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Abstract

A global control strategy of linear and nonlinear control methods is developed for application to the design of hydraulic
suspensions in ground vehicles. A nonlinear, three-dimensional passenger car model of 7-dof is used to investigate vehicle
ride capabilities with hydraulic actuators employed as active suspension elements. The design procedure starts with the
application of an optimal control method of multiple-structure constraints to the optimization of suspension performance
in the absence of system nonlinearities. Hence, the strong nonlinearity of hydraulic actuators is considered, and the optimal
linear solutions are implemented as reference values to be asymptotically tracked. Two contrasting nonlinear control
methods, called input—output linearization and sliding mode control, are used to achieve the asymptotic tracking problem
in the presence of Coulomb friction and model uncertainties. Digital simulation shows that the input—output controller is
effective as long as the suspension is frictionless and the system knowledge is perfect. Conversely, the robustness of the
sliding mode controller makes it capable of providing good tracking even in cases of model uncertainty. The whole design
procedure is demonstrated with numerical examples showing its significance. The procedure also allows for the
simultaneous design of optimal passive suspension elements to be mechanized in parallel with the hydraulic actuators in
order to increase suspension reliability.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Active suspensions in ground vehicles have been the focus of a great deal of attention in the last three
decades [1]. Their performance superiority over classical (passive) suspensions has been accepted as fact. This
superiority is not only limited to the vehicle ride quality [2—4] but is also extendable to the vehicle handling
capabilities [5]. A lot of effort has been made to commercialize fully active suspensions, but they are still
unusual in mass-production vehicles in low-price markets. This can be attributed to their high cost and
complexity of hardware and signal processing. The term “fully active” suspension means that a broadband
(force generator) actuator of greater than 8 Hz is mechanized into each suspension unit of the vehicle.
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The actuator itself could be either a pneumatic, hydraulic, electromechanical, or magnetic force generator,
depending on the vehicle application.

The main deficiencies of hydraulic actuators when applied to active vehicle suspensions lie in their strong
nonlinearity, Coulomb friction, and parameter uncertainty. These deficiencies, if not appropriately handled,
can deteriorate the performance of active vehicle suspensions. Most nonlinear control design methods depend
on having a reference system model to be tracked by the nonlinear controller. This is a difficult task to
accomplish in the majority of engineering applications, notwithstanding the additional complexities brought
about by the above mentioned deficiencies. In the field of active vehicle suspensions, a good resolution to this
problem has been presented in Ref. [6]. The authors suggested the use of a skyhook damping performance as a
means to have a reference (linearized) best-performance system model. They used a quarter-car model with
two-degrees of freedom in order to explore their concept and generated a robust nonlinear hydraulic force to
track the performance of the skyhook damping force, chosen on the basis of a linear simplified quarter-car
model. However, the authors did not present any optimization criteria for choosing the best skyhook damping
values in terms of the performance measures of vehicle suspensions. This concept is appropriate for simple
one-dimensional vehicle models, but it needs to be further developed before application to a realistic vehicle
model, which is partially the topic of this article. Dealing with uncertainties in active suspension applications
would require either robust control designs [7,8] or adaptive control techniques [9,10]. Switching at the sliding
surface of the control law represents a significant source of chattering; this degrades performance and may
cause instability due to the high-frequency resonance of the fluid column in hydraulic actuators. On the other
hand, many adaptive techniques require modifications to guarantee boundedness of the estimates, making it
difficult to guarantee transient tracking accuracy; asymptotic tracking may be lost even when external
disturbances do not exist [11]. Some other adaptive techniques do not necessitate justification of the condition
of bounded estimations [12]. This makes them more suitable for many practical applications.

A fuzzy logic system, described by Campos in Ref. [13], is used to estimate the nonlinear hydraulic strut
dynamics. The fuzzy logic system was adapted to estimate the unknown hydraulic dynamics and to provide
the backstepping loop with the desired servovalve positioning so that the scheme becomes adaptive,
guaranteeing bounded tracking errors and parameter estimates. Huang and Chao [14] presented a model-free
fuzzy control algorithm for the design of a controller for achieving vibration isolation, rather than resorting to
the classical model-based control design. Kadissi [15] relaxed one important assumption that has always been
considered in the literature; the chamber volume of the hydraulic actuator is usually assumed to be constant,
when in fact the volume varies with the piston motion. Thus, an additional nonlinear term was added to the
classic model, and the backstepping technique was used as a powerful nonlinear approach capable of
overwhelming all those facets. Renn and Wu [16] reported that the performance of neural network controller
is somewhat better than that obtained from the PID controller for active vehicle suspensions. Their study was
verified theoretically and experimentally.

In this paper, reference best-performance skyhook damping forces are obtained on a comprehensive
three-dimensional vehicle model by the application of a multiple control structure constraints method as a
sub-optimal regulator design method. Then, two contrasting nonlinear controllers, an input—output controller
and a sliding mode controller, are designed to track the optimized skyhook damping forces. The combination
of linear and nonlinear control design methods represents a hybrid approach to control the generated
hydraulic forces of fully active suspensions in ground vehicles.

2. Vehicle model

Accurate modeling of vehicle dynamics is not an easy task, especially when handling actions like turning
and braking. The vehicle in Fig. 1 is assumed to travel in a straight line at a constant travel speed without any
kind of braking and cornering actions. Thus, the resulting total number of degrees of freedom can be
reasonably confined to 7, three of them for heave, roll, and pitch motions of the sprung mass and four for the
vertical motion of the four tires. Dynamics of the four hydraulic force generators are considered as the only
source of nonlinearity in the resulting nonlinear 7-dof model.

