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Abstract

This paper is concerned with the dynamic modelling, active vibration controller design and experiments for a cylindrical

shell equipped with piezoelectric sensors and actuators. The dynamic model was derived by using Rayleigh–Ritz method

based on the Donnel–Mushtari shell theory. The actuator equations which relate the applied voltages to the generalized

force and sensor equations which relate the generalized displacements to the sensor output voltages for the piezoelectric

wafer were derived based on the pin-force model. The equations of motion along with the piezoelectric sensor equations

were then reduced to modal forms considering the modes of interest. An aluminium shell was fabricated to demonstrate the

effectiveness of the modelling and control techniques. The boundary conditions at both ends of the shell were assumed to

be a shear diaphragm in the numerical analysis. Theoretical natural frequencies of the aluminium shell were then calculated

and compared to experimental result. They were in good agreement with experimental result for the first two free-vibration

modes. The multi-input and multi-output positive position feedback controller, which can cope with the first two vibration

modes, was designed based on the block-inverse theory and was implemented digitally using the DSP board. The

experimental results showed that vibrations of the cylindrical shell can be successfully suppressed by the piezoelectric

actuator and the proposed controller.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A smart structure is defined as one that contains distributed sensors and actuators and implements a control
scheme to achieve vibration suppression in close cooperation with sensors and actuators. Conceptually, a
smart structure should be able to respond to external disturbances and internal changes. Many materials have
been tested as actuators and sensor: piezoelectric materials, shape memory alloys, electrostrictive materials,
magnetostrictive materials, electro-rheological fluids, and fiber optics. These materials can be inserted into or
bonded with structures, thus acting as either a sensor or an actuator. Among them, piezoelectric materials
have become popular because of high strength, temperature insensitivity, and ease of implementation.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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They undergo deformation when applied with a voltage, and produce a charge when deformed.
Hence, they can be used as both a sensor and an actuator. In this study, we applied the smart structure
technology to the active vibration control of a thin cylindrical shell equipped with piezoelectric sensors and
actuators.

A thin cylindrical shell structure has been used as a pressure vessel for storing liquid or gas and as the base
structure for submarines. The equations of motion for the cylindrical shell were derived in the work by Arnold
and Waburton [1]. Since then, many theories based on different assumptions have been developed for the
cylindrical shell [2–4]. Among them, the simplest theory about the behavior of the thin cylindrical shell is the
Donnel and Mushtari [2] theory. Active control of sound and vibration of the cylindrical shell using
piezoelectric actuators were investigated by Tzou et al. [5], Lester and Lefebvre [6], Sonti and Jones [7], Clark
and Fuller [8]. Tzou et al. [5] studied the application of modal piezoelectric actuator for active vibration
control of a shell structure. Lester and Lefebvre [6] investigated the coupling between the cylindrical mode and
internal acoustic cavity modes using modal spectra and proved theoretically that the piezoelectric actuator can
be used for internal cavity noise control. Sonti and Jones [7] developed a simple model for a cylindrical shell
with piezoelectric actuators and concluded that a large piezoelectric actuator is more effective than a small one
by numerical analysis. Clark and Fuller [8] carried out acoustic control experiments using a piezoceramic
actuator, microphone, PVDF sensor mounted on an aluminum shell and the Filtered-x LMS control
technique. Their experimental results showed that it is easy to control the accordion type vibration mode but
not easy to control the cylindrical vibration mode because the natural frequency of the aluminum shell
structure is very high. However, these works did not provide the equations of motion for the cylindrical shell
structure suitable for control design.

The most critical problem in applying a piezoceramic actuator to a shell structure is the curvature of the
shell. A plate-type piezoceramic wafer cannot be applied to a shell structure because of its brittleness.
Recently, a new type of piezoelectric actuator, so called the MFC (Macro Fiber Composite) actuator [9], was
developed to enhance actuating performance by utilizing the piezoelectric constant d33 instead of d31. An
MFC actuator consists of rectangular piezoceramic rods sandwiched between layers of adhesive and
electroded polyimide film; therefore, it can be applied to a curved surface. Sohn et al. [10] analyzed the natural
vibration characteristics of the cylindrical shell equipped with an MFC actuator using the finite element code
and proved theoretically that the LQG controller could be used as an active vibration controller.

In order to design an active vibration controller theoretically for the cylindrical shell, the equations of
motion for the shell suitable for control design should be derived a priori. Hence, we first derived a dynamic
model for a cylindrical shell equipped with piezoelectric actuators using the assumed-mode method based on
the Donnel–Mushtari shell theory. The piezoelectric actuator equations which relate the applied voltage to the
generalized forces and the piezoelectric sensor equations which relate the generalized displacements to the
sensor output voltage were also derived by assuming the piezoelectric actuator as a pin-force model [11].
An aluminum shell equipped with two MFC actuators was built and its natural frequencies were obtained by
the impact hammer test. The active vibration controller based on the multi-input–multi-output positive
position feedback (MIMO PPF) control technique [12] was designed using the theoretical model derived in
this study and tuned to the natural frequencies found experimentally. The proposed MIMO PPF controller
was applied to the test article using the digital controller. The experimental results showed that the vibrations
of the shell were suppressed successfully by the MFC actuator and the proposed controller.
2. Kinetic and potential energies for cylindrical shell

Let us derive the dynamic model for the cylindrical shell, as shown in Fig. 1, in which R is the radius of the
cylindrical shell, h is the thickness, L is the length, y is the angle with respect to the vertical axis, x is the axis
along its length, u, v, w are displacements in the x, y and z directions, respectively. The kinetic energy for the
cylindrical shell is expressed as [2].

