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Abstract

An energy-based approach for parametric nonlinear identification was investigated. The presented method uses an

energy balance on the oscillator governing equations for identification purposes, thus requiring the availability of the

position and velocity signals. Since it is rarely practical to measure every state variable in an experimental setting, we

describe an alternative procedure for estimating velocity from the measured displacement. The presented approach uses

cubic smoothing splines to avoid the noise amplification effect that occurs for numerical signal derivatives. Finally, we

investigate the identification of parameters from both numerical and experimental data for three nonlinear oscillators.

These studies demonstrate the effectiveness of the presented energy-balance approach for transient, periodic, and chaotic

response behavior.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of model parameters from measured data is a common challenge for experimentalists.
More specifically, the ability to match theoretical predictions with the observed behavior of a particular
system is often dependent upon an accurate approach for extracting the system’s physical parameters. Thus
there exist a growing body of literature on parametric identification methodologies for both linear and
nonlinear systems (e.g. see Refs. [1,2]). One interesting observation is that several methodologies have been
developed to overcome the limitations of a particular application. For example, a force balance can be applied
if the displacement, velocity, and acceleration signals are available [1]. However, this is usually not the case in
many experimental settings and the result of using the numerical signal derivatives is a magnification in
measurement noise. Another alternative is to directly measure acceleration and then use numerical integration
to generate velocity and displacement signals. While this approach provides a viable alternative for some
applications, acceleration measurements are contact measurements where an accelerometer is attached to the
physical system of interest. This can prove problematic in many systems since adding mass and measurement
cables can alter the dynamics of the original system.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In addition to the types of measurements that are available, other considerations, such as the type of
response behavior, can also limit the applicability of a parameter identification scheme. As an example, the
approach of Ref. [2] can be applied if the response behavior of a system can be classified as a steady-state
periodic response. For impulse and transient responses of weakly nonlinear oscillators, the results from
Refs. [3,4] are available. However, relatively fewer methods exist that can be applied to general types of
response behaviors (e.g. transient, steady-state, or chaotic responses).

Several recent works have investigated the complications of parameter identification from either a
chaotic excitation or chaotic response [5–8]. In particular, the work of Refs. [5–7] have extended the harmonic
balance method of Ref. [2] to extracted unstable periodic orbits for parametric nonlinear identification.
Others, such as Nichols and Virgin [9] and Pecora and Caroll [10] have focused on the use of chaotic
excitation.

This paper investigates an energy-balance approach for parametric nonlinear identification. The general
idea is to develop a parameter identification approach that can be applied to any type of continuous oscillator
response while simultaneously overcoming the inability to measure each state variable. We use cubic
smoothing splines on empirical data (i.e. experimental or numerical data) to demonstrate the reliability of the
presented approach on three nonlinear oscillators. Experimental and numerical results are first used to
investigate parameter identification on the transient response of a prototypical nonlinear system—the planar
pendulum. The nonlinearity of the system is then greatly increased by the addition of two magnets which
augment the potential energy wells to that of a bistable system. An approximate expression for the magnetic
restoring force, one that is based upon the work of Ref. [5], is assumed in the form of a series expansion.
Finally, the energy-balance identification approach is investigated for the chaotic response of a Duffing
oscillator.

The content from this paper is organized as follows. The next section describes the energy-balance approach
using the equations of a forced Duffing oscillator. This section also includes a brief discussion on the
implementation of cubic smoothing splines. The third section describes the experimental system that is
investigated in the fourth and fifth sections. Parameter identification studies start in the fourth section and
compare parametric identification results for a planar pendulum. Comparisons are made between parameter
fitting from an approximate analytical solution and the energy-balance approach. The energy-balance
nonlinear identification technique is then applied to numerical and experimental magnetic pendulum data
before investigating the reliability of the approach for the chaotic response of a forced Duffing oscillator.

