. Functions cs(gmZ) and
sn(gmZ) are defined as follows:

csðgmZÞ ¼
cosðgmZÞ if ðm̄pÞ2ol̄

2
=f;

coshðgmZÞ if ðm̄pÞ24l̄
2
=f:

8<
:

sn gmZ
� �

¼
sin gmZ
� �

if ðm̄pÞ2ol̄
2
=f;

sinh gmZ
� �

if ðm̄pÞ24l̄
2
=f:

8<
:

Enforcing the boundary conditions on edge Z ¼ 0, one finds that the unknown coefficients Bm and Dm

are zero. The number of unknowns is consequently reduced to two. From the remaining conditions
along the driving edge Z ¼ 1, one may find the other two unknowns. The analytical solution for the first
building block is

W 1 ¼
XK

m¼1;2

E1;m y11;m
coshðbmZÞ
sinh bm

þ y13;m
csðgmZÞ
sngm

� 	
sin m̄px, (9)

where y11;m ¼ �g2m � ½�n
nðfm̄pÞ2�=bm½�b

2
m � g2m�; y13;m ¼ b2m � n�ðfm̄pÞ2=gm½�b

2
m � g2m�: The minus sign here

and in the solution for the third building block applies if ðm̄pÞ2ol̄
2
=f.

3.2. Analytical solution for the second building block

The second building block has a pair of slip shear edges along Z ¼ 0 and 1, and a simply supported edge
along x ¼ 0. The conditions along the driving edge x ¼ 1 are zero lateral reaction and prescribed angle of
rotation, given by

H2 ¼
qW 2

qx

����
x¼1
¼
XK�1
n¼0;1

E2;n cos npZ. (10)
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A Levy solution for the second building block may be written as

W 2 ¼
XK�1
n¼0;1

Y nðxÞ cos npZ. (11)

For convenience, the number of terms in the Levy solution is set to be the same as in that for the first
building block. It is noted that, when dealing with very small or very large plate aspect ratios, it may be
beneficial to use different number of terms in different building blocks in order to reduce the computations
while maintaining good accuracy [9].

Following the procedure similar to that used for the first building block, one obtains the following analytical
solution:

W 2 ¼
XK�1
n¼0;1

E2;n y22;n
sinhðbnxÞ
cosh bn

þ y24;n
snðgnxÞ
cs gn


 �
cos npZ, (12)

where bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnp=fÞ2 þ l̄

2
=f

q
; gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnp=fÞ2 � l̄

2
=f

q
or gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̄
2
=f� ðnp=fÞ2

q
, whichever is real, and

csðgnxÞ ¼
cosðgnxÞ if ðnpÞ2ol̄

2
f;

coshðgnxÞ if ðnpÞ24l̄
2
f:

8<
:

snðgnxÞ ¼
sinðgnxÞ if ðnpÞ2ol̄

2
f;

sinhðgnxÞ if ðnpÞ24l̄
2
f:

8<
:

y22;n ¼ �
�g2n � nnðnp=fÞ2

bn½b
2
n � ð�g2nÞ�

; y24;n ¼ �
b2n � nnðnp=fÞ2

gn½b
2
n � ð�g2nÞ�

.

In the above equations and in the solution for the fourth building, the minus sign applies if ðnpÞ2ol̄
2
f.

3.3. Analytical solution for the third building block

The third building block has the same boundary conditions at x ¼ 0 and 1 as those in the first building. It
has slip-shear boundary conditions at Z ¼ 1 and zero lateral reaction at Z ¼ 0. Along the driving edge Z ¼ 0,
the lateral edge reaction is zero; the slope taken normal the edge is prescribed to be

H3 ¼
qW 3

qZn

����
Zn¼1
¼
XK

m¼1;2

E3m sin m̄px; (13)

where Z� ¼ 1�Z.
Comparing the first and the third building blocks, one finds that the only difference is the swap of the boundary

conditions at Z ¼ 0 and 1. As a result, the analytical solution for the third building may be inferred from that for
the first building. For completeness, the analytical solution for the third building block is given below

