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Montréal (Qué), Canada H3C 3A7

Received 21 December 2007; received in revised form 12 June 2008; accepted 18 September 2008

Handling Editor: S. Bolton

Available online 12 November 2008
Abstract

The effects of partial constrained viscoelastic layer damping on the first milliseconds of the transient vibration of an

impacted beam is studied using an analytical model. The viscoelastic properties of the core are frequency dependent and

the shear modulus is modelled using a Prony Series. The equations of motion of the system are obtained using Lagrange’s

equations. The equations of motion are converted in the frequency domain using a Fourier Transform and they are solved

for frequency displacements using the assumed modes method. They are then converted back in the time domain using an

inverse Fourier Transform. The technique is validated for transient responses using experimental impact force signals. The

numerical results are in good agreement with experimental data. Four partial constrained viscoelastic layer damping

parameters are studied: the length, the placement, the viscoelastic layer thickness and the constraining layer thickness. It

turns out that the length of the partial constrained viscoelastic layer damping has the most important effect on the initial

transient displacement while the viscoelastic layer thickness has little effect. Noncausal effects in the model are discussed

and are mainly induced when the partial constrained viscoelastic layer damping treatment is poorly effective.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Unwanted vibrations are a source of many problems. For instance, the riveting process used in aircraft
assembly necessarily induces strong impacts on structures. These impacts are likely to produce transient
vibrations which are responsible for making powerful noise. This is specially true for large and flexible
structures that can experience severe acoustical radiation. This may cause work-related injuries, even when
workers benefit from auditory protection equipment. Hence, it is important to develop a damping treatment
which would effectively reduce transient vibrations due to impact processes.

An ingenious way to do so is to apply on the surface of the structure a viscoelastic layer covered by another
elastic layer. The elastic layer is called the constraining layer and causes the viscoelastic material to experience
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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shear deformation which increases the energy dissipation in the viscoelastic layer. This kind of passive
treatment is called constrained layer damping. However, in order to limit added mass and for cost
considerations, damping treatments covering an entire structure have been replaced by partial constrained
viscoelastic layer damping. Moreover, it was shown that constrained layer damping is not necessarily more
efficient than partial constrained viscoelastic layer damping [1]. From a practical point of view, partial
constrained viscoelastic layer damping can either be applied to existing structures or be part of the design
process.

This paper deals with the effects of partial constrained viscoelastic layer damping on the transient response
of impacted beams. There are good reasons to study beams. For instance, the behavior of beams is
mathematically well known. They have been studied for a long time and they are the first step to understand
the behavior of more complex structures. Also, it is easy to verify theoretical results by means of experiments.

The harmonic behavior of constrained layer damping and partial constrained viscoelastic layer damping has
been studied using analytical models by many authors. Mead and Markus proposed a model for a sandwich
beam where the core layer was made of viscoelastic material [2]. They stated assumptions which have been
used in many subsequent works (e.g. Refs. [3–5]). Kung and Singh are among the few authors who presented
experimental data [4,5]. Huang et al. proposed the use of Lagrange’s equations to derive the equation of
motion of a base beam damped by a viscoelastic partial treatment [6]. They applied the assumed modes
method to discretize and solve the equations. Cai et al. also used Lagrange’s equations, but instead of deriving
the longitudinal motion of the constraining layer using force and moment balances, they proposed to use a
third set of admissible functions [7].

Design considerations of partial constrained viscoelastic layer damping treatments exist for steady-state
harmonic motion only. Optimal patch design parameters were studied for the first mode of cantilever beams
[8] or the first two modes [1]. Kung and Singh proposed an analytical design procedure for partial constrained
viscoelastic layer damping treatment applied to a single mode at a time [5]. In all cases, the criterion used for
optimal damping was a maximum modal loss factor.

Few transient analyses of viscoelastically damped structures have been conducted so far. Nashif et al.
proposed a method to study single degree of freedom systems submitted to a Dirac impulse [9]. The equation
of motion were converted to the frequency domain using a Fourier transform and were solved for frequency
displacements. Then, the displacement was converted back into the time domain using an inverse Fourier
transform.

However, time analyses have been conducted more often using finite element methods rather than analytical
models. Constrained layer damping [10,11] and partial constrained viscoelastic layer damping [12] treated
cantilever beams were studied, but only the damping of the first mode was analyzed using the logarithmic
decrement once the forced transient response was passed and all higher modes were damped. Some of the
results were compared to experiments [12].

In view of these works, some conclusions may be drawn. Many authors studied beams damped with partial
constrained viscoelastic layer damping treatments using analytical models. In particular, the work done by Cai
et al. effectively combines the energy approach and a discretization technique to get the equations of motion of
the system, leading to a common form which is easily solvable [7]. However, much of the work was done for
harmonic or steady-state response. Finite element models were proposed in the literature to understand the
time response over a long period, whereas impact noises are partly due to the initial transient motion. Though
some experiments were proposed to validate the natural frequencies of systems with partial constrained
viscoelastic layer damping and their steady-state time response, there is a clear lack of experimental data
concerning the initial forced transient response.