It has been accepted in the vehicle research community that, in the 7-dof vehicle model, coupling between
the two rear wheels is of negligible effect and can be cancelled. This fact only holds true as long as the purpose
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Fig. 1. Schematics of a three-dimensional vehicle model.

of the study is to investigate vehicle ride quality against road roughness undulation, e.g., random vehicle
vibrations due to stochastic road inputs, which are considered in this study. Moreover, vehicle handling
actions like braking and cornering are out of scope of this study. The nonlinear 7-dof model that is
implemented in this study only focuses on hydraulic actuator strong nonlinearities, coulomb friction, and
parameter uncertainty. Other important nonlinearities due to suspension kinematics and geometry, pneumatic
tires and vehicle structure have all been ignored. In fact, considering all those sources of nonlinearities would
prevent us from being able to understand the performance potentials and physical insights of hydraulic
actuators.

In the simplified nonlinear 7-dof model that is considered here, no explicit description will be given to
variables related to the dynamics of ground reaction forces, the motion of the car mass center, etc. This is
because, with the assumptions that we made above, the static and dynamic parts of these variables due to
gravitational forces, braking, cornering, sprung mass load transfer have been all neglected. Thus, they do not
contribute to the model of the vibratory motion of the vehicle. Only small deviations of some of these
variables from the equilibrium state due to road undulation are considered. For example, the normal tire
forces are only considered as functions of their deflections and the rate of deflections due to stochastic road
inputs. The other tire forces are all zeros as long as we assume that no cornering and braking actions take
place while the vehicle is heading in a straight line with a constant speed. The kinematic motion of the car’s
center of mass is cancelled under the same sort of assumptions. In other words, the sprung mass is regarded as
a symmetric rigid body having its roll axis coincide with its longitudinal axis of symmetry. Readers who are
interested in a full description of these variables in cases of combined braking and cornering actions should
refer to ElBeheiry et al. [5].

Under the assumptions made above, Fig. 1 shows the XYZ-axis system that is attached to the vehicle center
of gravity where the forward travel speed is u,, the heave motion is Z, the heave rate is w, the pitch angle is 7,
the pitch rate is ¢, the roll angle is ¢, and the roll rate is p. m; is the sprung mass, m,,;, i = 1,...,4, are masses of
the tires, I, and I. are the vehicle polar moment of inertia about the longitudinal and vertical axes,
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respectively. /,, is the wheel base, /;is the distance from the front axle to the vehicle c.0.g., /. is the distance from
the rear axle to the vehicle c.o.g., and / = /+/, is the distance between the front and rear axles. c¢; and Kj;
i=1,....4, are the passive suspension damping and stiffness, respectively. ¢, and k,;, i = 1,...,4, are the tire
damping and stiffness coefficients, respectively. Z,;, i = 1,...,4, are the stochastic road inputs, Z,,;, i = 1,...,4,
are the wheel displacements, Z,;, i = 1,...,4, are the sprung mass displacements at the suspension connections,
Zg, i=1,...,4, are the suspension deflections, Z,;, i = 1,...,4, are the tire deflections, and a,,, i = 1,...,4, are
the wheel accelerations. Note here that, according to the assumptions of the nonlinear 7-dof, Z # and ¢

represent the most important degrees of freedom of the sprung mass.

The tire-suspension assembly is schematically shown at the vehicle’s four corners in Fig. 1. The tire forces
are all defined in the tire local axis system. The normal (vertical) tire forces are Fy;, i =1,...,4,. F;, i=1,...,4,
are suspension-generated forces applied to both the sprung and the unsprung masses. Fy, i=1,....4, are

suspension frictional forces, and U;, i = 1,...,4, are generated hydraulic actuator forces.
The model’s equations of motion are
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where the tire forces due to their deflections and rate of deflections are given by
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and the suspension forces due to their deflections and rate of deflections are given by
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In the last equations, the tire and suspension deflections can be calculated by
Z[i == Zwi - Zri; ZSi = Zbi - Zwi, = 19 25 e :4)

or in matrix form:
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A double-acting double-rod hydraulic actuator with symmetric characteristics of both chambers (Fig. 2) is

used to generate the active suspension force.
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Fig. 2. A double-acting double-rod hydraulic actuator.

The following equations for the actuator load pressure at the vehicle’s four corners were used [17]:

Py = —d Py — dryZ + dsui\/ Ps — sgn(u) Py, i=1,2,....4, (12)

where the constants d;, d,, and d5 are parameters defined as follows:

dy =B/ V)Cim, da=@P./V )y, d3=(4p./V)Caaa\/1/p. (13)

Py is the supply pressure of the hydraulic actuator, f, is the effective bulk modulus, p is the working fluid
density, V, is the total volume of actuator cylinder, a, is the piston area, and C, and C, are parameters to be
chosen. If u{¢) is the input signal to the servovalve and U, (¢) is the ith resulting piston force acting on both the
sprung and the unsprung masses, it follows that

Ul-:apP/i, i=1,2,...,4, (14)

In this article, we assume that we have direct control on the input signal to the servovalve, u; (), with the
dynamics of the servovalve itself being neglected.