W 3 ¼
XK

m¼1;2

E3;m y11;m
coshðbmZ

nÞ

sinh bm

þ y13;m
csðgmZ

nÞ

sn gm

� 	
sin m̄px. (14)

3.4. Analytical solution for the fourth building block

The fourth building block has the three slip shear edges along edges at Z ¼ 0, Z ¼ 1, and x ¼ 1. The
condition along the driving edge x ¼ 0 are zero displacement and the following prescribed bending moment

M4 ¼
Mxna

D

����
xn¼1
¼
Xk�1
n¼0;1

E4;n cos npZ, (15)

where x� ¼ 1�x.
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To obtain an analytical solution in the most compact form, an analytical solution for this building block is
written as follows:

W 4 ¼
Xk�1
n¼0;1

Ȳ nðx
n
Þ cos npZ. (16)

The analytical solution for Ȳ nðx
n
Þ may be obtained in a manner similar to that used for the second building

block. For reference and completeness, the solution is presented below

W 4 ¼
Xk�1
n¼0;1

E4;n y41;n
coshðbnx

n
Þ

cosh bn

þ y43;n
csðgnx

n
Þ

cs gn


 �
cos npZ, (17)

where bn and gn are identical to those appearing in the solution for the second building block. Other
parameters are y41n ¼ 1=ð�b2n � g2nÞ; y43n ¼ �1=ðb

2
n � g2nÞ.

3.5. Analytical solution for the fifth building block

The fifth building block has one simply supported edge and three slip-shear edges. It is subjected to a
concentrated force at the location of the attached point mass. An exact Navier solution to Eq. (3) for this
building block may be written as

W 5ðx; ZÞ ¼
Xk

m¼1;2

Xk�1
n¼0;1

amn sin m̄px cos npZ. (18)

The above solution satisfies the boundary condition along all four edges. To obtain a solution to Eq. (3), the
Dirac delta function, dðx� x̄; Z� Z̄Þ, on the right-hand side of the equation needs to be expanded into the
double Fourier series. Utilizing the orthogonality conditions for functions sin m̄px cos npZ in domain 0pxp1
and 0pZp1, the Fourier series coefficients may be obtained. The Dirac delta function may be expressed as

dðx� x̄; Z� Z̄Þ ¼
Xk

m¼1;2

Xk�1
n¼0;1

2an sin m̄px̄ cos npZ̄ sin m̄px cos npZ, (19)

where an is 1 for n ¼ 0 and 2 for na0.
Substituting Eq. (19) into Eq. (3), the analytical solution for the fifth building block is

W 5 ¼ Pn
Xk

m¼1;2

Xk�1
n¼0;1

a
0

mn sin m̄px cos npZ, (20)

where a
0

mn ¼ 2an sin m̄px̄ cos npZ̄=f2
ðm̄pÞ2 þ ðnp=fÞ2
� 
2

� l̄
4
.

3.6. Analytical solution for a cantilever plate with an attached mass

Now the analytical solutions for all building blocks are available. To obtain a solution for the cantilever
plate carrying a point mass, the solutions for all individual building blocks are superimposed in the following
manner:

W ðx; ZÞ ¼
X5
j¼1

W jðx; ZÞ. (21)

Since the governing equations are linear, the superimposed solution satisfies the same governing differential
equation. It also satisfies one of the two boundary conditions along each of the four edges. The superimposed
solution in Eq. (21) contains a total of 4k+1 unknown constants. In order for the superimposed solution to be
the solution for the original problem, it must satisfy the remaining boundary condition along each edge. By
doing so, all unknowns in the superimposed solution can be determined.
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Starting from edge Z ¼ 1, the boundary conditions for the four edges of a cantilever are free, free, free and
clamped in a counterclockwise manner. For a free edge, the lateral reaction force is already zero along the
corresponding edge in each block. It is only necessary to enforce the zero bending moment along the three free
edges. For the clamped edge, the displacement is already zero along the corresponding edge in each building
block. Only the slope taken normal to the clamped edge is required to be zero. The four boundary conditions
to be satisfied are

q2

qZ2
þ nf2 q

2

x2

� 	 X5
j¼1

W j

 !
Z¼1

¼ 0;
q2

qx2
þ nf�2

q2

qZ2

� 	 X5
j¼1

W j

 !
x¼1

¼ 0,

q2

qZ2
þ nf2 q

2

x2

� 	 X5
j¼1

W j

 !
Z¼0

¼ 0;
q
qx

X5
j¼1

W j

 !
x¼0

¼ 0. (22)