2. Energy-balance identification

This section describes the salient features of the energy-balance approach for parameter identification. Since
both position and velocity states are required for implementation, the latter part of this section will describe
the use of smoothing splines to obtain velocity from the measured displacement. Although the energy-balance
approach is quite general and can be applied to many various systems, we have chosen to illustrate the
approach by applying it to a Duffing oscillator with viscous damping and harmonic excitation,

m €xþ c _xþ kxþ k3x3 ¼ F cosOt, (1)

where m is the mass, c is a viscous damping coefficient, k is a linear stiffness coefficient, and k3 is a nonlinear
stiffness coefficient. The harmonic excitation force is characterized by the force amplitude, F, and excitation
frequency, O. Multiple methods can be used to balance the energy in Eq. (1). For instance, Eq. (1) can be
multiplied by dx and integrated over the motion path, as discussed in Ref. [11], or Eq. (1) can be multiplied by
_x and integrated over time, Z t2

t1

ðm €xþ c _xþ kxþ k3x3Þ _xdt ¼

Z t2

t1

_xF cosOtdt, (2)

from a start time t1 to a final time of interest, denoted by t2. Using integration by parts for the inertia and
restoring force terms, the energy balance of Eq. (2) can be written as

T1!2 þU1!2 ¼W in �W d , (3)
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where T1!2 is the change in kinetic energy, U1!2 is the change in potential energy, W in is the added work of
the external force, and W d is the work due to energy dissipation over the time interval from t1 to t2. The
individual terms of Eq. (3) are given by

T1!2 ¼
1
2
mð _xðt2Þ

2
� _xðt1Þ

2
Þ, (4a)

U1!2 ¼
1
2kðxðt2Þ

2
� xðt1Þ

2
Þ þ 1

4k3ðxðt2Þ
4
� xðt1Þ

4
Þ, (4b)

W in ¼

Z t2

t1

_xF cosOtdt, (4c)

W d ¼

Z t2

t1

c _x2 dt. (4d)

Eqs. (3)–(4d) show that the position, velocity, and excitation force signals are required to make the energy-
balance quantitative and useful for parameter identification. Thus it becomes necessary to estimate the
velocity when it is not convenient to measure this state variable.
2.1. Data smoothing

It is rarely practical to measure each state variable in an experimental setting. For instance, it was only
convenient to measure the angular displacement data for pendulum experiments that follow. Thus it becomes
necessary to apply alternative techniques to estimate the unmeasured state variables. While the state variable
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Fig. 1. Comparison of cubic splines with cubic smoothing splines. Graphs (a) and (b) are phase portraits that compare the actual x and _x
to a cubic spline fit (graph (a)) and a cubic smoothing spline fit (graph (b)) once noise has been added. Graph (c) shows _x plotted against

the smoothing spline velocity estimate.
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estimation can be accomplished using elements of control theory, such as the Kalman filter [12], we describe an
alternative approach that is useful for signals with a moderate amount of noise.

Cubic splines are often applied to empirical data to estimate interim data points or points that lie between
two measurements. The basic idea is to fit the data with a piecewise polynomial,

xðtÞ ¼ bk0 þ bk1ðt� tkÞ þ bk2ðt� tkÞ
2
þ bk3ðt� tkÞ

3, (5)

where the polynomial coefficients bk0, bk1, bk2, and bk3 have subscripts that denote their validity between two
neighboring data points—the time interval from tk to tkþ1. Therefore, cubic splines provide a piecewise fit to
the data while simultaneously giving the desired functional representation for the velocity (i.e. after
differentiation of Eq. (5)). Furthermore, cubic splines invoke continuity in the angular displacement, velocity,
and acceleration at the intersection with neighboring time steps [13].

Smoothing splines, which are different than the typical spline fitting operation, provide a refinement to the
idea using a cubic polynomial to fit empirical data. The basic difference lies in the introduction of a smoothing
parameter which reduces noise amplification in the signal derivatives by balancing a fit between the measured
data and the smoothness of the second derivative [14]. In the results that follow, cubic smoothing splines have
been implemented to avoid noise magnification in estimated velocity, similar to the noise amplification that
occurs in a numerical signal derivative, that is caused by the typical spline operation.

