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Abstract

This paper presents a new method for modelling floating-slab tracks with discontinuous slabs in underground railway
tunnels. The track is subjected to a harmonic load moving with a constant velocity. The model consists of two sub-models.
The first is an infinite track with periodic double-beam unit formulated as a periodic infinite structure. The second is
modelled with a new version of the Pipe-in-Pipe (PiP) model that accounts for a tunnel wall embedded in a half-space. The
two sub-models are coupled by writing the force transmitted from the track to the tunnel as a continuous function using
Fourier series representation and satisfying the compatibility condition.

The displacements at the free surface are calculated for a track with discontinuous slab and compared with those of a
track with continuous slab. The results show that the far-field vibration can be significantly increased due to resonance
frequencies of slabs for tracks with discontinuous slabs.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration generated by trains is a serious concern for inhabitants of buildings in close proximity to
underground tunnels. Inhabitants perceive vibration either directly due to vibration of floors and walls or
indirectly as re-radiated noise. Vibration can also cause disturbance due to movement of household objects,
especially mirrors or due to rattling of windowpanes and glassware. The problem can be more serious in some
circumstances such as where an underground tunnel is passing below sensitive buildings, e.g. a concert hall.
The frequency range for vibration from underground railways is 0-200 Hz. Vibration at higher frequencies is
generally attenuated rapidly with distance along the transmission path through the ground.

One of the effective means for reducing vibration from underground railways is the use of floating-slab
tracks [1-3]. The track is isolated from the track bed via rubber bearings or steel springs. The slab can be cast
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in-situ leading to a track with a continuous slab. It may also be constructed in discrete pre-cast sections
leading to a track with a discontinuous slab. Examples of floating-slab tracks are the 1.5m slab in Toronto,
the 3.4m Eisenmann track in Munich and Frankfurt, the 7m slab in New York subway and the WMATA
continuous slab system in Washington, DC.

A number of models of floating-slab tracks with continuous slabs are presented in the literature for both
surface and underground railway tracks. Shamalta and Metrikine [4] presented a model of an embedded
railway track. The model uses a flexible plate to account for a slab track and an elastic foundation to account
for the ground. This model can be used to account for floating-slab tracks by incorporating the stiffness of
both slab bearings and the ground in the elastic foundation. Hussein and Hunt [5] present a model of floating-
slab tracks with continuous slabs on elastic foundations. The slab is modelled as an Euler—Bernoulli beam.

There are other models of floating-slab tracks with continuous slabs which account more accurately for the
track bed. These models are useful for the calculations of the far-field vibration. For surface railways,
the track bed can be modelled as an elastic half-space [6]. For underground railways, a tunnel and its
surrounding soil are incorporated in the model and the ground can be modelled as an elastic full-space or an
elastic half-space [7-9].

Floating-slab tracks with discontinuous slabs on elastic foundations are modelled by Hussein and Hunt
[10,11]. These tracks have more resonances compared to tracks with continuous slabs. These resonances occur
at the natural frequencies of the discrete slab [10]. The model presented in Ref. [10] is useful in understanding
the dynamic effect of slab discontinuity on vibration induced at the track bed. However, the tunnel and its
surrounding soil should be considered to account for the track-tunnel-soil interaction and to provide the
necessary transfer functions for the calculations of the far-field response due to a load applied on the track.

In this paper, a model of floating-slab track with discontinuous slab resting on a tunnel embedded in a half-
space is presented. The model accounts for a harmonic load moving on the track with a constant velocity. The
model can be used by engineers responsible of designing of vibration countermeasures in underground railway
tunnels when considering floating-slab tracks with discontinuous slabs. In such a case, the model can be used
to compute the slab motion with a view to design to prevent long-term degradation and consequent
maintenance problems.

The model consists of two sub-models. The first is a periodically-inhomogeneous model to account for an
infinite track with periodic double-beam units. The second is a homogeneous model to account for a tunnel
embedded in a half-space [12]. The two sub-models are coupled by writing the force transmitted from the track
to the tunnel as a continuous function using Fourier series representation and satisfying the compatibility
condition.