3. Suboptimal skyhook damping forces

In this section, we demonstrate the application of a multiple control structure constraint method to obtain
optimum skyhook damping forces to be tracked by the nonlinear controllers. The LQG designs have been
proven theoretically and experimentally effective at justifying most of the physical insights of all types of active
suspensions. However, they cannot be regarded as the only effective way for designing active suspensions as
we do not know what other approaches, such as nonlinear programming techniques, might also be applied.
Further investigation of this issue in the future would be of great value.

The nonlinear 7-dof model is linearized by neglecting the hydraulic actuator dynamics, including the
frictional forces, and by assuming that the active suspension forces are ideally generated. Furthermore, in this
linear model, the car is assumed to travel in a constant heading and speed.

A state vector X(¢) of fourteen state variables is considered. It includes seven absolute displacements and
seven absolute velocities of the car motion coordinates. The system is described as follows:

X(t) = AX(?) + Bu(?) + Dw(?), (15)

X (1) = CX(2), (16)

where A, B, C and D are constant matrices of appropriate dimensions. X(7) is the (n x 1) state vector, X.(?) is
the (n. x 1) vector of controlled outputs, u(?) is the (n, x 1) control vector, and w(¢) is the (n,, x 1) disturbance
vector of road velocity inputs. In addition, w(¢) is regarded as a vector of Gaussian white noise velocity inputs
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imparted at the vehicle tires. For more details on how these road inputs are related to the road roughness and
the vehicle heading speed, the reader is referred to Ref. [4].

In a linear quadratic Gaussian control design, the constrained regulator problem solution results in the
feedback law [2]:

u(?) = KX,,(1), (17)

where K is the (n, x n,,) constant feedback matrix and X,,,(¢) is the (n,, x 1) vector of available measurements.
The vector of measurable states X,,,(¢) is a linear, time-invariant combination of the state vector X(¢). Thus, let

Xm = MX’ (18)

where M is the (n,, x n) measurement matrix.
The matrix K is determined to be the one that minimizes the quadratic criterion

T R; R
/ (XT uTy 3 {Xc]dz
0 u

R! R,
where R; is an (n, x n,) positive definite weighting matrix on the control input and R, is an (n. X n.) positive
semidefinite weighting matrix on the controlled outputs. Rj is an (n. x n,) weighting matrix that weighs the
dynamic coupling between the input control and the controlled outputs. 7" is the sampling length, and E[.]
denotes expected value. The cost function of Eq. (19) is a weighted sum of variances of the input control, the
controlled outputs and their dynamic coupling.

Eqgs. (17) and (18) imply that u(?) is a control vector that has a single structure constraint. A multiple control
structure constraint problem was originally presented by Kosut [17]. It states that other constraints, rather
than the ones defined by Eqgs. (17) and (18), are important. Those constraints are: (i) the measurable states that
are desirable to use for each control force and (ii) the form or structure that the controller should have.
A definition of the problem is stated as follows: Referring to the state variable X(¢) of Eq. (15), if each control
force u(t), i= =1,2,...,n,, is constrained to be a linear, time-invariant combination of different sets of
measurable states of X(7), then u(?) is referred to as a control vector that has a multiple structure constraints.

The mathematical realization of this definition can be achieved by defining the (#,,; x 1) vectors X,,.;, n,,,,<n,,
fori= =1,2,...,n,, as a set of vectors whose elements are specified sets of physically measurable states of
X(#). That is,

1
J = Jim —E , (19)

X =MX, i=12,...,n, (20)

where the (#,,; x n) matrices M; will be called the ““‘multiple measurement matrices”. In this manner, u/¢) is a
linear combination of the elements of X,,;. That is,

U=k Xy i=1,2,...,1, (21)

where k; is the ith (n,,; x 1) vector whose elements are the design parameters for control. In other words, the
elements of «; are the feedback gains of the ith control law u{f). If Egs. (20) and (21) are combined, one gets

u(7) = KX(1), (22)
where the ith row 4; of the (n, x n) constant feedback matrix K is given by
=Kk M, i=1,2,..,m, (23)

The last two equations define the multiple control structure constraint on u(f) or on K. It is worth noting
that, if n,,; =n, and M; =M, for all i=1,2,...,n,, then the multiple constraints reduce to the single
constraint problem. In other words, the multiple control structure constraint is the generalized version of the
single control structure constraint.

To this end, it is more convenient to rewrite Eq. (15) as follows:

ny
X =AX+ > bu;+ Dw, (24)
i=1

where b; is the ith (n x [) column vector of B that corresponds to the ith control force uz).
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The statement of the (multiple control structure constraint) sub-optimal regulator problem is to find u(7)
that minimizes the cost function in Eq. (19) subjected to the system dynamics in Egs. (16) and (24) and the
multiple control structure constraint defined by Eqs. (20)—(23). Kosut [18] considered the deterministic version
of this problem; i.e., the last term in Eq. (24) is ignored and the cost function is considered to be,
(%) fgo (X"R,X +u"R;u)ds. This treatment is not appropriate for the present problem because our system is
stochastically excited by the road surface undulation. Here, we consider the stochastic version of the problem
with a generalized cost function as in Eq. (19). Let us define

ny, ny,
A=A+ bM;=A+> bil, (25)
i=1 i=1
to be the closed loop matrix. Then, the necessary conditions for the existence of a sub-optimal solution are
(proof is in Ref. [3]):

% = 2Ryik] MiL,M[ + 2/ L.L,M] + 2R},CL,M = 0, (26)