To ensure that the conditions in Eq. (22) are satisfied everywhere along edges Z ¼ 0 and Z ¼ 1, all functions
in the bending moment expressions are expanded into Fourier sine series, sin m̄px, in interval [0,1]; the Fourier
series coefficients for each m̄ are subsequently set to zero. As a result, the first and third condition each yields k

algebraic equations. Similarly, to ensure that the conditions in Eq. (22) are satisfied everywhere along edges
x ¼ 1 and x ¼ 0, all functions in the bending moment and slope expressions are expanded into Fourier cosine
series, cos npZ, in interval [0,1]; enforcement of all Fourier coefficients to be zero yields another 2k algebraic
equations.

The solution for the fifth building block in Eq. (20) is valid for arbitrary point load. In the case of the
attached point mass, the point load is caused by the inertial force of the point mass. The magnitude of this
force is defined as

P ¼ mao2
n

X5
j¼1

W jðx̄; Z̄Þ. (23)

Dividing both sides of Eq. (23) and expressing P in terms P�, one obtains the following additional condition
due to a point mass:

ml̄
4
X4
j¼1

W jðx̄; Z̄Þ þ Pn ml̄
4
Xk

m¼1;2

Xk�1
n¼0;1

a
0

mn sin m̄px̄ cos npZ̄

 !
� 1

" #
¼ 0. (24)

For a cantilever plate, there are two free corners at (1, 0) and (1, 1). To ensure that equilibrium conditions
hold at the two free corners, the corner force R at the two free corners must vanish. An examination of the
superimposed solution indicates that the non-dimensional corner force q2W/qxqZ indeed vanishes at the two
free corners.

Enforcing conditions in Eqs. (22) and (24), one obtains the following 4k+1 homogeneous algebraic
equations for 4k+1 unknowns:

Xx ¼ 0, (25)

where X is the coefficient matrix, whose elements are defined in Appendix A; x is the eigenvector consisting
of 4k+1 unknown constants in the analytical solution.

The condition for a non-trivial solution is that the determinant of matrix [X] must vanish. This yields a
single transcendental equation for determining the eigenvalues of free vibration of cantilever plates having an
attached mass. Once zero roots of the transcendental equation or eigenvalues are obtained, the mode shapes
can then be determined by solving the algebraic equations and the analytical solutions for the five building
blocks.

Two test cases were selected for convergence and accuracy tests. The first test case involves a cantilever plate
without attached mass, for which an analytical solution is available in the literature [7]. Numerical results in
Table 1 depict that the computed eigenvalues converge to the accurate values very rapidly for the first six
vibration modes. The second test case involves cantilever plates of different aspect ratios with an attached
mass at (1.0, 0.5), for which results are reported in Ref. [3]. When a point mass is added, the convergence rate
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Table 1

Convergence tests and verifications of computed eigenvalues for a cantilever plate without attached mass

K Modes

1 2 3 4 5 6

8 3.468 7.116 18.18 22.21 27.59 42.76

10 3.469 7.116 18.18 22.21 27.58 42.76

12 3.469 7.115 18.18 22.21 27.58 42.76

14 3.469 7.115 18.18 22.21 27.58 42.76

Gorman [9] 3.470 7.115 18.18 22.21 27.58 42.76

l2 ¼ ona2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, f ¼ 1.25, V ¼ 0.333.