Finally, the viscoelastic shear properties are frequency dependent [13]. Even if frequency independent
properties have been used in the past (e.g. Refs. [7,14]), this assumption received many critics because it
leads to unrealistic material properties that produce inaccurate frequency peaks and noncausal response [9,15].
Moreover, the complex modulus approach is based on the assumption of cyclic motion [16–18], hence it
is only valid for transient response calculations if the material shear modulus has a real time domain behavior
[13]. To do so, two models are widely used: the GHM model [19,20] and the Prony Series [21,22].
Both representations ensure frequency dependence of materials and accurate behavior representation in the
time domain.
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For the research described in this paper there were four goals. (1) To obtain the equations of motion of a
beam with a partial constrained viscoelastic layer damping using the method proposed by Cai et al. [7].
However, a Prony Series is used to make sure the viscoelastic behavior will be well suited both in the frequency
and time domains. (2) To generalize the method proposed by Nashif et al. [9] for solving the equations of
motion and to obtain the time response of the system submitted to a real impact. (3) To validate the time
responses through experimental results. (4) To study the effects of partial constrained viscoelastic layer
damping on the first few milliseconds of the transient displacement, which is responsible for initial transient
impact noise.

2. Model

2.1. Geometry and displacements

The system is an impacted beam which is damped by a partial viscoelastic constrained layer (Fig. 1). The
base beam has a length L and arbitrary boundary conditions. In the present model, the base beam is
cantilevered. The damping treatment is composed of two layers and is installed from x1 to x2, where x is the
axial coordinate of the beam. Each layer has a thickness hb and a density rb where b ¼ b; v or c, respectively,
for the base beam, the viscoelastic layer and the constraining layer. The system has a uniform width B. The
force is applied at xf , and x0 indicates the location where the response of the system is measured (not shown in
Fig. 1). Prior to developing the model, some assumptions were made. They were taken directly fromMead and
Markus [2] and are commonly accepted in the open literature.
(1)
 All displacements are small and occur in the xz-plane.

(2)
 The base beam and the constraining layer are considered purely elastic. Moreover, these two layers are

only allowed to experience flexural and axial deformations. No shear deformation is taken into account;
neither is the rotational inertia.
(3)
 The central layer is viscoelastic and can deform linearly with respect to the z-axis. It can experience axial
and transverse displacements. Shear deformation occurs in the xz-plane only. Axial, compressive and
tensile constraints in this layer are neglected due to the fact that Young’s modulus of the viscoelastic is very
small as compared to Young’s moduli of the base beam and the constraining layer.
(4)
 As stated in Assumption (3), the viscoelastic has a constant thickness so that for a given position x, the
transverse displacement in the z direction is the same for the three layers.
(5)
 At the interfaces, the bonding layers are assumed to have no thickness. Perfect contact without slip is also
assumed.
(6)
 In the frequency domain, the viscoelastic shear modulus is described using a complex function:

G�ðoÞ ¼ GsðoÞ½1þ jZðoÞ�, (1)

ZðoÞ ¼
GlðoÞ
GsðoÞ

, (2)
Fig. 1. Base beam with partial constrained viscoelastic layer damping.
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where GsðoÞ and GlðoÞ are the storage and loss moduli, respectively, ZðoÞ is the loss factor and o is the
circular frequency. It is important to note that the moduli and loss factor are frequency dependent, as
shown in Eqs. (1) and (2).
The system displacements are defined as follows:
(1)
 wðx; tÞ is the transverse displacement of the system along the z-axis.

(2)
 ubðx; tÞ is the longitudinal displacement of the base beam along the x-axis.

(3)
 ucðx; tÞ is the longitudinal displacement of the constraining layer along the x-axis.
Here, uc and ub are independent from one another as stated by Cai et al. [7]. Fig. 2 represents a small element
of the system where g1 is the angle of the neutral axis of the base and constraining layers with respect to the
x-axis, and g2 accounts for the shear deformation of the viscoelastic layer.

Noting that for small angles, sinðgÞ � g, and also that g1 ’ qw=qx, it can be shown, using the displacements
of points B and C, that

g2 ¼
uc � ub

hv

þ
1

hv

hv þ
hc

2
þ

hb

2

� �
qw

qx
. (3)

Combining the three independent displacements wðx; tÞ, ubðx; tÞ, ucðx; tÞ and Eq. (3), it is possible to define all
the deformations involved in the model.

2.2. Energies

We will now analyze the various sources of kinetic and potential energies in the system.
Potential energy in the viscoelastic layer: As stated before, the central layer is made of a viscoelastic material

characterized by a complex shear modulus G�. It is assumed that this layer is a shear deformable body so that
the potential energy involved can only arise from shear in the xz-plane. This deformation is noted as g2 and is
defined by Eq. (3). The potential energy is then

V�v ¼
1

2
G�hvB

Z x2

x1

g22 dx. (4)

Potential energy in the elastic beams: Both the base beam and the constraining layer are elastic beams
experiencing flexural and longitudinal motions. In such beam, the potential energy due to both deformations is [23]

V a ¼
EaBha

2

Z
La

qua

qx

� �2

dxþ
EaIa

2

Z
La

q2w
qx2

� �2

dx; a � b; c, (5)
Fig. 2. Deformed element with displacements.



ARTICLE IN PRESS
D. Granger, A. Ross / Journal of Sound and Vibration 321 (2009) 45–64 49
where b and c represent the base beam and the constraining layer, respectively; Ea is Young’s modulus and Ia is the
second moment of the section which, for a rectangular section, is Bh3

a=12. The integral limits La are from 0 to L for
the base beam and from x1 to x2 for the constraining layer.