Kl = — (é) b L L,M! 4+ RILCL,M!M,L,MT]"!, (27)

di=— <R11> [/ L.L,M! + RL.CL,MNM,L,M]~'M,, (28)

AL, +L,A +DWDT =0, (29)

AL+ LA + Z MTx;:RT.C + Z CT Ry ™M, + Z M7 RyxTM; + CTR,C = 0, (30)

i=1 i=1 i=1

and the optimal cost function is calculated by

. (D

i=1 i=1 i=1

ny, ny ny
J* = tr[L.DWD'] = tr [ (Z M :RYC + Y " C Ry M + Y - M iRy M + CTR2C> L,

where tr denotes a matrix trace, which can be considered the algebraic sum of the elements on the diagonal of
the matrix LLDWD?. Ry; is the ith weighting element in the diagonal weighting matrix R, that corresponds to
the ith control law, and Rj; is the ith column in the weighting matrix R; that corresponds to the ith control
law. A generalized algorithm for solving the problem is summarized in Ref. [2].

4. Global control strategy

In order for each hydraulic actuator to provide exact and instant control forces, it must account for
frictional forces. Thus, we need to know the friction forces even in cases of system ‘“‘lock-up”, i.e., when the
piston velocity is zero and the friction force is greater than the isolation force.

The approximated friction forces for each actuator would be accepted in the following simple form:

Ffl = FO[ Sgn(zbi - Zwi)a l = 1929 e 7nua (32)

where F,;, i=1,...,n, is the ith amplitude of the actuator frictional force vector F,. The overall desired
hydraulic actuator forces are considered as follows:

Uides = Uiref + Ffb l = 1325 s ,f’lu, (33)

where U;,, is the ith desired actuator force, and, U, , is the ith reference actuator force to be tracked. In
Ref. [6], it has been suggested to use the “skyhook’ damping of sprung mass as a reference actuator force in
situations when superior ride quality is desired. Our approach for finding an appropriate reference actuator
force benefits from the multiple control structure constraint method of the preceding section in order to



478 E.M. ElBeheiry | Journal of Sound and Vibration 321 (2009) 471-491

optimize the skyhook damping forces for each actuator. The last section’s procedure is implemented, and the
measurement matrices are chosen such that the resulting, optimized suspension forces will be

Ui = GiZg+ GuZpi+ G3iZyi, i=1,2,..,n, (34)

where G,,,G»;, and Gj;, i = 1,...,n,, are constant feedback gains representing the elements of the (7,,; x 1)
optimized gain vector k;, i = 1,...,n,. Strictly speaking, the elements of k; are the constant feedback gains of
the ith control (force) law u,?).

Without loss of generality, the ideal control forces in Eq. (34) can be rewritten as follows:

Ui = G Zy+ Gy Zg+ GuZy, i=12,...,n, (35)

where Gy = Goi + G is performed for each actuator force. It is obvious in Eq. (35) that the first and the
second terms on the right-hand side of the equation can be realized by the use of passive means, e.g., a passive
spring and dashpot. This means that a part of each control force can be realized by passive isolation elements,
and the remaining part, i.e., the skyhook damping forces, is the active (desired) actuator force. In this manner,
the reference skyhook actuating forces are

Ui. = GuZi, (36)

Eq. (36) suggests the use of sub-optimal, collocated skyhook damping forces derived by the structured LQG
of Section 3 and the above global control strategy. These forces, if not optimal, might lead to a difficult
situation where we have to assume values for these forces, which justify the ride quality measures, the
suspension travel and the magnitude of generated skyhook damping forces. If the LQG designs are not to be
used, the designer should look for substitutes that provide systematic resolution to the inevitable conflict
between performance measures in vehicle suspension designs.

ElBeheiry and Karnopp [2] investigated and compared the performance potentials of various types of
collocated and non-collocated active suspension forces. They proved that only collocated forces have a
significant impact on the performance potentials by using limited-state LQG design techniques. This proof
motivated the collocated skyhook control strategy in this work.

5. Input—output nonlinear controller design

First, let us define a state variable vector of twenty state variables as follows:
X=(ZyZ2Z3Z4wZn Zio Zis Zus Zit Zip Zvs Zis Zoy Zoz Zo3 Zowa Piy P Pi3 Piy). (37

Differentiating the last equation and substituting from Egs. (1)—(12), one can formulate the nonlinear system
in the following mathematical form [19]:

X(n) = f(x(1)) + Z 9i(x()ui(1) + d1 Fy (1) + daw,(7) (38)
i=1

with controlled outputs defined as follows:
y1(x(2)) = h(x(2))

¥(1) = : : (39)
P, (X(0) = i (X(0))

where x(?) is n-dimensional plant state vector, u;, i = 1,...,n,, are n, scalar control inputs, y{¢), i = 1,...,n, are
n, scalar plant outputs, f(x),g,(x),...,g,,(x), are nonlinear smooth vector fields, and /A(x),..., %, (x), are
smooth functions. d; and d, are distribution vectors that mathematically locate the suspension frictional forces
and the road velocity inputs in their correct positions in the state-space representation, respectively. F,is a
vector of friction forces, and w,(¢) is a vector of road velocity inputs. A smooth function refers to a function
that is infinitely differentiable.
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For our system, we consider the controlled outputs to be the piston (active) forces exerted by the four
hydraulic actuators; that is

Vi) =a,Pi()+ Fp(), i=12,...,n, (40)