Table 2

Comparisons of computed eigenvalues for symmetric modes of cantilever plates carrying a point mass

Modes f ¼ 0.5 f ¼ 1.0 f ¼ 2.0

Current Ref. [3] Current Ref. [3] Current Ref. [3]

1 1.964 1.963 1.962 1.961 1.886 1.885

2 16.08 16.06 13.72 13.71 7.218 7.215

3 45.96 45.88 25.71 25.71 17.36 17.34

4 78.83 78.80 41.03 40.99 24.09 24.09

5 105.5 105.4 59.92 59.92 33.83 33.83

l2 ¼ ona2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, x̄ ¼ 1:0; Z̄ ¼ 0:5, m ¼ 0.5, V ¼ 0.3, K ¼ 20.
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is slightly slower. As a result, 20 terms are used in the Levy solutions. It can be seen from Table 2 that there is
excellent agreement in computed eigenvalues between the current work and those of Ref. [3].

3.7. Mode shapes for a cantilever plate with an attached mass

To handle the response of a cantilever plate carrying a point mass under the base excitation, the modal
summation method is used. For this reason, the orthogonality conditions of mode shapes of undamped plate
free vibration and their orthogonality relations are discussed here.

Assume that a set of M eigenvalues, l̄
2

i or on,i, and their corresponding mode shapes, fi, i ¼ 1,2,yM, are
determined and arranged in an ascending manner. The i-th and j-th mode shape functions satisfy the following
equations:

Dr4fi ¼ ro2
n;ifi þmo2

n;ifidðx� x̄; y� ȳÞ;

Dr4fj ¼ ro2
n;jfj þmo2

n;jfjdðx� x̄; y� ȳÞ:
(26)

Invoking the reciprocal theorem [10], one finds that, for a plate having homogenous classical boundary
conditions, the following orthogonal conditions hold:Z

A

rfifj dAþmfiðx̄; ȳÞfjðx̄; ȳÞ ¼ mjdij ,Z
A

Dfir
4fj dA ¼ mjo2

n;jdij, (27)

where mi is the i-th modal mass; dij is the Kronecker delta. The above orthogonality condition pairs may be
written in the following non-dimensional formZ 1

0

Z 1

0

fifj dxdZþ mfiðx̄; Z̄Þfjðx̄; Z̄Þ ¼ mjdij, (28)



ARTICLE IN PRESS
S.D. Yu / Journal of Sound and Vibration 321 (2009) 270–285 279
Z 1

0

Z 1

0

fir̃
4
fj dx dZ ¼ mj l̄

4

j dij,

where mj is the ratio of the modal mass to the plate mass, defined as mj/rab.

4. Forced vibration due to harmonic base motion

To determine the response of the cantilever plate with a point mass under the excitation of the harmonic
base motion, yb ¼ Y b sin ot, the modal summation method is employed. A solution to Eq. (1) is sought in the
following manner:

wðx; y; tÞ ¼
XM
j¼1

fjðx; ZÞgjðtÞ, (29)

where t is the non-dimensional time, defined as t ¼ on,1t.
Substituting Eq. (29) into Eq. (1), multiplying both sides of the so-obtained equation by Fi(x,Z), and

integrating over the entire plate area, one obtains

g
00

i þ 2zirig
0

i þ r2i gi ¼ wir
2Y b sin rt, (30)

where r ¼ o/on,1; ri ¼ on,i/on,1; zi ¼ aon,i/2; wi is the modal participation factor, defined as

wi ¼
1

mi

Z 1

0

Z 1

0

fi dxdZþ mfiðx̄; Z̄Þ

 �

¼

R 1
0

R 1
0 fi dxdZþ mfiðx̄; Z̄ÞR 1

0

R 1
0 f

2
i dxdZþ mf2

i ðx̄; Z̄Þ
. (31)

The normalized steady state response amplitude of the i-th modal coordinate is

Gi

Y b

¼
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2i � r2Þ2 þ ð2zirirÞ
2

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamic factor

wi|{z}
modal participation factor

(32)

For a given source of motion, there are two factors influencing the system response. They are the dynamical
factor and the modal participation factor. To maximize the fundamental response amplitude, the non-
dimensional excitation frequency should be tuned to be in the vicinity of unity. However, this tuning does not
eliminate participation of higher vibration modes. Participation of the i-th vibration mode is determined by wi.