Fig. 1 shows a comparison between using smoothing and regular cubic splines to fit a sinusoidal
displacement signal. Each of the graphs show the noise free signal, x ¼ sin t, combined with a random noise
signal, 0:02sðtÞ, where sðtÞ is random noise with a zero mean and normal distribution. Fig. 1a shows the phase
portrait when using regular cubic splines to estimate _x. A noticeable outcome is the magnification in the signal
noise from this approach. The phase portrait of Fig. 1b shows the estimate for _x is nearly identical to the
actual velocity when using cubic smoothing splines. This improved velocity estimate and filtering effect is
further confirmed by the actual and smoothing spline velocity estimate in the time series of Fig. 1c.

3. Experimental apparatus description

The apparatus described here is used throughout the next two sections to investigate the reliability of the
parameter identification approach. A schematic diagram of the experimental system is shown in Fig. 2.
Measurements of the pendulum angular oscillations were obtained by supplying a constant voltage to a
Novatechnik,1 model P2200, low-torque potentiometer and recording the time varying voltage drop provided
by the potentiometer internal resistor. The potentiometer was housed in a rigid fixture and connected to a
ferromagnetic, 75mm long, threaded rod that was inserted into a 19mm diameter stainless steel sphere. The
mass of the assembled pendulum sphere and rod was measured to be m ¼ 0:035 kg. The pendulum base fixture
was fabricated from aluminum and rigidly mounted onto a table top. A magnetic potential was created by
mounting two neodymium magnets, grade N38, in close proximity to the pendulum rod. A specific feature of
the mounting plate was that it was constructed to have pinned locating features. The purpose of the locating
features was to provide very repeatable positioning of the magnets which were removed for the parameter
identification investigations of Section 4 and replaced to obtain the results of Section 5.

4. Unforced pendulum oscillations

This section describes efforts undertaken to identify the pendulum model parameters. Results are compared
for two different nonlinear identification approaches. The first approach fits model parameters to the
empirical data using an approximate analytical solution obtained from the method of averaging. This
technique is then compared with the energy-balance technique for both relatively small and large amplitude
motions. A specific goal is to highlight the effectiveness of these methods for a common experimental case—
when only a position coordinate and not the velocity coordinate is measured. Selected results are shown for
two types of empirical data: (1) data generated from numerical simulation and (2) data obtained from the
experimental system in the absence of the magnets.
1Commercial equipment is identified for completeness and does not necessarily imply endorsement by the authors.
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4.1. Identification from averaged solution

The governing equation for the unforced oscillations of a planar pendulum with viscous damping is

mL2 €yþ c_yþmgL sin y ¼ 0, (6)

where y is the pendulum angular position, c is the damping force constant, g ¼ 9:81m=s2 is the gravitational
constant, and L is the pendulum effective length. Here, the term effective length is used in place of the actual
pendulum length to denote that the effective length is the distance between the pendulum pivot point and the
location of the center of mass. A more convenient form for this equation is

€yþ 2mo_yþ o2 sin y ¼ 0, (7)

where m ¼ c=ðmL2Þ is the damping coefficient and o ¼
ffiffiffiffiffiffiffiffiffi
g=L

p
is the pendulum natural frequency. The first step

for obtaining an approximate analytical solution to Eq. (7) requires an expansion of the sinusoidal term into a
Taylor series about the downward position, o2 sin y � o2ðy� 1

6
y3Þ ¼ o2yþ by3, where b ¼ �o2=6 and the

terms of the order Oðy5Þ have been truncated from the expansion. After substituting this approximation into
Eq. (7), the revised equation of motion can be written as

€yþ o2y ¼ �f ðy; _yÞ, (8)

where f ðy; _yÞ ¼ 2mo_yþ by3. Following Ref. [15], the method of averaging is applied by assuming a solution of
the form

yðtÞ ¼ a cosðotþ fÞ ¼ a cosc, (9)

where c ¼ otþ f. This will result in the following expressions for the slow variations of a and f

_a ¼
1

2po

Z 2p

0

sincf ða cosc;�ao sincÞdc ¼ �moa, (10a)

_f ¼
1

2poa

Z 2p

0

coscf ða cosc;�ao sincÞdc ¼
3a2b
8o

. (10b)

