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Abstract

The long transient phenomenon in nonlinear structural vibrations is examined in detail by using a signal decomposition

and processing method based on the empirical mode decomposition, Hilbert–Huang transform (HHT), and nonlinear

dynamic characteristics derived from perturbation analysis. A sliding-window fitting (SWF) technique is derived to show

the physical implication of Hilbert–Huang transform and other time–frequency decomposition methods. The SWF uses

windowed regular harmonics and function orthogonality to simultaneously extract time-localized regular and/or distorted

harmonics. Because of the use of pre-determined basis functions, function orthogonality, and windowed curve fitting for

component extraction, it cannot extract accurate time-varying frequencies and amplitudes of harmonics distorted by

nonlinearities. On the other hand, the HHT uses the apparent time scales revealed by the signal’s local maxima and minima

to sequentially sift distorted harmonics of different time scales, starting from high-frequency to low-frequency ones.

Because Hilbert–Huang transform does not use predetermined basis functions and function orthogonality for component

extraction, it provides more accurate signal decomposition and instant amplitudes and frequencies of extracted distorted

harmonics. Numerical results show that the proposed HHT-based signal decomposition and processing method can

accurately decompose nonlinear nonstationary signals and extract accurate intrawave amplitude and phase modulations,

distorted harmonic response under a single-frequency harmonic excitation, and different types and orders of nonlinearities.

Using this signal processing method, the long transient phenomenon in nonlinear vibrations is found to be caused by

nonlinearities, coupling of transient and forced vibrations, and/or modal coupling of multiple modes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic characteristics of nonlinear systems are very different from those of linear systems in many ways
and in both time and frequency domains. One well known phenomenon in nonlinear structural vibrations is
the long transient time for developing a steady-state response, which is often attributed to a lack of significant
damping [1]. This long transient phenomenon complicates nonlinear vibrations of flexible structures and it
also significantly reduces the efficiency of nonlinear vibration absorbers based on 2:1 or other higher-order
internal resonances [2–4].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The exact forced response of a harmonically excited linear mass–damper–spring (m–c–k) system is
given as [5]

m €uþ c _uþ ku ¼ mð €uþ 2zo _uþ o2uÞ ¼ F 0 cos Ot,

uðtÞ ¼ ae�zot cosðodt� yÞ þ A0 cosðOt� fÞ, (1a)

A0 ¼ F0jHðOÞj ¼
F0

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� O2=o2Þ

2
þ ð2Oz=oÞ2

q ; f ¼ tan�1
2Oz=o

1� O2=o2
,

HðOÞ ¼
1

k �mO2 þ jOc
¼

1

kð1� O2=o2 þ j2Oz=oÞ
¼ jHðOÞje�jf, (1b)

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

d ðu0 � A0 cos fÞ2 þ ½v0 þ zoðu0 � A0 cos fÞ � OA0 sin f�2
q

=od ,

y ¼ tan�1
v0 þ zoðu0 � A0 cos fÞ � OA0 sin f

ðu0 � A0 cos fÞod

; od � o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
, (1c)

where _u � du=dt, and u0 and v0 are initial displacement and velocity, respectively. Eqs. (1a) and (1c) show that,
although the transient vibration amplitude a and phase y are affected by the excitation frequency O and
amplitude F0 (through A0), the transient part vibrates at the damped natural frequency od. Eqs. (1a) and (1b)
show that the steady-state part is not affected by initial conditions and it vibrates at the excitation frequency O
with a constant amplitude A0 at any time. If O ¼ o, it follows from Eq. (1b) that F 0 ¼ 2zkA0 ¼ coA0 ¼ cOA0,
f ¼ p=2, _u ¼ OA0 cos Ot, and hence F0 cos Ot ¼ c _u after the transient part dies out. In other words, the
excitation force is balanced out by the damping force, and the system vibrates like a free undamped oscillator.