The total energy of deformation is given by

V� ¼ V�v þ V b þ Vc. (6)

Kinetic energy: The kinetic energy of each layer mainly results from the transverse motion along the z-axis.
The longitudinal and rotational kinetic energies are neglected. Also, it is assumed that all points on a cross
section of the beam have the same velocity. The expression is then

T ¼ Tv þ Tb þ Tc, (7)

where

Tb ¼
1

2
rbhbB

Z
Lb

qw

qt

� �2

dx; b � b; c; v.

The integral limits Lb are from 0 to L for the base beam, and from x1 to x2 for the constraining and
viscoelastic layers.

2.3. Discretization

The assumed modes method is used to discretize the continuous system in order to go on with the derivation
of the equation of motion [6,23]. This method allows us to write the three independent displacements defined
earlier as functions of time and position. So, using a vector notation (where the length of the vectors is the
number of modes used):

wðx; tÞ ¼
Xnw

i

W iðxÞciðtÞ ¼WTw, (8)

ubðx; tÞ ¼
Xnb

j

Ub;jðxÞxb;jðtÞ ¼ UT
b nb, (9)

ucðx; tÞ ¼
Xnc

k

Uc;kðxÞxc;kðtÞ ¼ UT
c nc, (10)

where W iðxÞ, Ub;jðxÞ and Uc;kðxÞ are the admissible functions, ciðtÞ, xb;jðtÞ and xc;kðtÞ are the new
generalized coordinates, and nw, nb and nc are the number of modes used for the transverse motion
of the system (nw), the longitudinal motion of the base beam (nb) and the longitudinal motion of the
constraining layer (nc). The use of a third set of admissible functions to represent the longitudinal
displacement uc was introduced by Cai et al. [7]. If n!1 for each of the different displacements, the response
is considered to be exact.

Admissible functions have to satisfy all geometric (or Dirichlet) boundary conditions. Even though many
arbitrary functions could do so, it is convenient to use classical mode shapes. In the present model, the mode
shapes of a cantilever beam are used for wðx; tÞ and ubðx; tÞ, and the mode shapes of a free beam are used for
ucðx; tÞ, as given in Appendix A.

Now that the three independent displacements have been discretized, it is possible to reformulate the
potential and kinetic energies developed above. Inserting Eqs. (8)–(10) into Eqs. (4)–(7) leads to

T ¼ 1
2
_wT
½Mb þMv þMc�

_w, (11)

Va ¼
1
2
nTaKa;1na þ

1
2
wTKa;2w, (12)

V�v ¼
1
2
nTc K

�
v;1nc � nTc K

�
v;2nb þ

1
2
nTbK

�
v;3nb þ nTc K

�
v;4w� nTbK

�
v;5wþ

1
2
wTK�v;6w, (13)
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where a stands again for b and c and submatrices are presented in Appendix B. It should be noted that the
values of submatrices K�v;1 to K�v;6 are complex, where the imaginary part accounts for viscoelastic shear
dissipation.
2.4. Equations of motion

The discretization process produces a Ndof ¼ nw þ nb þ nc degrees of freedom system. Since the energies are
now expressed in terms of finite sets of generalized coordinates (Eqs. (11)–(13)), Lagrange’s equations
constitute a good way to obtain the equations of motion:

q
qt

qL�

q _qr

� �
�

qL�

qqr

¼ Qr, (14)

where r ¼ 1; 2; . . . ;Ndof , L� ¼ T � V� is the Lagrangian and Qr represents the generalized forces. Using the
vector notation introduced above, the next three sets of equations are obtained:

q
qt

qL�

q _w

� �
�

qL�

qw
¼ Qc,

q
qt

qL�

q _nb

 !
�

qL�

qnb

¼ Qxb
,

q
qt

qL�

q _nc

 !
�

qL�

qnc

¼ Qxc
. (15)

Again, the dissipative characteristics of the system are contained in the potential energy term—and in the
Lagrangian. The external force is applied locally on the base beam, along the z-axis. It is a function of the
x-position and of time: f ðx; tÞ ¼ dðx� xf Þf ðtÞ. The virtual work of this force is

dW ¼
Xnw

i

dciðtÞ

Z L

0

f ðtÞdðx� xf ÞW iðxÞdx, (16)

where Qci ¼
R L

0 f ðtÞdðx� xf ÞW iðxÞdx is the ith generalized force, so that

Qc ¼ f ðtÞWðx ¼ xf Þ. (17)

Vectors Qxb
and Qxc

are both null. In their work, Cai et al. used a harmonic force to obtain the frequency
response of the system [7]. This is not the case in the present work. Instead, a Dirac function dðtÞ is used which
leads to the impulse response. This approach is privileged because it is the basis of the solution method
presented in Section 2.5.