The method presented in this paper contributes to the modelling techniques for periodically-inhomogeneous
systems. The method tackles the problem of coupling a periodically-inhomogeneous system to a homogeneous
system and therefore can be used for modelling of other problems falling under the same class. A number of
methods are presented in the literature for modelling of periodically-inhomogeneous systems. These methods
and some of their applications are reviewed in the next paragraphs.

Jezequel [13] uses the Fourier series approach to analyse an infinite beam supported periodically by lateral
and torsion stiffness. The main characteristic of this approach is that a single differential equation is used to
describe the behaviour of the beam with respect to time and space. To do this, a summation of a series of delta
functions is used to account for discontinuities at periodic distances. Steady-state solutions are written as a
summation of Fourier series with unknown coefficients. These solutions are substituted in the equations of
motion and the results are Fourier transformed to give a set of algebraic equations. The coefficients are found
by solving this set of equations. Jezequel only considers non-oscillating moving loads. Kisilowski et al. [14]
present a mathematical solution based on the same method but including a moving wheel on a periodically
supported rail. Ilias and Muller [15] use the same approach to analyse a discretely supported rail under a
harmonic moving load and under a moving wheel-set.

Krzyzynski [16] uses the Floquet’s method to model a harmonic moving load on an Euler—Bernoulli beam
mounted on discrete infinite supports. This method takes advantage of periodicity in the longitudinal direction
where Floquet’s solution of the differential equation is used. Muller et al. [17] provide comparison between the
Fourier series approach and Floquet’s method. An undamped Euler—Bernoulli beam is compared with the
corresponding Timoshenko beam with very high shear stiffness, very low rotational inertia and very low
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damping. Nordborg [18] models an Euler—Bernoulli beam mounted on different kinds of discrete supports to
calculate a closed-form solution of a track under non-moving oscillating loads. He transforms equations of
motion to the wavenumber-frequency domain and these are solved using Floquet’s theorem. In a second paper
[19], he calculates the rail response for a moving oscillating load on the rail using results of Green’s function in
the frequency-space domain from Ref. [18]. To calculate the frequency domain response at a specific rail point,
integration is performed in the space domain for Green’s function multiplied by the frequency-domain force at
a certain frequency.

Smith and Wormley [20] use the periodicity-condition method to model a moving constant load on an
infinite Euler—Bernoulli beam supported periodically on rigid supports. In this method, calculations are made
only for one repeating unit. Response of any other unit is calculated using the periodicity condition. Equations
of motion of the unit under consideration are transformed to the frequency domain. The resulting differential
equations are solved as a summation of homogenous and particular solutions. The homogenous solution
coefficients are found by considering the boundary condition at the end of the unit under consideration.
Belotserkovskiy [21] uses the same method to analyse a rail modelled as an Euler—Bernoulli beam on a Winkler
foundation with resilient hinges to represent rail joints under a harmonic-moving load. He also uses this
method to analyse a Timoshenko beam on discrete supports to account for sleepers. Metrikine and Bosch [22]
use the periodicity-condition method to study the dynamic response of a system of two level catenary to a
moving load. The catenary system consists of two infinite strings (upper and lower) connected by lumped
mass-spring-dashpot elements which are positioned equidistantly along the strings. The upper string is fixed at
periodically spaced fixation points.

This paper is organised in the following sections. Section 2 presents the model formulation. Section 3
presents results of the model where the response in the free-surface due to a harmonic load moving on the
track with a constant velocity is shown and compared to those resulting from a track with a continuous slab.
The main relationships of the periodic-structure theory are derived and presented in Appendix A to facilitate
other derivations presented in Section 2 of the paper.