An examination of Eq. (31) reveals that for a cantilever plate, the entire family of vibration modes,
antisymmetric with respect to the major centerline or Z̄ ¼ 0:5, will be completely eliminated from
participations in the response if the mass is attached along the major centerline. Only the vibration modes,
which are symmetric with respect to the major centerline, are participating in the response. With the mass
attached along Z̄ ¼ 0:5, it is only necessary to deal with three non-dimensional parameters, x̄, m, and f. It is
not possible to tabulate or graph the effects of the three non-dimensional parameters on the eigenvalues and
the modal participation factors. In this paper, the numerical results are presented for f ¼ 0.5 and 1.0, n ¼ 0.3,
and m ¼ 0.1, 0.5, and 1.0. As for the location of the attached mass, parameter x̄ is considered to vary in a fine
increment in the interval [0,1].

The eigenvalues of the first two symmetric modes for square plates carrying point masses were obtained and
presented in Fig. 3. For each of the three mass ratios, the first symmetric eigenvalue remains almost unchanged
if the mass is attached near the clamped edge. However, if the mass is placed away from the clamped edge, the
fundamental eigenvalue decreases considerably with increasing distance until the free edge as shown in Fig. 3a.
At the free edge, the fundamental eigenvalue reaches its minimum value for a specified mass ratio. The
maximum percentage decreases are 16.0% for m ¼ 0.1, 43.5% for m ¼ 0.5, and 56.0% for m ¼ 1.0. For the
second symmetric mode, the eigenvalues vary with the distance from the clamped edge in a waveform. This is
because the second symmetric mode of the square cantilever plate without an attached mass has a nodal line
crossing the major centerline at x ¼ 0.74. The displacements on the two sides of the nodal line are out of
phase. If the mass is placed at the nodal line, it has no effect on the eigenvalue. On the other hand, if it is
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placed near an antinode or the maximum modal displacement point, its effect on the eigenvalues is most
significant. An examination of modal contours reveals that the nodal line never passes through the location of
the attached mass. In other words, the point mass cannot be located at a node line. The closest distance
between the nodal line and the location of the attachment is achieved if the point mass is at x ¼ 0.74.
Fig. 3. Variation of eigenvalues of square cantilever plates with the location of the attachment along Z ¼ 0.5 for different mass ratios: (a)

first symmetric mode (mass ratio 0.1 —, mass ratio 0.5 – – – –, mass ratio 1.0 — – —); (b) second symmetric mode (mass ratio 0.1 —, mass

ratio 0.5 – – – –, mass ratio 1.0 — – —).
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As shown in Fig. 3b, the eigenvalue reaches a maximum at this location, which shifts gradually outward with
increasing mass ratios. Modal participation factors for the first two symmetric modes of a cantilever square
plate are shown in Fig. 4 for three different mass ratios and a range of non-dimensional locations along the
major axis. From the view point of increasing participation of the fundamental mode in the response, it is
Fig. 4. Variation of modal participation factors of square cantilever plates with the location of the attachment for different mass ratios: (a)

first symmetric mode (mass ratio 0.1 —, mass ratio 0.5 – – – –, mass ratio 1.0 — – —); (b) second symmetric mode (mass ratio 0.1 —, mass

ratio 0.5 – – – –, mass ratio 1.0 — – —).
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beneficial to use larger mass and have it attached slightly beyond the midpoint of the major centerline.
However, to reduce or eliminate the participation of the second symmetric mode, one ideal location is
x ¼ 0.74. At this location, the modal participation factors for the second symmetric mode are zero for m ¼ 0.5
and 1.0. However, for small mass ratio, the zero second modal participation is not expected. This is because
Fig. 5. Variation of eigenvalues of rectangular cantilever plates (f ¼ 0.5) with the location of the attachment along Z ¼ 0.5 for different

mass ratios: (a) first symmetric mode (mass ratio 0.1 —, mass ratio 0.5 – – – –, mass ratio 1.0 — – —); (b) second symmetric mode (mass

ratio 0.1 —, mass ratio 0.5 – – – –, mass ratio 1.0 — – —).
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small point mass does not significantly alter the shape of the second symmetric mode of a square cantilever
plate. In typical applications, the attached mass is usually many times the mass of the base plate in order to
harvest vibrational energy of low frequency.