From Eq. (15), we obtain the equations of motion of the entire system:

Qc

0

0

8>><
>>:

9>>=
>>; ¼

Mb þMc þMv 0 0

0 0 0

0 0 0

2
664

3
775

€w

€nb

€nc

8>><
>>:

9>>=
>>;

þ

Kb;2 þ Kc;2 þ K�v;6 �K�Tv;5 K�Tv;4

�K�v;5 Kb;1 þ K�v;3 �K�Tv;2

K�v;4 �K�v;2 Kc;1 þ K�v;1

2
6664

3
7775

w

nb

nc

8>><
>>:

9>>=
>>;. (18)
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2.5. Solving for transient response

In order to carry out a transient analysis of the system resulting from a general impact excitation, a solution for
Eq. (18) in time domain is seeked. However, as discussed previously, most stiffness terms in Eq. (13) are better
represented in the frequency domain. It is therefore proposed to solve Eq. (18) in the frequency domain by means
of a Fourier transform, and to convert the solution back in the time domain. To do so, the method presented by
Nashif et al. [9] for a single degree of freedom system excited by a Dirac impulse is now extended and applied to
the Ndof degrees of freedom system. Applying a Fourier transform to Eq. (18) leads to the well-known form

ðK� � o2MÞ

w

nb

nc

8><
>:

9>=
>; ¼

Qc

0

0

8><
>:

9>=
>;, (19)

where the overline symbol indicates a Fourier-transformed term which is a function of frequency (o). The
generalized stiffness matrix K� contains frequency dependent parameters representing the viscoelastic shear
modulus (G�) as discussed above.

Using a Dirac impulse in Eq. (17), that is f ðtÞ ¼ dðtÞ, and solving for the generalized coordinates
displacements, we have

w
˜

nb
˜

nc
˜

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ ðK� � o2MÞ�1

Wðx ¼ xf Þ

0

0

8><
>:

9>=
>;, (20)

where the under tilde notation indicates the impulse response.
It is important to note that in the frequency domain, the real part of G� (the storage modulus) is an even

function while the imaginary part (the loss modulus) is an odd function [9,13]. This is a consequence of
adequately representing the behavior of a viscoelastic material. That information is the key part of the
method, because it turns out that each of the generalized coordinates frequency response are composed of an
even real part and of an odd imaginary part. Consequently, applying an inverse Fourier transform to Eq. (20),

results in a real time domain vector ½w
˜

n
˜ b

n
˜ c
�T.

Inserting w
˜

in Eq. (8) leads to the transverse impulse response1 w
˜
ðx; tÞ. The response of the system to a

general transverse impact loading hðtÞ applied at xf is then obtained using a convolution wðx; tÞ ¼ w
˜
ðx; tÞ � hðtÞ.

However, getting wðx; tÞ is more straightforward if the convolution theorem is used. That way, the
generalized coordinates displacements are given by

w

nb

nc

8>><
>>:

9>>=
>>; ¼F�1

w
˜

nb
˜

nc
˜

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
�

h

0

0

8>><
>>:

9>>=
>>;

0
BBBBBBBB@

1
CCCCCCCCA

¼F�1 ðK� � o2MÞ�1

Wðx ¼ xf Þ

0

0

8>><
>>:

9>>=
>>; �

h

0

0

8>><
>>:

9>>=
>>;

0
BB@

1
CCA, (21)
1Applying a Fourier transform to w
˜
ðx; tÞ leads to the complex frequency response w

˜
ðx;oÞ of the system which can be used to get the

natural frequencies.
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where F�1 is the inverse Fourier transform operator and ð�Þ is a point-wise multiplication. Inserting Eq. (21)
in Eq. (8) leads to wðx; tÞ. Numerically, this approach is less time consuming than using a convolution.

2.6. Numerical computations

Based on the information given in the preceding section, it is possible to compute the transverse response
wðx; tÞ of the system submitted to a general impact. To do so, the following steps are implemented using
Matlab:
(1)
 The desired time increment Dt and the number of points of the simulation N are fixed so that the total
simulation time is Tmax ¼ NDt.
(2)
 According to the sampling theorem, the sampling frequency is given by f s ¼ 1=Dt which has to be greater
than twice the maximum frequency (in Hz) of the signal in order to respect the Nyquist theorem. Thus, the
maximum circular frequency is O ¼ pf s.
(3)
 The frequency domain ½�O;O� is discretized using Do ¼ 2p=Tmax.

(4)
 The forcing function hðtÞ is sampled and transformed by using a fast Fourier transform and the result h is

inserted into Eq. (21).

(5)
 For any given value of o over the frequency domain, the mass and stiffness matrices are wholly determined

in Eq. (21). The generalized coordinates displacement vector is found by means of linear algebra and
inverse fast Fourier transform computations.
(6)
 Eq. (8) is applied. The result represents the transverse time response of the system to a general impulse with
a time increment Dt.
2.7. Viscoelastic properties

To ensure an accurate representation of the core layer both in the frequency and time domains, viscoelastic
properties are accounted for using Prony Series representation with Np terms. Hence, in the frequency domain

G� ¼ G0 � G0

XNp

n¼1

gn þ
XNp

n¼1

G0gntnjo
1þ tnjo

, (22)

where tn and gn are the material specific parameters and G0 ¼ Gðt ¼ 0Þ is the instantaneous relaxation
modulus. These parameters are obtained by using stress relaxation tests. Recalling that Gs ¼ RðG�Þ and
Gl ¼ IðG�Þ, we get the same form as expected from Eq. (1).

3. Model validation

In order to validate the model developed in Section 2, experiments were carried out to obtain the transient
response of a beam with a wide selection of damping treatment parameters. The objective is to show the
validity of the method for partial constrained viscoelastic layer damping geometry which could be used in real
applications.