2. Formulation of the model

The model used in this paper is shown in Fig. 1. The two rails of the track are modelled as a single
Euler—Bernoulli beam which is supported on a slab via continuous layer of springs to account for railpads.
The slab is modelled as Euler—Bernoulli beam supported on the tunnel invert via another layer of springs to
account for slab bearings. The tunnel and soil are formulated using a new version of the PiP (Pipe-in-Pipe)
model [12]. This version accounts for a tunnel embedded in a half-space by using the elastic continuum theory
for a tunnel in a full-space along with Green’s functions for an elastic half-space.
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Fig. 1. A model of a floating-slab track with discontinuous slab of length L subjected to a harmonic load moving with a constant velocity
along the track: (a) end view and (b) side view.
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For the model shown in Fig. 1, the governing equations of the unit of the track in the range (0<x<L), in
the space-time domain can be written as

4 2
Eh aa;lil +m % k(1 — ) = €6(x — vr), M
a4u32 azuﬁ
El 7 5 +m—a — ki —u2) + R=0, @
R = kz(HZZ - qu)a (3)

with boundary conditions (see Eq. (26) for more details)

(L . o z
M — el(wL/v) M forj =0,1,2,3, (4)
ox/ 0w/
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ox' o
where u,, u,» and u,3 are the displacement of the rails, the slab and the track bed, i.e. the tunnel, respectively.
R is the slab-bearings’ compressive force per unit length. This force is acting upwards at the bottom of the slab
and downwards at the tunnel. EI; and EI, are the bending stiffness of the rails (for two rails) and the slab,
respectively. m; and m, are the mass per unit length of the rails (for two rails) and the slab, respectively. k; and
k> are the stiffness per unit length of the railpads (for two rails) and the slab bearings, respectively. w is the
excitation frequency and v is the velocity of the moving load.
Egs. (1)—(5) are transformed to the space-frequency domain using Fourier transformation to give

=0 forj=2,3, (5)
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with boundary conditions
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As demonstrated in Appendix A, using the periodic-structure theory, the induced force at the
tunnel invert can be written in the following form in the space-frequency domain (see Eq. (32) for more
details)

=0 forj=23. (10)

R(x,0) = Y by(w)e ==X with &, = 2mn/L. (11)

n=-—00

The displacement at the tunnel invert can be calculated by transforming Eq. (11) to the wavenumber-
frequency domain and multiply the result by the Frequency Response Function (FRF) at the tunnel invert
to give

a(6,0) = H(G0) 3 bu@2md($= & =T+ 7). (12)

where H,(¢, ) is the FRF of the tunnel invert, i.e. the displacement of the tunnel due to a unit excitation on
the tunnel in the wavenumber-frequency domain. Eq. (12) can now be transformed to the space-frequency
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domain to give

i) = Y bu@) (& +5 =2 w)dler @/, (13)
Rt v
The displacement at any point in the soil can be calculated by replacing the FRF on the right-hand side of
Eq. (13) by the transfer function between that point and the tunnel invert.
The purpose of the rest of analysis is to determine the coefficients b,(w) for given parameter values of the
track and for a prescribed @ and v. Egs. (6) and (7) can be written in the following form (using Eq. (11) to
substitute for R)

EIl 0 d41,~¢_, k1 —m1w2 —k
0 EIZ dx4

1 A =% 7 0 y
i = {0}(1 JoeiEors 4 3 {_1]bn(w)emww/v)—(w/v»x)
n=—oo

(14)

where ii.(x, ) = [ii.(x, ), #i-(x, 0)]". The solution of Eq. (14) is written as a superposition of the
homogeneous solution and solutions resulting from each term of the right-hand side expression. The complete
solution reads

—k1 kl — My

8 00
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where a,, are the coefficients of the homogeneous solution. ¢, and Zp are the eigenvalues and eigenvectors of
the homogeneous solution. These are calculated from the following equation