To show nonlinear dynamic characteristics we consider the following harmonically excited weakly nonlinear
second-order oscillator and its second-order perturbation solution [1,6]:

m €uþ c _uþ kuþmau3 ¼ F0 cos Ot, (2a)

uðtÞ ¼ uhðtÞ þ a cos ðOt� fÞ þ a3 cosð3Ot� 3fÞ þ � � � ; a3 ¼
aa3

32O2
5a,

¼ uhðtÞ þ âðtÞ cosðOt� fþYðtÞÞ þ � � � , (2b)

âðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a2

3 þ 2aa3 cosð2Ot� 2fÞ
q

� aþ a3 cosð2Ot� 2fÞ,

YðtÞ � tan�1
a3 sinð2Ot� 2fÞ

aþ a3 cosð2Ot� 2fÞ
�

a3

a
sinð2Ot� 2fÞ,

ÔðtÞ ¼ Oþ _Y � Oþ
2Oa3

a
cosð2Ot� 2fÞ, (2c)

3a
8o

� �2

a6 �
3as
4o

a4 þ ðs2 þ z2o2Þa2 �
F 0

2om

� �2

¼ 0; s � O� o; o �

ffiffiffiffi
k

m

r
, (2d)

f ¼ tan�1
zo

3aa2=ð8oÞ � s
. (2e)

Eq. (2d) shows that the amplitude a may have three possible solutions and each has its own domain of
attraction on the phase plan u� _u. Hence, the obtained steady-state solution depends on initial conditions. If
the excitation force is balanced out by the damping force (i.e., F0 ¼ 2o2mza ¼ coa in Eq. (2d)), it follows
from Eq. (2d) that a2 ¼ 8os=3a, which is the so-called backbone equation representing the relation between
the free undamped vibration frequency (i.e., natural frequency ô � oþ s ¼ oþ 3aa2=8o) with the vibration
amplitude a. Eq. (2c) shows that the steady-state part is a distorted harmonic having time-varying frequency
and amplitude modulating at a frequency 2O. On the other hand, Eq. (2b) shows that the steady-state part
consists of two regular harmonics and hence its spectrum has two spectral lines at O and 3O. For a nonlinear
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single-degree-of-freedom system, the extra spectral line can be used to identify the nonlinearity. However, for
a nonlinear continuous or multiple-degree-of-freedom system with internal resonance, it is difficult
to identify nonlinearities from response spectra because each directly or indirectly excited mode has a
distorted harmonic motion and the extra spectral lines from all involved modes are difficult to be separated
and recognized.

The complete solution shown in Eq. (2b) is assumed to consist of a transient part and a part that is steady at
any time, just like the linear case shown in Eq. (1a). Because of nonlinearity, the complete solution can only be
obtained by direct numerical integration, and the transient part uh(t) is usually not examined because it is
difficult to extract it from a nonstationary signal. In this paper we present a method for extracting the
transient part and show that the transient part has an expected amplitude-dependent vibration frequency and
it also delays the development of the steady-state part, which invalidates the form assumed in Eq. (2b) and is a
nonlinear phenomenon never investigated in the literature before. The proposed signal processing method is
based on Hilbert–Huang transform (HHT).

Because the operation time for any movement of a dynamical system is always limited, transient response
often exists, especially in systems with control actions, high operational speeds, and/or high flexibility. Hence,
methods for dynamics characterization and system identification need to deal with transient responses, and the
proposed method is valid for many applications in signal processing and system identification of linear and
nonlinear systems.

2. Signal decomposition method

HHT is a new technique developed after short-time Fourier transform and wavelet transform for
time–frequency decomposition of linear/nonlinear stationary/nonstationary signals, and it is essentially
different from Fourier and wavelet transforms because HHT does not use pre-determined basis functions and
the orthogonality between the basis functions and the signal itself to extract components [7–12]. However,
HHT is not good at decomposing a signal consisting of two similar harmonics. To help with these situations
and to reveal the mathematical implications and characteristics of HHT we first derive a sliding-window fitting
(SWF) method using a set of pre-determined regular harmonics for extracting local distorted harmonics.