3.1. Experimental setup

Overall, 15 cantilever beams with different damping pads were tested. For each configuration, the base
beam length and the damping treatment geometrical characteristics are listed in Table 1. Material properties
are shown in Tables 2 and 3. All layers have a width of 25.4mm. Both the base beam and the viscoelastic layer
are 3.175mm (1

8
in) thick while the constraining layer is 1.587mm ( 1

16
in) thick. These are much thicker values

than those found in the literature (see for instance Kung and Singh [4]). All three layers were bonded using a
Loctite adhesive. The viscoelastic material was the Urethane CPA-850 from Rhino Hyde Products.

The system was submitted to a frequency sweep test. An electromagnetic exciter was used to force the
harmonic transverse motion of the beam. The system response was observed using a Bently Nevada Proximity
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Table 1

Beam specimens

Beam L Lc x1 x2

I 508 375 15 390

II 511 375 68 443

III 510 250 78 328

IV 507 125 140 265

V 508 125 195 320

VI 508 125 242 367

VII 506 125 297 422

VIII 508 76 165 241

IX 507 76 215 291

X 507 76 269 345

XI 508 76 321 397

XII 509 26 191 217

XIII 510 26 243 269

XIV 510 26 297 323

XV 510 26 345 371

All dimensions in mm.

Table 2

Physical properties of materials

Layer Material r ðkg=m3Þ E G0

Base, constraint Aluminum 3003 2710 70GPa –

Viscoelastic Urethane CPA-850 1124 – 14.1MPa

Table 3

Prony Series parameters of the viscoelastic layer

n g t

1 0.2 0.007

2 0.63 0.07

D. Granger, A. Ross / Journal of Sound and Vibration 321 (2009) 45–64 53
Transducer System (3300 XL 8mm). For each configuration, the first three natural frequencies were
established from the locations of the peaks on the frequency response spectrum. The results are shown to be in
very good agreement for all beams and modes. The greatest differences between experimental and calculated
natural frequencies are 1.3Hz on the first mode (f 1 � 10Hz), 2.8Hz on the second mode (f 2 � 65Hz) and
3.7Hz on the third mode (f 3 � 175Hz).

3.2. Transient response validation

The setup was used to obtain the transient time response resulting from an impact. To do so, the system was
excited using an impact hammer at a constant position xf ¼ 0:04m and the response was recorded at different
locations x0. The first few milliseconds of the time responses are shown as a dashed line in Figs. 3–6. The
impact force was recorded so that the real force signal could be employed in the theoretical computations. The
force signals are shown in Figs. 3–6 as thick dash-dot lines. Each impact lasted for approximately 1ms with a
maximum amplitude between 7 and 9N.

Beams III, V, VI and X were tested experimentally. They represented three different damping pad lengths
(Beam III [250mm], Beams V and VI [125mm] and Beam X [76mm]) and different positions (see Table 1). The
number of modes used in the numerical computations were nw ¼ 20 and nb ¼ nc ¼ 10 . The time simulations
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Fig. 3. Transient response of Beam III (experimental: , theoretical: ) and impact loading ( ). (a) x0 ¼ 0:1, (b) x0 ¼ L.
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Fig. 4. Transient response of Beam V (experimental: , theoretical: ) and impact loading ( ). (a) x0 ¼ 0:3, (b) x0 ¼ 0:2.
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were obtained by fixing Dt ¼ 50� 10�6 s and using N ¼ 219 points. The numerical results are shown in
Figs. 3–6 as full lines.

In Figs. 3–6, each pair of frames (a) and (b) represents the response of a single beam configuration,
measured at two different locations:
(1)
 The transverse motions are in very good agreement with experimental data for all cases (for different
observation points, patch lengths and patch positions).
(2)
 In Fig. 3(a), the response is measured close to the impact location and starts quickly after the beginning of
the contact. On the opposite, in Fig. 3(b), the response is measured at the free end and the motion is
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delayed with respect to the impact. Hence, wave propagation is well represented by the model since the
time delay of the motion is respected between two positions.
(3)
 The numbers of modes used seem to depict the transverse motion quite satisfactorily.
Thus, the model is good to predict the transient transverse motion of the system for different partial
constrained viscoelastic layer damping lengths and positions. Slight differences between the experimental and
theoretical data may be explained by various factors. First, the impact locus in the theoretical model is a point
while in the experiment, this locus is a small surface due to the impact hammer head shape. Also, the load
applied in the numerical computations is perfectly perpendicular to the system. However, in the setup, it was
not possible to perfectly control its direction. This may have produced oblique impacts instead of direct
impacts. Besides, discrepancies may exist between the viscoelastic properties used in the analytical model and
actual material values. Finally, from a design point of view, contact imperfections between layers could have
occurred in the experimental setup, so that the interfaces may not have been perfectly continuous and with
negligible thickness as assumed in the model.

It has been shown from experimental data that the present model and solution method are well suited to
predict transient motions of beams with partial constrained viscoelastic layer damping treatments.

4. Numerical results

The main advantage of having an accurate and validated numerical model is that it is possible to conduct
many tests without an experimental setup. System parameters can be easily modified and their effect on the
general response is quickly known. In our case, each simulation took about 230 s using a 2.66GHz dual core
Intel processor and 3.25GB of RAM. Some numerical results are now presented.