The idea of the input—output linearization method is based on rendering the output dynamics in the form
O] 0i(@)
W2 (1) va(2)

= . or YOt =v@), tel, (41)
yilr;y)(l) on, (1)

where I' is an open time interval containing the point of analysis 0, r=r; +rp +------ + 1y, is the total

relative degree of the system, and r; is the ith relative degree of the ith controlled output. The relative degree of
an output is the number of its differentiations required in order to make the control input appear in the output
[19]. Therefore, the statement of the multi-input multi-output linearization problem is to find the constants

Flyeoun.. , T, and the static or regular state feedback control law in the form of an inversion-based control law:
u(t) = D~ (x())(v(1) — E(x(1))), (42)
where
L hi(x(1)) L Ly~ (x@), ... s Lgn, L~ i (x(0))
L7 hy(x(2)) Ly L hy(x (@), ... Ly, L~ hy(x(0))
E(x(1) = : . D(x(1) = . : (43)
Ly by (X(1)) LaL?  (x(@),...... Lgn L™ By (x()

Note that, in the last equation the matrix, D(x(#)) must be invertible at x = x,. LA = Vh.f is called the Lie
Derivative of h with respect to f, or, the directional derivative of h along the direction of the vector field f, while
L,Lh = V(Lh)g. It is worth noting that the control law of Eq. (42) is only applicable to the case of square
nonlinear system in which the number of outputs equals the number inputs.

The inversion-based control law (42) is not directly applicable to the nonlinear model (38). This is attributed
to the existence of the last two terms on the right-hand side of Eq. (42). One term, d,Fy is due to the frictional
forces, while the other term, d,w,(¢), is due to the road velocity inputs. As a matter of fact, it is impossible to
separate the frictional force from the nonfrictional forces in hydraulic actuators. One idea is to include the
frictional forces in the controlled outputs. This assumes a perfect knowledge of the friction magnitudes and
their direction signs. In such a case, the actuator would be capable of ecither cancelling these forces or
compensating for them. This would essentially reduce Eq. (33) to

Ui.= U, = GiZ. (44)
To this end, the inversion-based control law is still not applicable to our model because of the disturbance

term, d,w,(¢), which contains the road velocity input. To circumvent such a problem, we exploit the following
general result as presented in Ref. [20]:

Ides

For a nonlinear system in the form of Eq. (38) and (39) where the term d,F,vanishes, there exists a feedback
of the form of Eq. (42) that renders the output, y(¢), independent of the disturbance, w,(¢), if and only if,

LyLih(t) =0 forall0<k=ri, 0<izn,. (45)

By inspection, it can be easily shown that our model dynamics satisfy this condition. Hence, the inversion-
based control law can be calculated by applying the above design procedure

vi(t) + ad | P + adeZSi

ui(t) = .
@ apdz\/ Py — Pjisgn(u;)

i=1,2,... 1. (46)



480 E.M. ElBeheiry | Journal of Sound and Vibration 321 (2009) 471-491

The zero dynamics remain to be investigated. Since the order of the system is 20 and the total relative
degree is 4, we define a 16-dimensional autonomous subsystem called zero dynamics. This system
determines whether the control laws (46) are capable of locally stabilizing the closed loop dynamics
or not. Actually, instead of checking the internal stability of the system by using its normal forms [21],
one can follow a simpler method that depends on the special form of our system. The system is in its
controllability canonical form, meaning that, if we can get the exogenous part of the input control,
v(1), to stabilize the (controlled outputs) nonlinear part of the system, it follows that the whole system will
be stable.

If each component of the output y(f) asymptotically tracks a scalar reference input, y;(¢), then the
exogenous part of the input control law, v(¢), can be chosen as follows:

vy =) = kil = —knd" —koei, i=1,...,n, (47)
where
ei(t) = y(1) = y (), (48)
gives
) ke +kne) + kper =0, i=1,...,n,. (49)

The ability of the system to track desired outputs and even its own stability will be controlled by the
appropriate selection of the constants kj,;_1), ...k, i = 1,...,n,. Following the asymptotic tracking procedure
(47), the exogenous control input, v(¢), can be designed. Hence, by differentiating Eq. (40), with the friction
term temporarily neglected, one obtains the derivatives of the controlled outputs to be in the following
linearized form:

R T . .
y[ = ;(GZiZhi - KOi(a[)Pli - GQiZ/7i))a 1= 1727 ... :ny~ (50)
P

6. Sliding mode controller design

The statement of the sliding control problem is to get the state x(¢) to track a specific time-varying
desired state x(7) = (xz.x/ ", ... oo X" in the presence of model uncertainties on the plant and control
gain functions f(x(¢)) and g(x(7)), respectively. If a MIMO system has a vector relative degree
1 P ,¥n,], then the statement of the MIMO sliding mode control problem is to find an n, sliding

surfaces [20]:
sit) = "V kg el 4 +knel" + kiei + ki [ erdt =0, (D)

such that a control input vector u fulfills sliding conditions of the form [19]:

1d
EES%(1)< = &ilsi@],  &>0, (52)
where §;,i=1,...... .1y, are positive numbers. A control law can be designed for achieving the sliding surfaces
by first solving for u from the following condition:
$51(1)
$(7) = : = v(?). (53)
8, (1)