2.1. Sliding-window fitting

If a time signal u(t) is identified from its Fourier spectrum to have two major frequencies o1 and o2 ðoo1Þ,
one can assume that

uðtÞ ¼
X2
k¼1

½ek cosðoktÞ þ êk sinðoktÞ� þ e3 þ ê3tþ e4t2

¼
X2
k¼1

½Ck cosðokt̄Þ þ Ĉk sinðokt̄Þ� þ C3 þ Ĉ3t̄þ C4 t̄2, (3)

where ek and êk are constants, t̄ ð� t� tsÞ is a shifted time, ts is the observed time instant, and

Ck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þ ê2k

q
cosðokts � fkÞ; Ĉk ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þ ê2k

q
sinðokts � fkÞ; fk ¼ tan�1 êk=ek,

C3 ¼ e3 þ ê3ts þ e4t2s ; Ĉ3 ¼ ê3 þ 2e4ts; C4 ¼ e4. (4)

To obtain the coefficients Ck and Ĉk for the data point at t̄ ¼ 0 we use data points around t ¼ ts to minimize
the square error Error defined as

Error �
Xm

i¼�m

ajijðui � ûiÞ
2, (5)

where ui represents uðt̄iÞ from Eq. (3) and ûi represents the experimental data at t̄i. The total number of points
used is 2m+1, ajij is the weighting factor, and the forgetting factor a ðp1Þ is chosen by the user. The seven
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equations to determine Ci and Ĉi for the point at t̄ ¼ 0 are given by

qError

qCj

¼
Xm

i¼�m

2ajijðui � ûiÞ
qui

qCj

¼ 0, (6)

where Cj, j ¼ 1,y,7, represent C1; Ĉ1;C2; Ĉ2;C3; Ĉ3; and C4. Because, for example, qui=qC1 ¼ cosðo1t̄iÞ,
Eq. (6) shows that Cj are extracted by using the orthogonality between the predetermined functions used in
Eq. (3) and the experimental data ûi. After Cj and Ĉj are determined, it follows from Eq. (3) that

uðtsÞ ¼ C1 þ C2 þ C3; _uðtsÞ ¼ o1Ĉ1 þ o2Ĉ2 þ Ĉ3; €uðtsÞ ¼ �o2
1C1 � o2

2C2 þ 2C4. (7)

It indicates that u(ts) consists of the instantaneous value C1 of the harmonic cos o1t̄, the instantaneous value
C2 of the harmonic cos o2 t̄, and the low-frequency moving average C3. More importantly, each of u, _u, and €u
is decomposed into three components of different frequencies. Furthermore, it follows from Eq. (4) that

Ak �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

k þ Ĉ
2

k

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k þ ê2k

q
; yk � tan�1

�Ĉk

Ck

¼ okts � fk, (8)

where A1 and A2 are the instantaneous amplitudes of the first and second harmonics, respectively. To reduce
the influence of noise on the calculated instantaneous frequency oi, each oi at t ¼ ts can be computed by
averaging over 2pDt (e.g., p ¼ 2) as

ok �
dyk

dt
�

Pp
i¼�pþ1½ykðts þ iDtÞ � ykðts þ ði� 1ÞDtÞ�

2pDt
. (9)

This method can be used to extract as many harmonics as needed by adding to Eq. (3) major harmonics
identified from the signal’s Fourier spectrum. Because harmonic functions are not orthogonal to the
polynomial C3 þ Ĉ3 t̄þ C4 t̄2, one needs to choose an appropriate window length to enforce the orthogonality
in order to obtain unique values for each Cj. Numerical results show that an appropriate choice is
2pDtX4p=o2, i.e., two periods of the lowest-frequency harmonic.

Unfortunately, the summation over the localized time interval �mDtpt̄pmDt in Eq. (6) locally averages the
result. Hence, the obtained amplitudes and frequencies are not really instantaneous values. Furthermore, the
o1 and o2 in Eq. (3) need to be known in order to accurately decompose the u(t) into three components of
different frequencies. If the oi are not known and many different values are used in Eq. (3), the signal will be
decomposed into many components, which is the essence of windowed Fourier transform [13]. In other words,
the use of pre-determined basis functions (see Eq. (3)) and the orthogonality between the basis functions and
the signal to be decomposed causes the inaccuracy of the extracted amplitudes and frequencies.