4.1. Geometric and physical parameters of the system

An aluminum cantilever beam (L ¼ 0:5m, hb ¼ 3:175mm, B ¼ 25:4mm) with partial constrained
viscoelastic layer damping was simulated. The system parameters were the length (Lc) and position (x1) of
the damping pad, the viscoelastic layer thickness (hv) and the constraining layer thickness (hc). The materials
were the same as in the experimental validation (Tables 2 and 3).

4.2. Impact load and numerical parameters

The impacts recorded in Section 3 varied somewhat in the experiments. However, as shown in Fig. 7, if the
force is normalized according to its maximum value, the different shapes are quite similar: a quick increase up
to a maximum value and a slower decrease until the force disappears. According to Goldsmith, the impact
force shape depends on the radius of the disturbance during the contact [26] which, in turn, depends on the
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stiffness and mass of the impacted structure. If the damping treatment is close enough to the impact point, the
added stiffness and mass could play a role in the shape of the initial deformation so that the impact force
would be modified. However, since all experimental force shapes are similar, it is concluded that partial
constrained viscoelastic layer damping has little influence on the shape of the force signal. In order to use the
same theoretical force for all numerical examples, the impact load was defined as [24]

F ðtÞ ¼ F0 �R
1:1

1þ Lþ 2L2

� �
� sin½ð0:97TÞ1:5�eð�0:4TÞ4 þ

1þ 2=L
1þ L

� �
T

T þ
1

L

2
64

3
75
1:5

e�T=L

8><
>:

9>=
>;, (23)

where we used the parameters F0 ¼ 25N, L ¼ 1, T ¼ pt=G and G ¼ 1� 10�3 s. The maximum amplitude
(� 10N) is similar to those in the experiments. Also, the main part of the contact occurred before 1ms and the
signal practically died out after 2ms. Fig. 8 presents a comparison of theoretical and experimental impact
shapes. The full line represents the force given by Eq. (23). The experimental load recorded in the validation of
Beam III (Section 3) and reprinted from Fig. 4(a) is shown with circle marker. The theoretical force is in fairly
good agreement with the experimental force in Fig. 8.

We used the same numerical parameters as in Section 3 because it was shown that these led to good
transient responses. The number of modes were set to nw ¼ 20 and nc ¼ nb ¼ 10. The time increment was
Dt ¼ 50� 10�6 s and we used N ¼ 219 simulation points, for a simulation time of approximately 26 s.
4.3. Results and discussion

Figs. 9–12 show results for cantilever beams with different damping pad configurations. Every case treated
is compared to the unpadded beam for which an analytical solution is available [25]. Each system was excited
at the free end of the beam and the responses were recorded at the same location.

Transient responses are shown in Fig. 9 for systems with different damping pad lengths, in Fig. 10 for
different viscoelastic layer thicknesses, in Fig. 11 for different constraining layer thicknesses, and in Fig. 12 for
different damping treatment locations. In each case, it can be seen that the transient response is composed of
two parts: The first part, which lasts for approximately 2ms, is the forced response of the system during the
impact; the second part is the free response of the system after the impact. In Figs. 9–12, an arrow indicates the
time at the end of the contact, so that the responses shown to the left of the arrows are the forced responses.
Remarkably, for a given force signal, the forced behavior is identical for all beams: the unpadded beam and all



ARTICLE IN PRESS

0 0.005 0.01 0.015 0.02 0.025

−4

−3

−2

−1

0

1
x 10−3

Time (s)

D
is

pl
ac

em
en

t (
m

)

Fig. 9. Transient response for different partial constrained viscoelastic layer damping lengths. xf ¼ x0 ¼ L, hv ¼ hc ¼ hb=2, x1 ¼ 0.

Lc ¼ L=5 ( ), Lc ¼ 2L=5 ( ), Lc ¼ 3L=5 ( ), Lc ¼ 4L=5 ( ). Bare beam ( ).

0 0.0005 0.001 0.0015 0.002
1

0.8

0.6

0.4

0.2

0

Time (s)

N
or

m
al

iz
ed

 fo
rc

e 
am

pl
itu

de

Fig. 8. Theoretical ( , Eq. (23)) and real ( , experimental case from Fig. 4(a)) impact shapes.

D. Granger, A. Ross / Journal of Sound and Vibration 321 (2009) 45–64 57
partially padded beams exhibit almost identical forced responses. It can be concluded that partial constrained
viscoelastic layer damping has little effect on the forced response at the impact point of the beam.

First, the influence of the pad length is analyzed. To do so, the viscoelastic layer thickness (hv), the
constraining beam thickness (hc) and the position (x1, see Fig. 1) were fixed. The lengths used were
Lc ¼ L=5; 2L=5; 3L=5; 4L=5. The case where Lc ¼ L is avoided because the impact must be applied directly on
the base beam and not on the damping treatment. Transient responses of the treated beams are compared to
the response of the bare beam (full black line). The results are shown in Fig. 9.