EL ¢y — ma? + ki —ki 5 0
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U is the vector of coefficients of the particular solutions for the first term in the expression in the right-hand
side of Eq. (14). U is calculated from the following equation

w— -1

4
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¥, is the vector of coefficients of the particular solutions for the nth term of the summation on the right-hand
side of Eq. (14). V', is calculated from the following equation
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Note that iéi.(x, w) in Eq. (15) is only defined in the range (0 <x< L). However, since it is a periodic function of
the second kind, it can be written as a function for all values of x using Fourier series representation as shown
in Appendix A. This is done by substituting i.(x, w) from Eq. (15) in Eq. (33) of Appendix A to calculate
¢,(w). The expression of ¢,(w) is then substituted in Eq. (32) of Appendix A to get the following expression of
i1.(x, w) which is valid for all values of x

8

i(x, w) = i > iayZ,
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n=—0oo
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Considering only a limited number of terms (—7.x <1 <nmax), the previous equation has 2n,,,x +9 unknown;

(b—l’lmaxa b—nmﬂx+1 LA bOnN' ] bl’lmax—la I’lm\x) dnd (ala a2a aS)'
Substituting Z,, Z3, R from Egs. (19), (13) and (11), respectively, into Eq. (8) and extracting results of the
same harmonic gives
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for all other values of n. (20.2)

Eqgs. (20.1) and (20.2) along with the eight boundary conditions represent the necessary 2n.,. + 9 equations to
calculate all the unknowns b, and a,,. Using these values, Eq. (13) is employed to calculate the response at any
position in the soil by using the suitable FRF from the PiP model as discussed before. The displacements in the
space-frequency domain are transformed to the space-time domain numerically using the discrete Fourier
transform.

3. Results and discussion

In this section, calculations of the model presented in the previous section are demonstrated by an example
of a floating-slab track with discontinuous slabs of length L = 6 m. The track is subjected to a harmonic force
moving with a constant velocity v = 40km/h. The track consists of two rails of type UIC60 with bending
stiffness EI; = 12.9 MPam* and mass per unit length m; = 120.6kg/m. The track’s concrete-slab has a
bending stiffness EI, = 1430 MPam®* and mass per unit length m, = 3500 kg/m. The stiffness of the railpads
and slab bearings per unit length are k& =200 MN/m/m (with hysteretic loss factor of #;; = 0.3) and
k, = SMN/m/m (with hysteretic loss factor of #;, = 0.5), respectively. The tunnel is made of concrete with
compression wave velocity ¢; = 5189 m/s, shear wave velocity ¢; = 2774 m/s, density p = 2500 kg/m® (with
hysteretic loss factor of # = 0.015 associated with both pressure and shear wave velocities). The tunnel has
external radius r, = 3.0m and internal radius r; = 2.75m. The soil parameters are those for Oxford Clay and
Middle Chalk with compression wave velocity ¢; = 944 m/s, shear wave velocity ¢, = 309 m/s and density
p =2000kg/m® (with hysteretic loss factor of 5 = 0.03 associated with both pressure and shear wave
velocities). The distance between the tunnel centre and the free surface is 20m. It is found that for the given
parameters in this section, a value of n,., = 10 gives converged results for excitation frequencies below
200 Hz.

Fig. 2a and b shows the displacements in the frequency domain at a point in the free-surface at (x = Om,
y=10m, z =0m, see Fig. 1 for information about the coordinate systems) for a moving unit-force with
excitation frequencies: (a) f = 30Hz; and (b) f = 80 Hz. These results are presented to demonstrate the
response in the frequency domain and the two excitation frequencies are selected only as examples. It can be
seen from these figures that displacements are large at and near a frequency equal to the excitation frequency.
The displacement away from this frequency attenuates quickly. This is an important remark when performing
the Discrete Fourier transformation because frequencies with insignificant values of displacements can be
excluded from the numerical integration. The results in the frequency domain presented in this section are
calculated in the range [f — 10, f + 10]Hz (where f is the excitation frequency) with a step Af = 0.05 Hz. The
selected frequency-range and interval are found to give converged results in the time domain for the given
parameters of the track, tunnel and soil. The displacements’ curves in Fig. 2 also show undulation with a
constant step of 1.85 Hz between pronounced troughs. This step results from the moving load on the periodic
track and can be calculated by f; = v/L.