2.2. Hilbert– Huang transform

HHT is essentially different from short-time Fourier transform and wavelet transform because it does not
use pre-determined basis functions (i.e., regular harmonics or wavelets) and the orthogonality between the
basis functions and the signal itself to extract components. The first step of HHT is to use the empirical mode
decomposition (EMD) method to sequentially decompose a time series u(t) into n intrinsic mode functions
(IMFs) ci(t) and a residual rn as [7,8]

uðtÞ ¼
Xn

i¼1

ciðtÞ þ rnðtÞ, (10)

where c1 has the shortest characteristic time scale and is the first extracted IMF. The characteristic time scale
of c1 is defined by the time lapse between the extrema of u. Once the extrema are identified, compute the upper
envelope by connecting all the local maxima using a natural cubic spline, compute the lower envelope by
connecting all the local minima using another natural cubic spline, subtract the mean of the upper and lower
envelopes, m11, from the signal, and then treat the residuary signal as a new signal. Repeat these steps for K

times until the left signal has a pair of symmetric envelopes (i.e., m1K � 0), and then define c1 as

c1 � u�m11 � � � �m1K . (11)
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This sifting process eliminates low-frequency riding waves, makes the wave profile symmetric, and separates
the highest-frequency IMF from the current residuary signal. During the sifting process for each IMF a
deviation Dv is computed from the two consecutive sifting results as

Dv �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1½c1kðtiÞ � c1k�1ðtiÞ�

2PN
i¼1c21k�1ðtiÞ

s
, (12)

where, for example, c1k � u�m11 � � � �m1k, ti ¼ iDt, and Tð¼ NDtÞ is the sampled period. A systematic
method to end the iteration is to limit Dv to be a small number and/or to limit the maximum number of
iterations. After c1 is obtained, define the residual r1, treat r1 as the new data, and repeat the steps shown in
Eq. (11) to obtain other ci ði ¼ 2; . . . ; nÞ as

cn ¼ rn�1 �mn1 � � � �mnK ; rn�1 � uðtÞ � c1 � � � � cn�1. (13)

The whole sifting process can be stopped when the residual rnð¼ rn�1 � cnÞ becomes a monotonic function
from which no more IMF can be extracted. In other words, the last IMF has no more than two extrema. For
data with a trend, rn should be the trend.

The second step of HHT is to perform Hilbert transform and compute the time-dependent frequency oi and
amplitude Ai of each ci. After all ci(t) are extracted, one can perform Hilbert transform to obtain di(t) from
each ci(t). Then one can combine the ci(t) and di(t) into a complex function zi(t) and use Eq. (10) with rn being
neglected to obtain

ziðtÞ � ciðtÞ þ jdiðtÞ ¼ Aie
jyi ; Ai �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i þ d2

i

q
; yi � tan�1 di=ci,

uðtÞ ¼ Real
Xn

i¼1

½ciðtÞ þ jdiðtÞ�

 !
¼ Real

Xn

i¼1

AiðtÞe
jyiðtÞ

 !
. (14)

Eq. (14) reveals that HHT is a time-varying signal decomposition method and each IMF has a time-varying
amplitude Ai and a time-varying frequency oi ð� dyi=dtÞ. To reduce the influence of noise on the calculated
frequencies, each oi can be obtained by averaging over 2pDt, as shown in Eq. (9). However, for damage
detection applications, it is better to compute the true instantaneous oi and other time derivatives using

_Ai ¼
ci _ci þ di

_di

Ai

; €Ai ¼
_c2i þ ci €ci þ

_d
2

i þ di
€di � _A

2

i

Ai

,

oi ¼
dyi

dt
¼

ci
_di � _cidi

A2
i

; _oi ¼
ci
€di � €cidi � 2oiðci _ci þ di

_diÞ

A2
i

, (15)

which are derived from Eq. (14). The _ci, _di, €ci, and €di needed in Eq. (15) can be computed using the inverse
Fourier transform and multiplication in the frequency domain without numerical differentiation in the time
domain. Because distorted harmonics with time-varying frequencies and amplitudes are allowed in the data
decomposition, HHT does not need spurious harmonics to represent nonlinear/nonstationary signals. As
shown in Eq. (10), the ci represent a complete set of basis functions and they are local and adaptive, but they
might not be orthogonal to each other. However, even regular harmonics of different frequencies are not
exactly orthogonal, and the EMD does not use orthogonality of functions to extract ci, which makes HHT
essentially different from Fourier and wavelet transforms [14,15]. Theoretically speaking, signal decomposi-
tion by wavelet transform can be performed without using pre-determined basis functions and function
orthogonality if signal dependent wavelet filter banks can be systematically computed [15]. However, it is still
an open problem for researchers.
3. Numerical results