For cantilever rectangular plates of f ¼ 0.5, the eigenvalues are presented in Fig. 5 for m ¼ 0.1, 0.5, 1.0 and
a range of non-dimensional location parameter. It can be seen that the natural frequencies of symmetric modes
of the rectangular plates are significantly lower than those for the square plates. The eigenvalues of the first
symmetric modes decrease steadily with both the mass ratio and the non-dimensional distance of the attached
mass from the clamped edge. This wide range of monotonic variation in the natural frequency provides a
reliable way for designing the fundamental natural frequency in accordance with the source frequency. For the
second symmetric modes, the eigenvalues vary in a waveform. At x ¼ 0.775, the eigenvalues are not affected
by the attached mass. Attachment of a point mass to this location along the major centerline tends to
maximize the participation of the first symmetric mode and minimize the participation of the second
symmetric mode in the steady state response due to base motion.

5. Conclusions

Analytical solutions for free and forced vibrations of cantilever square and rectangular plates carrying single
attached masses are obtained in this paper using Gorman’s method of superposition and the modal
summation method. Comparisons with the previously published results indicate that the procedure presented
in this paper is accurate and convergent. Results presented in this paper are useful in designing frequencies and
modal participations for piezoelectric structures in the area of power generation.

Appendix A

Non-zero elements of matrix X in Eq. (25) are given below, where indices m ¼ 1, 2,y, k; n ¼ 0, 1, 2,
yk�1; k is the number of terms used in the Levy solutions for all building blocks.

Xðm;mÞ ¼ y11;m½b
2
m � nðfm̄pÞ2�

cosh bm

sinh bm

þ y13;m½�g2m � nðfm̄pÞ2�
cs gm

sn gm

. (A.1)

Xðm; k þ nþ 1Þ ¼ y22;nI1;mn½nf
2b2m � ðnpÞ

2
� cos npþ y24;nI2;mn½�nf

2g2m � ðnpÞ
2
� cos np. (A.2)

Xðm; 2k þmÞ ¼ y11;m½b
2
m � nðfm̄pÞ2�

1

sinh bm

þ y13;m½�g2m � nðfm̄pÞ2�
1

sn gm

. (A.3)

Xðm; 3k þ nþ 1Þ ¼ y41;nI3;mn½nf
2b2m � ðnpÞ

2
� cos npþ y43;nI4;mn½�nf

2g2m � ðnpÞ
2
� cos np. (A.4)

Xð3k þ nþ 1;mÞ ¼ y11;mI5;nm½nb
2
mf
�2
� ðm̄pÞ2� þ y13;mI6;nm½�ng2mf

�2
� ðm̄pÞ2�. (A.5)

Xð3k þ nþ 1; k þ nþ 1Þ ¼ y22;n½b
2
n � nðnp=fÞ2�

sinh bn

cosh bn

þ y24;n½�g2m � nðnp=fÞ2�
sn gn

cs gn

. (A.6)

Xð3k þ nþ 1; 2k þmÞ ¼ y11;mI7;nm½nb
2
mf
�2
� ðm̄pÞ2� þ y13;mI8;nm½�ng2mf

�2
� ðm̄pÞ2�. (A.7)

Xð3k þ nþ 1; 3k þ nþ 1Þ ¼ y41;n½b
2
n � nðnp=fÞ2�

1

cosh bn

þ y43;n½�g2m � nðnp=fÞ2�
1

cs gn

. (A.8)

Xð2k þm;mÞ ¼ Xðm; 2k þmÞ. (A.9)

Xð2k þm; k þ nþ 1Þ ¼ Xðm; k þ nþ 1Þ= cosðnpÞ. (A.10)

Xð2k þm; 2k þmÞ ¼ Xðm;mÞ,

Xð2k þm; 3k þ nþ 1Þ ¼ Xðm; 3k þ nþ 1Þ= cosðnpÞ. (A.11)
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Xð3k þ nþ 1;mÞ ¼ y11;mm̄pI5;nm þ y13;mm̄pI6;nm. (A.12)