We observe that beams with longer treatments have smaller amplitudes than beams with shorter
treatments. For instance, the third column in Table 4 shows the relative difference on the amplitude of each
padded beam with respect to the bare beam at t ¼ 0:02 s. We clearly see that this difference increases
with the damping pad length Lc. In the second column of Table 4, root mean square values over the 25ms
are shown. Again, a similar pattern is observed: overall, root mean square values are higher for shorter
damping treatments.
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As mentioned above, the first part of Fig. 9 is the forced response where all beams are experiencing the same
displacement. After that short moment (2ms), the different beams are free to move with different behaviors.
The time of separation will be defined as the moment when the displacement of the treated beam is no longer
the same as the displacement of the bare beam. A high time of separation means that the partial constrained
viscoelastic layer damping is slowly effective, while a low time of separation implies a quick action. The times
of separation observed in Fig. 9 are presented in Table 4. It can be seen that longer damping treatments yield
lower times of separation. In particular, the times of separation for Lc ¼ 4L=5 (dashed black line) corresponds
approximately to the end of contact, while the times of separation for Lc ¼ L=5 (full gray line) and Lc ¼ 2L=5
(dashed gray line) occur much later than the end of the forced response. Based on both the time of separation
and the amplitude, it is clear that for x1 ¼ 0, a short partial constrained viscoelastic layer damping treatments
treatment has a relatively poor effect on the response of the beam.
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Table 4

Effect of partial constrained viscoelastic layer damping length over the amplitudes of displacement

Lc Root mean square amplitude (m) Relative difference Time of separation (ms)

over 25ms at t ¼ 0:02 s (%)

Bare beam 2:6� 10�3 – –

L=5 2:5� 10�3 5.6 19

2L=5 2:3� 10�3 13.0 12

3L=5 1:9� 10�3 29.2 6

4L=5 1:4� 10�3 46.3 2
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Fig. 10 shows the effect of different viscoelastic layer thicknesses, while the other properties were fixed
(hc ¼ hb=2, Lc ¼ x1 ¼ L=5). In these cases, the partial constrained viscoelastic layer damping treatments seem
to have a rather constant effect. After the forced response, the motion of the padded beams is very similar. The
root mean square amplitudes for each viscoelastic thickness are shown in Table 5. It turns out that the root
mean square values for the padded beams do not vary significantly: all damping treatments have a similar
effect on the beam. The times of separation for all configurations occur approximately at the same time
(t � 5ms).

For different constraining layer thicknesses (for x1 ¼ Lc ¼ 2L=5, hv ¼ hb=2), the results are shown in
Fig. 11. Again, the time of separation is around 5ms for all partial constrained viscoelastic layer damping
treatments. However, after separation, the amplitudes of displacement are slightly reduced for thicker
damping pads, as can be seen both in Fig. 11 and in the root mean square values (see Table 6).

Finally, the length of the damping treatment, the viscoelastic thickness and the constraining layer thickness
were all fixed and the effect of the patch position was studied. For the case where Lc ¼ 2L=5, there were three
possible values for x1: 0, L=5 and 2L=5. Again, it was not possible to have Lc ¼ 3L=5 because the impact load
would have occurred on the damping treatment. The results are plotted in Fig. 12. For the three cases, the time
of separation times and root mean square values are listed in Table 7. Both the amplitudes of displacement
and time of separation are lower for damping pads located farther from the clamped edge. However, for
positions near the free end, the energy of deformation of the base beam is very small as compared to a position
near the clamp, meaning that the shear deformation in the viscoelastic (g2), which is responsible for the
damping, should also be small. The fact that the amplitude of displacement is smaller when a damping
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Table 5

Root mean square values associated with Fig. 10

hv Root mean square (m)

Bare beam 2:6� 10�3

hb=2 2:2� 10�3

3hb=4 2:2� 10�3

hb 2:2� 10�3

3hb=2 2:1� 10�3

Table 6

Root mean square values associated with Fig. 11

hc Root mean square (m)

Bare beam 2:6� 10�3

hb=4 2:3� 10�3

hb=2 2:2� 10�3

3hb=4 2:1� 10�3

hb 2:0� 10�3

Table 7

Root mean square values associated with Fig. 12

x1 Root mean square (m) Time of separation (ms)

Bare beam 2:6� 10�3 –

0 2:3� 10�3 7

L=5 2:2� 10�3 5

2L=5 1:9� 10�3 2
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treatment is located far from the clamped edge is more likely to be caused by an added mass effect than by
damping itself.

4.4. Causality

Fig. 13 shows the very beginning of the transverse motions presented in Fig. 12. The initial displacement of
the beam with x1 ¼ Lc ¼ 2L=5 ( ) is not exactly zero as it should be (and as it is for the three other cases).
This is a noncausal initial displacement implying that the system is moving before the impact is applied. It
should be noted that the amplitude of the noncausal effect is small: less than 2% of the maximum
displacement. As discussed in Section 1, noncausality may occur if the viscoelastic material properties are
wrongly represented; which is not the case here because viscoelastic data were found by experiments using a
real material. The causality problem in Fig. 13 comes from the use of the discrete Fourier transform in the
solution.

The inverse discrete Fourier transform is a periodic function of period t. Thus, the time signal will be
repeated every t seconds implying that the value of the signal at the end of the period equals the value of the
signal at the beginning of the period. This is also true for to0. In our case, t ¼ Tmax ¼ NDt. The system
is submitted to an impact at t ¼ 0, so there is no displacement at this time. However, if the response has
not completely died out at the end of the simulation time (wðx; t ¼ TmaxÞa0), then the simulated response
wðx; t ¼ 0Þ is not zero and causality is not respected. Fig. 14 shows two responses simulated over Tmax seconds
for the same partial constrained viscoelastic layer damping, but located at two different positions. Fig. 14(a)
represents the case where hv ¼ hc ¼ hb=2, Lc ¼ 2L=5 and x1 ¼ 0. The amplitude of displacement completely
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dies out after approximately 2 s. Consequently, this signal respects causality (see circle markers in Fig. 13). In
Fig. 14(b), the damping treatment is located farther from the clamped edge, at x1 ¼ 2L=5. There are still
important oscillations amplitude (� 2� 10�4 m), even after 25 s of simulation. It is clear that this response will
create a noncausal behavior as depicted in Fig. 13 ( ).