To show the long transient phenomenon in nonlinear structural vibrations we consider nonlinear systems of
one and two degrees of freedom.
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3.1. Single-degree-of-freedom system

We consider the following nonlinear oscillator:

m €uþ c _uþ kuþ kau3 ¼ mð €uþ 2zo _uþ o2uþ o2au3Þ ¼ F0 sin Ot, (16a)

3 €uþ 2zo _uþ o2ðuþ au3Þ ¼ F sin Ot; F � F 0=m. (16b)

If the time t is normalized into a nondimensional time t using the linear vibration period 2p/o and the
displacement u is normalized into a nondimensional displacement ~u using a characteristic length h as

t �
ot

2p
; ~u �

u

h
, (17a)

Eq. (16b) becomes

d2 ~u

dt2
þ 2zð2pÞ

d ~u

dt
þ ð2pÞ2ð ~uþ ~a ~u3Þ ¼ f 0 sin ~Ot; ~a � ah2; f 0 �

4p2F0

kh
; ~O �

2pO
o

. (17b)

Note that Eq. (17b) is equivalent to Eq. (16b) with o ¼ 2p and F ¼ f0. Eq. (17b) has a linear natural frequency
~o ¼ 2p and a linear period ~T ¼ 1 in the normalized time domain. After the answer ~u is obtained in the t
domain, the actual answer can be obtained by scaling t and ~u back to the time t and the displacement u using
Eq. (17a). In other words, the answer u obtained by solving Eq. (16b) with o ¼ 2p is valid for any value of o if
an appropriate scaling is used. Hence, without loss of generality we consider the nonlinear/nonstationary
vibration of Eq. (16b) with:

o ¼ 2p; z ¼ 0:005; a ¼ 1:7164,

uð0Þ ¼ 1; _uð0Þ ¼ 0; F ¼ 5; O ¼ 0:6o. (18)

The a corresponds to the nonlinear first-mode vibration of a simply supported rectangular isotropic plate
having four immovable edges, length : width : thickness ¼200:100:1, Young’s modulus E ¼ 206GPa,
Fig. 1. HHT analysis of a nonlinear nonstationary response: (a) u, (b) c1 (gray) and c2 (black), (c) o1 (gray) and o2 (black), (d) A1 (gray)

and A2 (black), (e) o1�A1 curve (gray) and the backbone curve (black), and (f) ln(A1(t)).
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Poisson’s ratio n ¼ 0.3, mass density r ¼ 7850 kg=m3, and the maximum displacement at the center being
normalized with respect to the plate thickness [16]. Fig. 1 shows the results obtained from HHT analysis using
a number of sampled points N ¼ 212 and a sampling interval Dt ¼ 50:3=N. Fig. 1b shows that c1 is the damped
natural harmonic and c2 is the distorted harmonic caused by the harmonic excitation with O ¼ 0:6Hz and the
cubic nonlinearity. Fig. 1c and d shows that o1 modulates at 2o1 at the beginning, o2 modulates at
1:2Hz ð¼ 2OÞ, and o1 decreases with the amplitude A1, indicating the existence of hardening cubic
nonlinearity. Zoom-in views of Fig. 1d also show the existence of cubic nonlinearity because A1 modulates at
2o1 when A1 is large. If the o1(t) and A1(t) are curve-fitted using low-order polynomials, the o1 � A1 curve
shown in Fig. 1e becomes a smooth averaged backbone curve (i.e., the middle line) bent to the right because of
the hardening nonlinearity. However, because of high nonlinearity (i.e., large a), Fig. 1e shows that, as
expected, the averaged backbone curve at large A1 deviates from the backbone curve (broken line) from
perturbation analysis with the assumption of weak nonlinearity. Because the damping is linear, the lnðA1ðtÞÞ in
Fig. 1f should be a straight line if no nonlinearity exists. However, the nonlinear stiffness makes it slightly
curved. More importantly, Fig. 1b and d shows that the amplitude A2 is not constant and it gradually
increases to approach its final steady-state value 0.185 when t4200. This behavior is different from the
prediction of the perturbation solution shown in Eq. (2b). This gradual increase of A2 in Fig. 1d is caused by
the nonlinearity and the coupling of transient and steady-state solutions, which is the reason why it often takes
a long time for a nonlinear system to achieve a steady state.