Xð3k þ nþ 1; k þ nþ 1Þ ¼ y22;nbn

1

cosh bn

þ y24;ngn

1

cs gn

. (A.13)

Xð3k þ nþ 1; 2k þmÞ ¼ y11;mI7;nmm̄pþ y13;mI8;nmm̄p. (A.14)

Xð3k þ nþ 1; 3k þ nþ 1Þ ¼ �y41;nbn

sinh bn

cosh bn

� y43;nð�gnÞ
sn gn

cs gn

. (A.15)

Xð4k þ 1;mÞ ¼ m2l̄
4
y11;m

cosh bmZ̄
� �

sinh bm

þ y13;m
cs gmZ̄
� �
sn gm


 �
sin m̄px̄. (A.16)

Xð4k þ 1; k þ 1þ nÞ ¼ ml̄
4
y22;n

sinh bnx̄
� �

cosh bn

þ y24;n
sn gnx̄
� �
cs gn

" #
cos npZ̄. (A.17)

Xð4k þ 1; 2k þmÞ ¼ ml̄
4
y11;m

cosh bmZ̄
n

� �
sinh bm

þ y13;m
cs gmZ̄

n
� �
sn gm


 �
sin m̄px̄. (A.18)

Xð4k þ 1; k3þ 1þ nÞ ¼ m2l̄
4

y41;n
cosh bnx̄

n
� �

cosh bn

þ y43;n
cs gnx̄

n
� �
cs gn

2
4

3
5 cos npZ̄. (A.19)

Xð4k þ 1; 4k þ 1Þ ¼ ml̄
4
Xk

m¼1

Xk�1
n¼0

a
0

mn sin m̄px̄ cos npZ̄

" #
� 1. (A.20)

Xðm; 4k þ 1Þ ¼ �
Xk�1
n¼0

a
0

mn½ðnpÞ
2
þ nðfm̄pÞ2� cos np. (A.21)

Xð2k þm; 4k þ 1Þ ¼ �
Xk�1
n¼0

a
0

mn½ðnpÞ
2
þ nðfm̄pÞ2�. (A.22)

Xð2k þm; 4k þ 1Þ ¼ �
Xk�1
n¼0

a
0

mn½ðnpÞ
2
þ nðfm̄pÞ2�. (A.23)

Xðk þ nþ 1; 4k þ 1Þ ¼ �
Xk

m¼1

a
0

mn½ðm̄pÞ2 þ nðnp=fÞ2� sin m̄p. (A.24)

Xð3k þ nþ 1; 4k þ 1Þ ¼
Xk

m¼1

a
0

mnm̄p. (A.25)

To compute the non-zero elements of matrix X in Eq. (25) using the above equations, one need to evaluate
eight types of integrals: I1,mn, I2,mn,y, and I8,mn. They are defined as follows:

I1;mn ¼
2

cosh bn

Z 1

0

sinhðbnxÞ sinðm̄pxÞdx. (A.26)

I2;mn ¼
2

cs gn

Z 1

0

snðgnxÞ sinðm̄pxÞdx. (A.27)



ARTICLE IN PRESS
S.D. Yu / Journal of Sound and Vibration 321 (2009) 270–285 285
I3;mn ¼
2

cosh bn

Z 1

0

coshðbnx
n
Þ sinðm̄pxÞdx. (A.28)

I4;mn ¼
2

cs gn

Z 1

0

cs gnx
n

� �
sin m̄pxð Þdx. (A.29)

I5;nm ¼
2

sinh bm

Z 1

0

coshðbmZÞ cosðnpZÞdZ for nX1;
1

b0
for n ¼ 0. (A.30)

I6;nm ¼
2

sn gm

Z 1

0

csðgmZÞ cosðnpZÞdZ for nX1;
1

g0
for n ¼ 0. (A.31)

I7;nm ¼
2

sinh bm

Z 1

0

coshðbmZ
nÞ cosðnpZÞdZ for nX1;

1

b0
for n ¼ 0. (A.32)

I8;nm ¼
2

sn gm

Z 1

0

csðgmZ
nÞ cosðnpZÞdZ for nX1;

1

g0
for n ¼ 0. (A.33)
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