After substituting b ¼ �o2=6, the amplitude and phase relationships become

a ¼ a0e
�mot, (11a)

f ¼
a2
0

32z
ðe�2mot � 1Þ þ f0, (11b)
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where a0 and f0 are constants of integration. If the system is started from rest with an initial angular
displacement of W0, the resulting transient solution becomes

yðtÞ ¼ W0e�mot cos otþ
W20
32m
ðe�2mot � 1Þ

� �
, (12)

which is in agreement with the approximate analytical solution found using the method of multiple scales in
Ref. [16]. To solve for the unknown system parameters, the time series from Eq. (12) will be compared with
either numerical or experimental data. More specifically, an optimization algorithm is used to estimate the
pendulum parameters by fitting the analytical solution to empirical data while minimizing the error in the
following cost function:

ET ¼
XN

k¼1

ðymðtkÞ � yðtkÞÞ
2, (13)

where N is the total number of data samples and ymðtkÞ is the measured value at the kth point in time. The
algorithm uses a trust region approach to optimize based on the interior-reflective Newton method [17].
Results from this approach are further described during the comparisons of the next section.

4.2. Energy-based identification comparisons

An energy-based parameter identification scheme is formulated by writing an energy balance between any
two arbitrary points in time, t1 and t2, as follows:

T1!2 þU1!2 ¼ �W d , (14)

where T1!2 is the change in kinetic energy, U1!2 is the change in potential energy, and W d is the work due to
energy dissipation over the time interval from t1 to t2. The terms expressing the energy and work due to
dissipation are given by

T1!2 ¼
1
2
mL2ð_y2ðt2Þ � _y

2
ðt1ÞÞ, (15a)

U1!2 ¼ mL2o2ðcos yðt1Þ � cos yðt2ÞÞ, (15b)

W d ¼ mL2

Z t2

t1

2mo_y2ðtÞdt, (15c)

Eqs. (15a)–(15c) are then divided by mL2=2 and used to populate a matrix equation that describes the energy
relationships over any time intervalR t2

t1
_y2 dt cos yðt1Þ � cos yðt2ÞR t4

t3
_y2 dt cos yðt3Þ � cos yðt4Þ

..

. ..
.

R tN

tN�1

_y2 dt cos yðtN�1Þ � cos yðtN Þ

2
6666664

3
7777775

4mo

2o2

� �
¼

_y2ðt1Þ � _y
2
ðt2Þ

_y2ðt3Þ � _y
2
ðt4Þ

..

.

_y2ðtN�1Þ �
_y2ðtNÞ

2
666664

3
777775, (16)

where tN is the time at the Nth time step. This yields a linear relationship between the angular velocity,
displacement, and system parameters that can be solved in a least-squares sense [18]. For the interested reader,
the details for the integration shown in Eq. (15c) are provided in Appendix A.

Fig. 3a shows a comparison between the errors of the energy-based technique and the averaged
solution approach. Each method was applied to identify parameters from time series data that was
generated from numerical simulation of Eq. (7) for the parameters m ¼ 0:005 and o ¼ 11:8 rad=s. A zero
initial velocity was used for each simulation, but the initial angular position was incremented to
study the influence of the start angle on the identification process. Prior to the identification process,
normally distributed random noise with a zero mean and scaled maximum amplitude of p=180 was
added to the angular oscillation data. The error from the identification process was quantified with an
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error norm,

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

me � m
m

� �2

þ
oe � o

o

� �2 !vuut , (17)

where np ¼ 2 is the number of parameters in the identification process, me is the estimated damping ratio, and
oe is the estimated natural frequency. Some important conclusion from Fig. 3a are: (1) the error from each
method is relatively low for small start angles; (2) the energy-based method provides superior results for
relatively larger start angles. While the increase in the parameter identification error from the averaged
solution is attributed to the truncation of the higher order nonlinear terms, this also highlights a specific
advantage of the energy-balance approach (i.e. it is not necessary to match the solution approximation with
the oscillation amplitude).