By letting
vi(t) = —kyi sgn(si()), (54)
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where k,; is a positive number greater than the positive number ¢&;, the sliding conditions are fulfilled. The
control law can be written as [19]:

u(t) = D' (x())(= Y V(1) — E(x(1)) — K, sgn(s(1))). (55)
Under some kinds of uncertainties, it is easy to show that by appropriate selection of the values k,,
i=1,...,n,, the sliding conditions can be satisfied.
Taking into consideration that the relative degree for each controlled output is one, and according to
Eq. (50), we choose the sliding surfaces for the controllers such that:

S; = apP;,- — Ui(i<».v’ = 1,2, R (TR (56)

The sliding manifold can be made attractive by choosing control laws to satisfy condition (52). However, to
ensure that the controlled output tracks the desired force exponentially, we set:

§i = (ayPy — Uyy,) = —kn(ayP; — Uy,), i=1,...,m. (57)
Following the above procedure, the control inputs can be calculated as follows:
y Uy +kaU, + Clp(C?l — ki) Py + apdAZZ.Si — ki sgn(s;)
i = x >
a,dy~/ Py — Pjisgn(u;)

where dl,c}z, and (23 are the model estimates of d;,d», and ds, respectively. It is assumed here that the
uncertainties are additive and that they are upper-bounded such that [22]:

dj=d;+Ad; and |Ad;|<AD;, j=1,2,3. (59)

The robustness parameters, k,;, i = 1,2,....,n,, can satisfy the attraction condition in Eq. (54) if the following
conditions holds true:

i=1,2,... n. (58)

kyj>AD; +AD,+ADs;, i=12,...,n,. (60)

In practice, the induced chatter due to the use of sgn(s) in the control laws (58) is undesirable based on the
possibility of exciting unmodelled high frequency dynamics. To deal with such a problem, we use a saturation
function sat(s/w) [21] such that:

sgn(s;)|s;| >,

sat(s;/w;) = { i=1,...m, (61)

(si/@i)lsil <wi,
where w is the boundary layer thickness and may be used to achieve the robustness. The boundary layer
thickness w, the control constants k;;, i = 1,...,n, and the robustness parameters can be chosen to satisfy [22]:

wi?(kvi/kil)9 i: 19"'9 nu- (62)

However, by judiciously selecting the robustness parameters and the boundary layer thickness, desired
tracking performance can be guaranteed, while eliminating or substantially reducing chatter.

7. Results and discussions

It is worth noting that all computations for this studied were performed on a Matlab/simulink-based
program VEHDYNS developed by the author for the dynamic analysis and suspension design of ground
vehicles. The numerical example begins with the application of the multiple control structure constraint
method to the linearized system model of Egs. (15)—(18) as described in Section 4. The aim is to obtain both
the optimal skyhook damping forces and the optimal passive suspension elements. The optimal skyhook
damping forces are to be tracked by the hydraulic actuators, and the optimal passive suspension elements are
to be mechanized in parallel with the hydraulic actuators in order to increase the system reliability. The
numerical values of the vehicle model and the actuator parameters are shown in Tables 1 and 2, respectively.

The multiple control structure constraints method starts with the selection of the weighting matrices in the
quadratic performance index (19). Since we have four control inputs, seven controlled outputs, which are the
displacements of sprung and unsprung masses, and no passive elements, the weighting matrices are chosen as
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Table 1
Basic car model parameter values

Parameter Value Parameter Value
my 1460 kg ko,k g To be designed
I, 460 kgm? kgs.keya -
I, 2460 kgm? Cy1,C52 -
M1,y 40 kg Cs3,Cs4 -
3,104 35.5 kg k,l,k,z,kt3,k,4 175500 N/m
1, 1.5m Iy 1.0m
I 1.8m
Table 2
Hydraulic actuator parameter values
% (') P (Pa) d > (NJm) ds (N kg )
3.35x 107 10342500 1 4.528746 % 10° 1.545 % 10°
follows:
5x107® 0 0 0
0 5x107% 0 0
R, = * g ,
0 0 5x 107 0
0 0 0 5% 1078
(40 0 0 0 0 0 07
0 40 0 O O O O
0O 0 40 0 O 0 O
R,=|0 0 0 30 0 0 O],
0O 0 0O 0 30 0 O
O 0 o O o0 30 o0
(0 0 0 0 0 0 30
R; =[0]. (63)

In order to get solutions in the form of Eq. (33), the following measurement matrices are designed:
1 4 /2 -1 0 000 0 0 0O0O0O
M;=(0 0 O 0o 00 o011 I ,/J2 00 0 0],
0 0 O 0O 00000 O 1T 0O0O

I, =1,J2 0 =1 00 0 0 0 00 00
My=[0 0 0 0 0 00 1 I —,/200 0 0],
000 0 0 0 0000 0 010 0]

1 —1, 1,2 0 0 -1 0 0 0 000 0]
Mi=|{0 0 0 00 0 01 —, I,/200 0 0,
0 0 0 00 0 00 0 0 00 1 0]
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1 -, -/2 0 0 0 -1 0 O 0 0 0 00
My=(0 O 0 0oo0o0 o0 1 - —-1,/2 0 0 0 0. (64)
0 0 0 000 O 0 O 0 0 0 01