By discrete Fourier transforming to the last 5 s of the signal presented in Fig. 14(b), we find out that the
main frequency component is 9.8Hz which corresponds to the first natural frequency of the padded beam.
Therefore, in this case, the noncausality of the response is due to the fact that the partial constrained
viscoelastic layer damping does not damp the first mode efficiently. In fact, the damping pad is relatively small
and is located far from the clamped edge where, for the first mode shape of a cantilever beam, there is very
little strain energy. As discussed earlier, this leads to a small value for the shear deformation of the viscoelastic
layer. This is a problem because the viscoelastic has to experience shear deformation to dissipate energy.
Without deformation, it acts more like a mass without dissipative properties. It should be pointed out
that the bare beam response is causal although there is no damping, because displacements were
obtained using a classical analytical solution instead of the Fourier transform method. The use of the
Fourier transform method on the bare beam would have lead to a noncausal response for the reasons
mentioned in the previous paragraph.
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The perfect way to get rid of the causality problem is to increase the time of simulation to give the system all
the time needed to be completely damped. However, this is time consuming and, above all, memory consuming.

5. Conclusion

The initial transient response of cantilever beams with partial constrained viscoelastic layer damping was
studied. First, the equations of motion of the system were developed using a Lagrangian approach. The
dissipative properties of the viscoelastic layer were taken into account using a Prony Series representation
expressed in the frequency domain. The equations were solved in the frequency domain (leading at the same
time to the natural frequencies). The responses were converted back in the time domain using inverse fast
Fourier transforms, resulting in the transverse transient response of the system due to a general impact force.
The transient responses were validated based on experiments. It was shown that the presented work is very
well suited to represent cantilever beams with many different partial constrained viscoelastic layer damping
configurations, in particular for thick viscoelastic layers.

Some numerical computations were conducted in order to observe the effects of the four geometric
parameters of the damping treatment (the length, Lc, the position, x1, the viscoelastic layer thickness, hv and the
constraining layer thickness, hc). Transient responses of the padded beams were compared to the response of
the unpadded beam. With these few numerical examples, it seems so far that among the four parameters tested
(Lc, hv, hc and x1), the patch length has the greatest influence on the initial transverse displacement of the
treated beam. The patch position also has a great influence on the initial response. However, the constraining
layer thickness and the viscoelastic layer thickness seem to have little influence on the initial response.

Nevertheless, a more thorough study has to be made to better understand the effects of each of these
parameters. Also, from the present research, it seems that added mass has a major effect on the initial transient
response (whereas damping is very important to reduce the ringing vibrations). It will be very important to
understand the influence of the added mass due to partial constrained viscoelastic layer damping on the transverse
displacement reduction as compared to the viscoelastic damping effect. This will be the goal of future work.
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Appendix A. Admissible functions
(i)
 For the transverse motion wðx; tÞ of the cantilever system, we use

W i ¼ coshðlixÞ � cosðlixÞ � si½sinhðlixÞ � sinðlixÞ�; i ¼ 1; . . . ; nw, (A.1)

where

si ¼
sinhðliLÞ � sinðliLÞ

coshðliLÞ þ cosðliLÞ
,

and l1L ¼ 1:875, l2L ¼ 4:694, liL ¼ ði � 0:5Þp; i ¼ 3; . . . ; nw:

(ii)
 For the base beam motion along the x-axis, we use the longitudinal mode shapes of a cantilever beam:

Ub;j ¼ sin
ð2j � 1Þpx

2L

� �
; j ¼ 1; . . . ; nb. (A.2)
(iii)
 Finally, the constraining layer is treated as a free–free beam in the longitudinal direction. So the
admissible functions are given by

Uc;k ¼ cos
ðk � 1Þpx

Lc

� �
; k ¼ 1; . . . ; nc. (A.3)
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endix B. Submatrices terms involved in energy expressions
App

Mb ¼ rbhbB

Z L

0

WTW dx, (B.1)

Mv ¼ rvhvB

Z x2

x1

WTW dx, (B.2)

Mc ¼ rchcB

Z x2

x1

WTW dx, (B.3)

Ka;1 ¼ EaBha

Z
La

UT
a;xUa;x dx, (B.4)

Ka;2 ¼ EaIa

Z
La

WT
xxWxx dx, (B.5)

K�v;1 ¼ g�
Z x2

x1

UT
c Uc dx, (B.6)

K�v;2 ¼ g�
Z x2

x1

UT
c Ub dx, (B.7)

K�v;3 ¼ g�
Z x2

x1

UT
bUb dx, (B.8)

K�v;4 ¼ dg�
Z x2

x1

UT
c Wx dx, (B.9)

K�v;5 ¼ dg�
Z x2

x1

UT
bWx dx, (B.10)

K�v;6 ¼ d2g�
Z x2

x1

WT
xWx dx, (B.11)

d ¼
2hv þ hc þ hb

2
, (B.12)

g� ¼
G�B

hv

. (B.13)
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