The energy-balance identification approach was then applied to experimental data from 12 independent
free-fall oscillation tests. The tests were anti-alias filtered at 20Hz with a Stanford Research Systems, model
SR640, low-pass filter and recorded at a sample rate of 300Hz for 10 s time intervals. Using various different
start angles, the estimated parameters were averaged over the total number of records to minimize the
influence of experimental noise. Fig. 3b shows a comparison time series for the fitted parameters and the
measured experimental test. It is noted that the experimental and theoretical results are in good agreement for
the estimated pendulum parameters o ¼ 11:74 rad=s and m ¼ 0:0012.

5. Unforced magnetic pendulum characterization

This section implements the energy-based identification approach after adding two neodymium magnets to
the pendulum system. The result is a highly nonlinear system with magnetic restoration forces that create
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Table 1

Unforced magnetic pendulum parameters

Parameter m o ðrad=sÞ a1 ðN=radÞ a2 (N/rad2) a3 (N/rad3)

Reference 0.0509 11.74 �138.3 21.3 163.1

Estimated 0.0510 11.71 �137.3 21.3 162.9

Experiment 0.0287 11.74 �145.25 25.74 188.11
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multiple stable equilibria. The governing equation for the magnetic pendulum is

€yþ 2mo_yþ o2 sin yþ
X3
n¼1

ânðnþ 1Þyn
¼ 0 , (18)

where ân ¼ an=mL2 and each an coefficient describes the magnetic restoring force. The energy-balance
expressions between the times t1 and t2 are

T12 ¼
1
2
mL2ð_y2ðt2Þ � _y

2
ðt1ÞÞ, (19a)

U12 ¼ mL2 o2ðcos yðt1Þ � cos yðt2ÞÞ þ
X3
n¼1

ânðyðt2Þ
nþ1
� yðt1Þ

nþ1
Þ

" #
, (19b)

W d ¼ mL2

Z t2

t1

2mo_y2 dt. (19c)

Following the same procedure as in Section 4.2, Eqs. (19a)–(19c) are divided by mL2=2 and arranged into
matrix form, BC ¼ D, with rows that express the energy-balance relationships over a given time interval. The
parameters to be identified are contained within the vector C ¼ ½4mo 2o2 2â1 2â2 2â3�.

The validity of the above approach was first investigated with numerical simulation prior to experimental
implementation. Time series data were generated from numerical simulations of Eq. (18) for the reference
parameters listed in Table 1. Prior to the identification process, normally distributed random noise, scaled to
have a maximum amplitude of p=180, was added to the angular oscillation data. To quantify the accuracy of
the identified parameters, the following error norm was implemented

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

me � m
m

� �2

þ
oe � o

o

� �2
þ
X3
n¼1

ane � an

an

� �2
 !vuut , (20)

where the number of parameters was set to five, np ¼ 5, and ane represents the estimated value of an. Fig. 4
shows example phase portraits generated with numerical simulation for both the reference parameters and
estimated parameters using four sets of initial conditions. The outcome of the numerical studies, which
showed error norm results of Ep ¼ 0:0037 or less for numerous initial conditions, demonstrates the goodness
of fit in the identification algorithm.

5.1. Application to experimental data

The procedure for experimental trials consisted of orienting the pendulum to an initial start angle and then
releasing it from the rest position. During the experimental trials, it was observed that the final pendulum
equilibrium position was strongly dependent upon subtle changes in the initial conditions—a hallmark
of nonlinear systems. For illustration purposes, two sample results are shown in graphs (a) and (b) of
Fig. 5.

The energy-balance identification procedure was applied to 12 experimental trials. A list of the identified
model parameters from the experiments is given in Table 1. One parameter of particular interest is the
damping ratio, m ¼ 0:0287, which captures the rate dependent forces for the entire system. The damping ratio
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in the presence of the magnets is shown to greatly increase the energy dissipation of the system. Upon further
investigation, the authors recognized the additional rate dependent forces as current damping and/or the result
of Faraday’s Law (i.e. force is proportional to the time rate of change in the magnetic field) [19].