Any of the unconstrained optimization algorithms in the Matlab/Optimization toolbox can be implemented
for solving the suboptimal LQG problem. This requires a consecutive solution of the two Lyapunov matrix
Eqgs. (29) and (30) in each iteration in order to minimize the performance index (31). However, there is no
guarantee that the attainable solutions are stable. Many iterations might be required to adjust the parameters
of the weighting matrices before the designer can get a solution that is stable and satisfactory. Theoretically,
the problem has a very large number of solutions, only a few of which fulfill all of the designer’s desires.
According to Eq. (34), the following solution is one that was found to be effective at resolving the inevitable
conflict among the many performance measures of suspension system design:

U, =26313Z + 38297, — 97371,
U, =26313Z + 3829740 — 97370,
Uz = 24157Z + 3293753 — 93073,

Uy = 24157Z4 + 329323 — 930Z,,4. (65)

Following the design procedure of Egs. (35) and (36), the sub-optimal passive spring and dashpot constants
at the front and rear suspensions can be calculated as follows:

ks] = ksz = 26313 N/m,
Cgl = Cp = 994 Ns/m,
ky = kg = 24157 N/m,

¢s3 = ¢ = 930 N's/m, (66)
and the desired skyhook damping forces will be
Ui, = 2835Zp1,

Us,. = 28357,

Us,. = 250173,

d

U, = 2501Z. (67)

According to the design procedure outlined in Section 5, it is obvious that the input—output controller is
capable of stabilizing the system for any positive values of the tracking coefficients k,;, i =1,2,...,n, of
Eq. (49). In other words, since the ith relative degree is only one, Eq. (49) simplifies to k,e; = 0,i=1,2,...,n,
Therefore, only the tracking coefficients k,;, i = 1,2,...,n, will influence the system’s tracking ability as well as
its own stability. These coefficients were assigned the following values: k,; = k,» = 275 and k.3 = k,4 = 375.

For a vehicle heading at a constant speed of 50 km/h and subjected to a harmonic road velocity input of
2cm amplitude, Fig. 3 shows that the input—output controller is capable of tracking the desired damping
forces in absence of the coulomb friction forces and the model uncertainties.

Instead of using the simplified friction model that was introduced in Eq. (32), we used a more realistic and
easy-to-implement “‘stick-slip” friction model as presented in Ref. [23]. Such a model not only allows the
computation of the frictional forces during the sticking and slipping motions, but it also considers the problem
of integration algorithm stability associated with near-zero velocity force computations. Fig. 4 depicts the
behavior of the input—output controller in the presence of friction. It can be easily deduced that this controller
is incapable of dealing with the friction forces due to the pulses that appear at the instant of sticking friction,
i.e., at the moment when the friction forces change sign and drop to slipping friction magnitudes. In fact, such
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Fig. 3. Skyhook damping force for the input—output controller w/o friction and model uncertainty: (a) front-right corner and (b) rear-left
corner. (—) Desired force and (O) actual force.
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Fig. 4. Skyhook damping force for the input—output controller with friction: (a) front-right corner and (b) rear-left corner. (- -) Desired
force and (—) actual force.

pulses do not appear in the output actuator forces due to the very fast dynamics of the spool valves relative to
the actuator’s own dynamics. This does not necessarily mean the skyhook damping forces will not be affected
by such overshoots (Fig. 4). In fact, as there is a continuous cancellation or interaction between these damping
forces and the “stick-slip” forces, it was expected that skyhook damping forces would be affected.
Consequently, an increase in the sprung mass acceleration is the logical result and ride harshness is inevitable.

Now, the uncertainties of the actuator constants d; and d, are considered to be 20%, while 30% is
considered for the constant ds. To clarify the effects of model uncertainties on the input—output controller,
we temporarily excluded the friction forces from the model. The simulation results are shown in Fig. 5.
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Fig. 5. Output actuator force for the input-output controller with model uncertainty: (a) front-right corner and (b) rear-left corner. (--)
Actual force and (—) desired force.
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Fig. 6. Output actuator force for the sliding mode controller with model uncertainty: (a) front-right corner and (b) rear-left corner. (- -)
Actual force and (—) desired force.

The controller is also incapable of performing satisfactorily. The controller would provide greater output force
at one corner (Fig. 5a) and a weaker force at the other (Fig. 5b), but they never coincided with the desired
performance.

The simulation results of the sliding mode controller, in the presence of model uncertainty, are presented in
Fig. 6. We selected the controller parameters according to Egs. (51) and (57) such that:

k]] = k21 = 1052,

kst = kay = 1295. (68)
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When the model uncertainties exist, the robustness parameters are chosen according to Egs. (60) such that

kv = ko = ADy + AD, + AD5 + 1000,

ks = ko = AD; + AD> + AD3 + 2000. (69)
If the model uncertainties do not exist, the robustness parameters become

ky =k, = 1000,

ks = kya = 2000. (70)

Fig. 6 shows that the sliding mode controller is capable of providing excellent (almost exact) tracking even
when model errors exist.

It would be helpful for the reader to come to a full understanding of the design procedures presented in the
preceding sections if the effects of relaxing the optimality and stability conditions are investigated. Here, a
(ramp) half-harmonic road height input of 0.05 m amplitude was imparted at the right front and rear tires with
a time delay between them encountered in simulation. Another simultaneous half-harmonic road height input

(a) (b)
5 1.5
E T 1
g =2
g g
5 4
< Q
3 1
5 s
2 2 0
g
2 %D 05
= &
(%q wv
3 . - . .
0 0.5 1 1.5 0 0.5 1 1.5
Time (s) Time (s)

()

Sprung mass pitch acceleration (rad/s?)