If Eqs. (16b) and (18) with F ¼ 0 is used, Fig. 2b shows that the time-varying A1 remains almost the same as
that in Fig. 1d, indicating that the transient part is not significantly affected by the forced response. Moreover,
the zoom-in views shown in Fig. 2d clearly reveal that o1 and A1 modulate at 2o1, indicating the influence of
cubic nonlinearity. Furthermore, Fig. 2c shows that the middle line of the o1 � A1 curve agrees with the
asymptotic backbone curve from perturbation analysis when A1 is small.
Fig. 2. HHT analysis of a nonlinear transient response: (a) o1(t), (b) A1(t), (c) o1�A1 curve (gray) and the backbone curve (black), and (d)

o1 (gray) and A1 (black).
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Fig. 3. SWF analysis of a nonlinear nonstationary response: (a) u, (b) C1 (black) and C2 (gray), (c) o1 (black) and o2 (gray), and (d) A1

(black) and A2 (gray).
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If initial conditions are set to uð0Þ ¼ _uð0Þ ¼ 0 in Eqs. (16b) and (18), Fig. 3a–d shows the results from SWF
analysis with the use of o1 ¼ 1:04Hz and o2 ¼ 0:6Hz in Eq. (3). The SWF cannot accurately extract the
time-varying frequencies and amplitudes of the signals shown in Figs. 1 and 2 because the o1 varies from 1.5 to
1.0Hz. However, because SWF is good at decomposing a signal consisting of regular harmonics and the o1 of
this case does not vary significantly, the SWF is used here. Fig. 3b–d shows that the signal is decomposed into
two distorted harmonics. More importantly, Fig. 3b and d shows that, at the beginning, the forced response
C2 has an amplitude close to but smaller than its final value 0.185, which reveals that the small start-up
transient response C1 still delays the development of the forced response but the influence is small. All these
results indicate that the nonconstant forced response amplitude A2 in Fig. 1d is indeed caused by the big
transient response c1.

For a linear system, the particular solution under a harmonic excitation should be a steady-state response
with a constant amplitude starting from the beginning t ¼ 0, as shown in Eq. (1a). If the nonlinear term is
neglected by setting a ¼ 0 in Eqs. (16b) and (18), Fig. 4a–d shows the results from SWF analysis. With the use
of o1 ¼ 1Hz and o2 ¼ 0:6Hz in Eq. (3), Fig. 4c and d shows that the signal is decomposed into two regular
harmonics. More importantly, Fig. 4b and d shows that the steady-state component C2 has a constant
amplitude right from t ¼ 0, which confirms the linear solution shown in Eq. (1a). Moreover, Figs. 4d, 1d, and
2b show that the transient part decays faster when there is no nonlinearity.

3.2. Two-degree-of-freedom system

We consider the following experimentally validated 2:1 vibration absorber for vibration suppression of the
first-mode bending vibration u2 of a cantilevered 42:0 cm� 6:35 cm� 1:28mm stainless steel beam [3]

€u1 þ ô2
1u1 ¼ g12u1u2, (19a)
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€u2 þ 2z2ô2 _u2 þ ô2
2u2 ¼ g11u2

1 þ F cos Ot, (19b)

ô2 ¼ 2ô1 ¼ 4p; z2 ¼ 0:0025; u1ð0Þ ¼ 0:03; u2ð0Þ ¼ 0:1; _u1ð0Þ ¼ _u2ð0Þ ¼ 0; g12 ¼ 35:06; g11 ¼ 157:9,

F ¼ 0:079; O ¼ ô2, (19c)
Fig. 5. The responses u1 and u2 of Eqs. (19a)–(19c) with F ¼ g11 ¼ 0.