Graphs (c) and (d) of Fig. 5 provide the comparable numerical time series for the experimental time series of
graphs (a) and (b), respectively. These plots were generated by simulating Eq. (18) for the experimental
parameters of Table 1. Qualitatively speaking, these two examples yield comparable behavior near the middle
of the time series. However, two distinct differences are worthy of mention. The numerical results show a
shorter oscillation period for larger oscillation amplitudes than those of the experiment. This discrepancy
reverses for small amplitude oscillations with the experimental time series showing a shorter oscillation period.
The authors believe the aforementioned differences were due to neglecting the higher order nonlinear terms.
Thus our choice to simplify the math model, through the use of fewer magnetic-restoring force coefficients, has
resulted in coefficients that show quantitatively different results for the extreme cases—either relatively large
or small oscillation amplitudes. Furthermore, it is speculated that nonlinear damping effects could have also
contributed [20].

The identified system parameters were also used to construct a one-dimensional basin of attraction to
investigate the experimental observation of a strong sensitivity to initial conditions (see Fig. 6a). When
comparing the regions of initial conditions that share the same final equilibrium condition, it is intuitive to
also view the scaled potential energy well, defined by

U

mL2
¼ o2ð1� cos yÞ þ

X3
n¼1

âny
nþ1. (21)
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In particular, it is interesting to note that initial conditions originating close to an equilibrium position will
remain trapped within the same potential well. However, initial conditions that originate further away from a
stable equilibrium can overcome the center potential barrier and spill over into the neighboring energy well.

6. Forced response of a Duffing oscillator

While the previous sections have investigated unforced systems, the current section applies the energy-
balance approach to the forced Duffing oscillator of Eqs. (1)–(4d). In contrast to the energy-balance approach
of Ref. [11], which assumes a periodic oscillator response, we show the current parameter identification scheme
can be applied to generic types of response behavior of continuous nonlinear systems (e.g. motions that are
periodic, quasi-periodic, and chaotic).

To calculate the work from the harmonic excitation force, as given by Eq. (4c), an analytical expression for
the oscillator velocity is required. Combining the derivative of Eq. (5) and the smoothing spline coefficients
obtained from fitting the empirical data, the work into the system can be obtained from

W in ¼

Z t

tk

_xðt; tkÞF cosOtdt ¼ F
XN

k¼1

½ðgk cosOtþ Zk sinOtÞj
tkþ1
tk
�, (22)

where _xðt; tkÞ is used to describe the estimated velocity from time tk to time t and N time steps are assumed
between tk and the time of interest, t. The coefficients of Eq. (22) change for each time step and are given by

gk ¼
2

O2
ðbk2 þ 3bk3t� 3bk3tkÞ, (23a)

Zk ¼
1

O
3bk3t

2
k � 2ðbk2 þ 3bk3Þtk þ bk1 þ 2bk2 þ 3bk3 t2 �

2

O2

� �� �
. (23b)

Empirical data were obtained by simulating Eq. (1) for the reference parameters of Table 2. This resulted in a
chaotic response of the system, see Fig. 7a, which was used for parameter identification after random noise
was added. The noise was normally distributed random noise with a zero mean and a scaled maximum
amplitude of 1% of the maximum simulated displacement. Parameters were determined by arranging
Eqs. (4a)–(4d) into a matrix equation that was solved in a least-squares sense. The error from the parameter
identification process was quantified with the following error norm:

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

me �m

m

� �2
þ

ce � c

c

� �2
þ

ke � k

k

� �2

þ
k3e � k3

k3

� �2
 !vuut , (24)

where me is the estimated value of m, ce is the estimated value of c, ke is the estimated value of k, k3e is the
estimated value of k3, and the number of parameters was set to four, np ¼ 4. The estimated parameters, which
have been listed in Table 2, resulted in an error norm of Ep ¼ 0:009 thus demonstrating the reliability of the
presented energy-balance approach. Another consideration is which points to include in the energy balance.
For the presented results, we have chosen points spaced 10 forcing periods away to allow the oscillation
behavior enough time to morph away from the periodic motion.