Fig. 3a and b shows the displacements in the time domain in the free-surface at (x = 0m, y = 10m, z = Om)
for a unit force moving on the track with two excitation frequencies: (a) f = 30 Hz; and (b) f = 80 Hz. These
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Fig. 2. The displacements in the frequency domain at x =0m, y = 10m, z = Om due to a harmonic load with excitation frequency: (a)
30Hz and (b) 80 Hz. The load is moving with a constant velocity 40 km/h.
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Fig. 3. The displacements in the time domain at x = 0m, y = 10m, z = O m due to a harmonic load with excitation frequency: (a) 30 Hz
and (b) 80 Hz. The load is moving with a constant velocity 40 km/h.

results are calculated by transforming the results in Fig. 2a and b using the discrete Fourier transformation.
According to Nyquist criterion, the range of time for a frequency step of Af = 0.05Hz is (—10<¢<10)s. This
covers a distance in the range (—111<x<111) m for the moving load with a velocity 40 km/h. It can be seen



370 M.F.M. Hussein, H.E.M. Hunt | Journal of Sound and Vibration 321 (2009) 363-374

from Fig. 3a and b that the maximum displacement at a point in the soil occur at different times when
comparing the displacements due to different excitation frequencies.

The next results compare the maximum displacements in the free surface for a harmonic moving load on a
track with discontinuous slab to those produced by a track with a continuous slab. The latter results are
calculated using a continuous model of a track-tunnel-soil formulated in the wavenumber-frequency domain
and results are then transformed to the space-time domain [7-9].

Fig. 4 shows the maximum displacements at a point in the free surface at (x =0m, y = 10m, z = O m) for
excitations frequencies in the range 1-200 Hz. At each excitation frequency, displacements are calculated in the
frequency domain as exemplified by Fig. 2a and b. Results are then transformed to the time domain as
exemplified by Fig. 3a and b and the maximum displacement at each excitation frequency is recorded. The
process is then repeated for all excitation frequencies in the frequency range of interest to produce the results
in Fig. 4. Note that both curves have peaks at 6 Hz, this corresponds to the resonance frequency of the slab on
the slab bearings which can be calculated by (1/27)+\/k>/ms.

It can be seen from Fig. 4 that the displacements for the track with the discontinuous slab have two
pronounced peaks at 63 and 174 Hz. At these frequencies, displacements at the free-surface from the track
with the discontinuous slab can exceed those resulting from the track with the continuous slab by more than
10dB. The peaks are attributed to standing waves which are built by reflections of propagating waves at free
ends of the slab. The frequencies of these peaks can be calculated from the free—free beam natural frequencies,

see Ref. [23] for example, which reads
EI, 7}
=4 == 21
Fo =\ o @

where A; = 4.73, A, = 7.853, 23 = 10.996, etc.

For the current parameters of the track, the first two natural frequencies occur at about 63 and 174 Hz,
which agree with the results in Fig. 4.

Fig. 5a and b shows snap shots for the displacements of the discrete slab at time ¢ = 0.5 L/v for harmonic
loads with excitation frequencies 63 and 174 Hz, respectively. These figures confirm again that at 63 Hz, the
slab is resonating with the first free—free bending mode and at 174 Hz, the slab is resonating with the second
free—free bending mode.

Fig. 6 shows the maximum displacements at a different point in the free surface at (x =0m, y = 20m,
z=0m) for excitations frequencies in the range 1-200Hz. Again, the displacement of a track with
discontinuous slab show pronounced peaks at the resonance frequencies of the slab.

The study presented in this paper has drawn the attention to the unfavourable vibration increase resulting
from floating-slab tracks with discontinuous slabs. In reality, more resonances are expected due to bending

-200
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-300

0 50 100 150 200
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Fig. 4. The maximum displacement at x = 0m, y = 10m, z = 0 m due to a harmonic load moving with a constant velocity 40 km/h on (-) a
track with continuous slab and (--) a track with a discontinuous slab.
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Fig. 5. A snap shot of the slab at t = L/v = 0.54 s for a moving load on the track with a harmonic excitation: (a) 63 Hz and (b) 174 Hz.
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Fig. 6. The maximum displacement at x = 0 m, y = 20m, z = 0 m due to a harmonic load moving with a constant velocity 40 km/h on (-) a
track with continuous slab and (--) a track with a discontinuous slab.

resonances across the width of the slab. Moreover, other modes of slab, e.g. the torsion mode, can be excited if
the forces on the two rails are not equal or have some phase difference.