Fig. 4. SWF analysis of a linear nonstationary response: (a) u, (b) C1 (gray) and C2 (black), (c) o1 (gray) and o2 (black), and (d) A1 (gray)

and A2 (black).
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where the time is normalized with respect to the linear undamped vibration period of the controller u1, and
Dt ¼ 0:02 is used in the Runge–Kutta numerical integration. If Eqs. (19a)–(19c) with F ¼ g11 ¼ 0 are used,
Fig. 5 shows that the linear free damped vibration u2 has a frequency 2Hz. Moreover, HHT analysis shows
that the frequency of u1 is 1Hz with a small modulation at 2Hz, which indicates that u1 consists of 1 and 3Hz
harmonics (see Eq. (2c)). If Eqs. (19a)–(19c) with F ¼ 0 are used, Fig. 6 shows that it takes much longer time
for u2 to die out because the nonlinear term N1ð� g11u2

1Þ couples u2 and u1 and hence the damping z2 needs to
damp out both u2 and u1. Again, HHT analysis shows that the frequency of u1 is 1Hz with a small modulation
at 2Hz, which indicates that u1 consists of 1 and 3Hz harmonics. Moreover, HHT analysis of u2 shows that,
when the amplitude is large, its frequency is about 1.995Hz ðoô2 ¼ 2HzÞ because of the quadratic
nonlinearity N1 [1]. If Eqs. (19a)–(19c) with g11 ¼ 0 are used, Fig. 7 shows that the linear forced response u2
quickly grows to its steady amplitude 0.1 and the u1 is forced by N2ð� g12u1u2Þ at its linear resonant frequency
ô1 ¼ 1Hz.

If Eqs. (19a)–(19c) are used, Fig. 8 shows that the forced vibration u2 is suppressed by N1ð� g11u2
1Þ to

become a negligibly small constant and the u1 has a small amplitude. Again, Fig. 9a from HHT analysis shows
that the frequency of u1 is 1Hz with a small modulation at 2Hz, which indicates that u1 consists of 1 and 3Hz
harmonics. HHT analysis decomposes the nonlinear term N2ð� g12u1u2Þ into N2 ¼ c21 þ c22. Fig. 9c and d
Fig. 6. The responses u1 and u2 of Eqs. (19a)–(19c) with F ¼ 0.

Fig. 7. The responses u1 and u2 of Eqs. (19a)–(19c) with g11 ¼ 0.
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Fig. 8. The responses u1 and u2 of Eqs. (19a)–(19c).

Fig. 9. HHT analysis: (a, b) the frequency o1 and amplitude A1 of the u1 in Fig. 8, and (c, d) o21 (gray) and o22 (black), and A21 (gray) and

A22 (black) of N2.
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shows that c21 and c22 have almost the same amplitude but o22 ¼ o21=3 ¼ 1Hz. Hence, the 1Hz
harmonic of u1 is excited by c22 through resonance, and the small 3Hz harmonic of u1 is excited by c21 at
a frequency away from resonance. This also reveals that the nonlinear term N2 behaves like a cubic
nonlinearity to u1.

HHT analysis decomposes the nonlinear term N1 ð� g11u2
1Þ into N1 ¼ c11 þ r11. Fig. 10c shows that o11 is

about 2Hz and modulates at 2Hz, indicating a quadratic nonlinearity. Moreover, Fig. 10d shows that the
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Fig. 10. HHT analysis: (a, b) the frequency o1 and amplitude A1 of the u2 in Fig. 8, and (c, d) o11 and A11 ð¼ r11Þ of N1.