Time (s)

Fig. 7. Sprung mass response for the input—output controller: (a) bounce acceleration, (b) roll acceleration and (c) pitch acceleration. (—)
Optimal suspension and skyhook damping and (...) non-optimal suspension and skyhook damping.
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of 0.07 m amplitude was imparted at the left front and rear tires with the time delay between them encountered
in simulation. The difference in magnitude between the road height inputs at the right and left tires is meant to
excite the roll mode of the sprung mass. All the numerical values assigned to the design parameters of the two
controllers in the above example are restored for the current investigation. These values represent a design case
study of optimal and stable input—output and sliding mode controllers.

For the input—output controller, the effect of optimality on the system design measures is investigated by
replacing the optimal solution of Egs. (65) and (66) by a non-optimal solution, which assigns the following
values for the passive suspension elements and the gain of the skyhook damping force:

ksl = ksz = 22313 N/m,

Cs] = Cp = IOSONs/m,

ky = ky = 17157N/m,

53 = Cyy = 830 N's/m, (71)

O
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Time (s)

(b)
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Fig. 8. Suspension travel for the input—output controller: (a) front-right corner and (b) rear-left corner. (—) Optimal suspension and
skyhook damping and (...) non-optimal suspension and skyhook damping.
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Fig. 9. Output actuator force for the input-output controller: (—) stable design and (...) unstable design.
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Uy, = 15352y,

Us,, = 15357,
Us,, = 120123,
Uy, = 1201Z4. (72)

Fig. 7 shows the sprung mass bounce, roll and pitch accelerations in response to the road height inputs for
the non-optimal solution as compared to the optimal one. The same comparison is made in terms of the
suspension travel at the front right and rear left corners of the vehicle as shown in Fig. 8. The two figures
reveal that there is a marginal change in the vehicle response if the solution is not optimal. In other words, the
optimal solution becomes a steady response faster than the non-optimal solution, and this fact holds true for
both the suspension travel and the sprung mass accelerations.
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Fig. 10. Suspension travel for the input-output controller: (—) stable design and (...) unstable design.
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Fig. 11. Sprung mass roll acceleration for the sliding mode controller: (—) optimal suspension and skyhook damping and (...) non-
optimal suspension and skyhook damping.
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Inappropriate selection of the tracking coefficients could drive the input—output controller to instability. To
investigate this issue, we switch back to the optimal passive and skyhook parameter values as presented in
Eqgs. (66) and (67) with the controller tracking coefficients given the following inappropriate values: k,; = —1,
i=1,2,....,n, These values must drive the system unstable as the positiveness constraint on these tracking
coefficients would be violated. Fig. 9 shows that the generated actuator force is incapable of tracking the ideal
skyhook damping force due to the system instability. Consequently, the response of the system is significantly
deteriorated in response to the road height input as shown in Fig. 10.

The effects of the above investigated issues of non-optimality and instability are repeated for the sliding
mode controller. First, the non-optimality effects on this type of controller are investigated. In the absence
of model uncertainties, two different simulations are made with the parameter values of the controller in
Egs. (68) and (70) remaining unchanged. The difference is that, in the first simulation, the optimal suspension
and skyhook damping parameters in Eqs. (66) and (67) are used, while in the second simulation, the
non-optimal parameter values of the suspension and skyhook damping in Egs. (71) and (72) are used.
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Fig. 12. Suspension travel for the sliding mode controller: (—) optimal suspension and skyhook damping and (...) non-optimal
suspension and skyhook damping.
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Fig. 13. Output actuator force for the sliding mode controller: (—) stable design and (...) unstable design.
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Fig. 14. Sprung mass acceleration for the sliding mode controller: (—) stable design and (...) unstable design.

Figs. 11 and 12 indicate that the optimal solution is still better than the non-optimal one even with the sliding
mode controller.

To investigate the effects of inappropriate design or parameter selection for the sliding mode controller, we
switched back to the optimal suspension design of the Egs. (66) and (67). This optimal solution was held
unchanged during two different simulations. The controller parameters in Eqs. (68) and (70) also remained
unchanged. Note here that the controller parameters of Egs. (68) and (70) do not account for the model
uncertainties. The set of parameters that account for the model uncertainties is in Eq. (69). In the first
simulation, model uncertainties are considered zeros, while in the second simulation, uncertainties are
introduced into the actuator parameters such that: AD; = 0.2d;, AD> = 0.3d>, and AD; = 0.2d5. Comparisons
of the results of the two simulations are shown in Figs. 13 and 14. The inappropriate selection of the tracking
gains when uncertainties are introduced into the model led to deterioration of the controller tracking ability as
shown in these figures. Response chattering is magnified with time by the sprung mass acceleration and will
lead to high ride harshness due to instability and high frequency resonance. The use of the sliding mode
parameters in Eq. (69) will absolutely lead to excellent tracking capability and will suppress the chattering.

8. Conclusions

A detailed computational design procedure of active hydraulic suspensions for ground vehicles has been
presented. This procedure combines a linear sub-optimal multiple control structure constraints method with
nonlinear control design methods in order to achieve the maximum performance potential of hydraulic vehicle
suspensions. The method is demonstrated by a numerical example that shows its effectiveness. The simulation
results emphasize the suitability of the sliding mode controller in tracking optimal linear desired suspension
forces even in cases of model errors and uncertainty. Digital simulation also shows that the use of the
input—output controller is significant as long as the suspension is frictionless and the system knowledge is
perfect.
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