Fig. 7 shows phase portraits generated from numerical simulations of the forced Duffing oscillator. Graph
(a) used the reference parameters and graph (b) the identified parameters listed in Table 2. Phase plane
trajectories are shown for 100 forcing periods that were taken from the steady-state regions of the time series.
Table 2

Forced Duffing oscillator

Parameter m (kg) c (Nm/s) k (N/m) k3 ðN=m3)

Reference 1 0.2 1 1

Estimated 1.012 0.200 1.013 0.995
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Fig. 7. Phase portraits generated from numerical simulations of the forced Duffing oscillator. Graph (a) used the reference parameters and

graph (b) the identified parameters listed in Table 2. Both graphs used F ¼ 27 and O ¼ 1:33.
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Fig. 8 shows the corresponding Poincaré sections for the reference and estimated parameters of Table 2. The
results shown in these graphs were simulated over 10,000 oscillation periods. The similarities in both the phase
portraits and Poincaré sections are shown to further illustrate the accuracy of the parameter identification
scheme.

7. Summary and conclusions

An energy-based approach for parametric nonlinear identification was investigated. Under the assumption
that it is rarely practical to measure every state variable in an experimental setting, the velocity state is
estimated by fitting the measured displacement data with cubic smoothing splines. Unlike using a signal
derivative or regular splines, which can cause noise amplification, smoothing splines are particularly useful
because they can mitigate the influence of measurement noise while also providing a polynomial expression for
the energy-balance integrations.

Experimental and numerical results were used to investigate parameter identification on the unforced
response of a planar pendulum and a magnetic pendulum. For these transient responses, the energy-balance
approach is shown to have a specific advantage. This was highlighted in the planar pendulum example which
showed the energy-balance technique alleviates the need to match the order of the approximate solution with
the oscillation amplitude. The final section investigates the reliability of the energy-balance approach for the
forced oscillations of a Duffing oscillator. Parameters are chosen to cause a chaotic response that is used for
parameter identification.

In summary, the combination of using an energy-balance energy with cubic smoothing splines was shown to
be an effective method for parametric nonlinear identification. Moreover, the presented approach
demonstrates the reliability of an energy-balance approach for a broad range of oscillator responses that
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Fig. 8. Poincaré sections generated from numerical simulations of the forced Duffing oscillator. Graph (a) used the reference parameters
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include transient, periodic, and chaotic behavior. A specific limitation for the presented work arises for
dynamical systems with non-smooth state variables (e.g. impact oscillators). For such systems, the use of
smoothing splines is perhaps inappropriate since any abrupt changes in the state variables will be smoothed.

A possible future extension of the presented work would be to fit the excitation force with splines. Thus the
harmonic excitation term, F cosOt, that appears in Eq. (4c) could then be replaced with a piecewise spline
polynomial. This would allow more complicated input waveforms, such as chaotic and multifrequency
excitations, to be written in the same form and used in the present parameter identification framework.
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Appendix A

When using cubic smoothing splines, the polynomial coefficients are obtained by fitting the empirical data
with a cubic polynomial. The polynomial coefficients and the derivative of Eq. (5) can then be used to estimate
the velocity,

_xðt; tkÞ � bk1 þ 2bk2ðt� tkÞ þ 3bk3ðt� tkÞ
2, (A.1)

for the time interval tkptptkþ1. Eq. (A.1) can then be inserted into the energy dissipation equation

W d ¼

Z t1þt

t1

c _xðt; tkÞ
2
¼ c

XN�1
k¼1

½ðdkt5 þ ekt4 þ f kt3 þ gkt2 þ hktÞj
tkþ1
tk
�, (A.2)
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to ascertain the influence of the viscous damping term. The coefficients in this expression are

dk ¼
9bk3

5
, (A.3a)

ek ¼ 3bk3ðbk2 � 3bk3tkÞ, (A.3b)

f k ¼ 2ðbk1bk3 þ
2
3
b2

k2 � 6bk2bk3tk þ 9b2
k3t

2
kÞ, (A.3c)

gk ¼ 2½bk1bk2 � ð2b2
k2 þ 3bk3bk1Þtk þ 9bk3bk2t2k � 9b2

k3t
3
k�, (A.3d)

hk ¼ 9b2
k3t

4
k � 12bk3bk2t

3
k þ ð6bk3bk1 þ 4b2

k2Þt
2
k � 4bk2bk1tk þ b2

k1. (A.3e)
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