Fig. 11. HHT decomposition of N1 þ F cos Ot of Eqs. (19a)–(19c): (a) N1 þ F cos Ot, and (b) c1 (gray) and c2 (black).
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amplitude A11 is equal to the moving average r11 and their steady-state value is 0.079 ( ¼ F) after t4300. In
other words,

g11u2
1 ¼ F þ F cosðOt� pÞ ¼ F � F cos Ot. (20)

Eq. (20) reveals that the nonlinear term N1 results in a force to exactly balance out the external excitation
force and force u2 to have a negligibly small constant displacement F=ô2

2 ¼ 0:0005, which is confirmed by the
zoom-in views of the u2 at t4300. This is the mechanism that makes this nonlinear vibration absorber work.
Fig. 11 also confirms that N1 þ F cos Ot consists of one decaying harmonic and one moving average
converging to a constant 0.079. Fig. 8 and Eq. (20) agree well with experimental results [3]. To explain the
sudden change of o1 in Fig. 10a when A1 � 0 let us consider a signal u consisting of two harmonics having two
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Fig. 12. The response u2 of Eqs. (19b) and (19c) with g11 ¼ 0 and: (a) ô2 ¼ 4:4p, and (b) z2 ¼ 0:025.
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very close frequencies and amplitudes:

u ¼
A

2
cosðOþ �Þtþ

A

2
cosðO� �Þt ¼ A cosð�tÞ cosðOtÞ, (21)

where e is a small parameter. The amplitude A cosð�tÞ changes sign, but amplitudes are assumed to be always
positive during the EMD. Because of the nonpositive amplitude, the average of the upper and lower envelopes
of u is nonzero (see Eq. (11)) and the extracted frequency becomes singular when A cosð�tÞ ¼ 0. Hence, the
sudden change of o1 when A1 � 0 in Fig. 10a indicates that u2 consists of two harmonics having two very close
frequencies and amplitudes, which are caused by F cos Ot and N1.

Fig. 12a shows that, if the natural frequency ô2 (i.e., stiffness) is increased to 4.4p through a negative
position feedback and Eqs. (19b) and (19c) with g11 ¼ 0 are used, the transient time is equivalent to that in
Fig. 5 under linear free damped vibration. Fig. 12b shows that, if the damping ratio z2 is increased to 0.025
through a negative velocity feedback and Eqs. (19b) and (19c) with g11 ¼ 0 are used, the transient time is
smaller than that in Fig. 5 and much smaller than those in Figs. 6 and 8. Note that a position or velocity
feedback controller works by changing the system parameters and its steady-state response is a harmonic with
an amplitude A given by

A ¼
F

ō2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� O2=ō2Þ

2
þ ð2z̄O=ōÞ2

q a
F

ô2
2

, (22)

where ō and z̄ represent the ô2 and z2 modified by feedbacks. The amplitude A is often larger than F=ô2
2 ¼

0:0005 because large feedbacks cause stability problems [3,4]. On the other hand, the nonlinear vibration
absorber shown in Eqs. (19a) and (19b) works by using the nonlinear term N1 ð� g11u2

1Þ to create a force to
exactly balance out the external excitation force and force u2 to have a negligibly small constant displacement
F=ô2

2 ¼ 0:0005. Unfortunately, the nonlinear term results in a long transient time and limits the efficiency of
this vibration absorber.
4. Concluding remarks

A method based on the empirical mode decomposition, Hilbert–Huang transform (HHT), and perturbation
analysis is proposed for signal processing of nonlinear nonstationary vibration signals to investigate the long
transient phenomenon in nonlinear structural vibrations. A sliding-window fitting (SWF) technique is also
derived to show the physical implication of time–frequency signal decomposition. Because the HHT uses the
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apparent time scales revealed by the signal’s local maxima and minima to sequentially sift distorted harmonics
of different time scales without using assumed basis functions and function orthogonality for component
extraction, it provides time-varying amplitudes and frequencies of extracted distorted harmonics more
accurate than those from the SWF analysis. On the other hand, because the SWF uses windowed regular
harmonics and function orthogonality to simultaneously extract time-localized regular and/or distorted
harmonics, it can provide accurate decomposition only for a signal consisting of regular harmonics. Based on
numerical analyses of nonlinear systems of one and two degrees of freedom, it is concluded that the long
transient phenomenon is caused by nonlinearities, coupling of transient and forced vibrations, and/or modal
coupling of multiple modes.
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