The current model has only addressed the case of a harmonic moving load on floating tracks with
discontinuous slabs. To understand the dynamics of a train running on such a track and the effect on vibration
in the far field, a model of a train should be coupled to the track. This model is currently under development
by the authors.
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4. Conclusions

A new model for calculating vibration from floating-slab tracks with discontinuous slabs in
underground railway tunnels is presented. The model employs the periodic-infinite structure theory
to couple a periodic track to a continuous model of a tunnel embedded in a half-space where calculations
are performed in the space-frequency domain. The frequency response functions of the tunnel-soil
system are calculated using a new version of the PiP model which is presented in a different paper.
The displacements at the free-surface are calculated and compared with those of tracks with continuous
slabs. A floating-slab track with a discontinuous slab results into more vibration at the resonance
frequencies of the slab. These frequencies can be calculated using the equation of the natural frequencies of a
free—free beam.

Appendix A
A.1. The periodic-infinite structure theory

The purpose of this appendix is to provide a quick derivation of the main relationships governing the
behaviour of a periodic-infinite structure when subjected to a harmonic moving load.

The first relationship is the periodicity condition. For a periodic structure with periodicity L in the x
direction subjected to a point force moving with a constant velocity v, the displacement at time t for a point at
distance x is given by the following convolution integral

u(x, t) = /°° F(t)h(x,tv,t — 1)dt, (22)

o0
where F(7) is the value of the force at time ¢ = 7, /h(x;,X,,¢1) is the impulse response function which expresses
the displacement at x = x; and time ¢ = ¢; due to a unit impulse applied at x = x; and time # = 0. Note that
due to periodicity, the following relationship holds

h(xi + L, x2 + L, 1) = h(x1, x2, 1h). (23)
Form Eq. (22), the displacement at time 7+ L/v for a point at distance x+ L is given by

[e ]

u(x+L,l+L/v)=/ FCh(x+ L,tv,t+ L/v—1)dr. (24)

The last equation can be written as

o]

u(x+ L,t+ L/v) = / F(t+ L/v)h(x+ L,tv+ L,t — t)dr. (25)

—00
Substituting h(x+ L, to+ L, t—1) = h(x, tv, t—71) and for a harmonic moving load F(t+ L/v) = F(t)e'’"/"
results in
u(x + L, t + L/v) = = u(x, 1), (26)

which is known as the periodicity condition. The function u in the previous equation is periodic in both space
and time. The periodicity is reserved to only one variable by transforming the equation to the space-frequency
domain, which results in

i(x 4+ L, ) = @0 4(x, w). (27)

Eq. (27) shows that # is a periodic function of the second kind which can be transformed into an equation
with periodicity of the first kind using the following substitution

J(x, w) = e @G, ). (28)
From Egs. (28) and (27), one can write
g(x + L, w) = §(x, w). (29)
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Eq. (29) shows that § is a periodic function of the first kind. This equation can be written as a summation of
Fourier series as, see Ref. [24] for example

X o 2nn
i = o with &, = ——.
g(x, ) n;oo en(@)er with &, = =7 (30)
The value of ¢,(w) can be calculated from the following relationship
1 /L .
(W) = — / g(x, w)e """ dx. (31
L Jy
Using Egs. (28), (30) and (31), the value of @i(x, w) and the coefficients ¢,(w) can be calculated from
o0 . 27n
; _ (EH@/D-@/X  ith & = = 2
ivo)= ), alwe with &, ==, (32)
1 rt -
(@) =7 / fi(x, w)eCHE/O=@/0x 4, (33)
0
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