T ¼
1

2
r
Z L

0

Z 2p

0

Z h=2

�h=2
_u2 þ _v2 þ _w2
� �

Rdzdydx (1)
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Fig. 1. Coordinate of cylindrical shell.
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where r is the mass density. Equations for strain and stress are necessary to obtain the potential energy, which
are expressed as [2].

�x ¼
qu

qx
� z

q2w
qx2

; �y ¼
1

R

qv

qy
þ

w

R
�

z

R2

q2w

qy2
; �xy ¼

qv

qx
þ

1

R

qu

qy
�

2z

R

q2w
qxqy

(2a2c)

�xz ¼ �yz ¼ �zz ¼ 0 (2d)

sx ¼
E

1� n2
ð�x þ n�yÞ; sy ¼

E

1� n2
ð�y þ n�xÞ; sxy ¼ syx ¼

E

2ð1þ nÞ
�xy (3a2c)

sxz ¼ syz ¼ szz ¼ 0 (3d)

where E is the Young’s modulus and n is the Poisson’s ratio, respectively. The potential energy is then
expressed as [2].

V ¼
1

2

Z L

0

Z 2p

0

Z h=2

�h=2
ðsx�x þ sy�y þ sxy�xyÞRdxdydz (4)

Inserting Eqs. (2) and (3) into Eq. (4) results in the following equation for the potential energy [2].

V ¼
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2ð1� n2Þ

Z L

0

Z 2p

0

qu

qx

� �2

þ
h2

12

q2w
qx2

� �2

þ
1

R2

qv

qy

� �2

þ
w2

R2
þ

h2

12R4

q2w

qy2

� �2
"

þ
2

R2

qv

qy

� �
wþ

2n
R

qu

qx

� �
qv

qy

� �
þ

2n
R

qu

qx

� �
wþ

nh2

6R2

q2w
qx2

� �
q2w

qy2

� �

þ
ð1� nÞ

2

qv

qx

� �2

þ
ð1� nÞ
2R2

qu

qy

� �2

þ
ð1� nÞh2

6R2

q2w
qxqy

� �2

þ
ð1� nÞ

R

qv

qx

� �
qu

qy

� �#
dxdy (5)

Let us express displacements in each direction as the series of functions which have n circumferential nodes.

uðx; y; tÞ ¼
X1
n¼0

unðx; y; tÞ; vðx; y; tÞ ¼
X1
n¼0

vnðx; y; tÞ; wðx; y; tÞ ¼
X1
n¼0

wnðx; y; tÞ (6a2c)

When n ¼ 0, the cylindrical shell vibrates without nodal points and its natural frequencies are high compared
to those of the cylindrical shell with circumferential nodal points. Hence, we consider the case when nX1 in
the numerical calculation and control design. Each function in Eq. (6) can be expressed as

unðx; y; tÞ ¼ FuðxÞ½cos ny qnucðtÞ þ sin ny qnusðtÞ� (7a)
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vnðx; y; tÞ ¼ FvðxÞ½sin ny qnvsðtÞ þ cos ny qnvcðtÞ� (7b)

wnðx; y; tÞ ¼ FwðxÞ½cos ny qnwcðtÞ þ sin ny qnwsðtÞ� (7c)

where

FuðxÞ ¼ ½Fu1ðxÞ Fu2ðxÞ � � �FumðxÞ� (7d)

FvðxÞ ¼ ½Fv1ðxÞ Fv2ðxÞ � � �FvmðxÞ� (7e)

FwðxÞ ¼ ½Fw1ðxÞ Fw2ðxÞ � � �FwmðxÞ� (7f)

qnucðtÞ ¼ ½qnuc1ðtÞ qnuc1ðtÞ � � � qnucmðtÞ�
T (7g)

qnusðtÞ ¼ ½qnus1ðtÞ qnus1ðtÞ � � � qnusmðtÞ�
T (7h)

qnvcðtÞ ¼ ½qnvc1ðtÞ qnvc1ðtÞ � � � qnvcmðtÞ�
T (7i)

qnvsðtÞ ¼ ½qnvs1ðtÞ qnvs1ðtÞ � � � qnvsmðtÞ�
T (7j)

qnwcðtÞ ¼ ½qnwc1ðtÞ qnwc1ðtÞ � � � qnwcmðtÞ�
T (7k)

qnwsðtÞ ¼ ½qnws1ðtÞ qnws1ðtÞ � � � qnwsmðtÞ�
T (7l)

in which, FuðxÞ; FvðxÞ; FwðxÞ represent a matrix consisting of admissible functions in each direction, qnuc(t),
qnus(t), qnvs(t), qnvc(t), qnwc(t), qnws(t), are generalized coordinate vectors corresponding to the cosine and sine
modes, and m is the number of admissible functions used for the longitudinal expansion. Normally, only one
set of the generalized coordinates, which consists of either qnuc(t), qnvs(t), qnwc(t), or qnus(t), qnvc(t), qnws(t), is
needed for the free vibration analysis. However, the full set of the generalized coordinates is necessary for
control design because the actuator and sensor can be placed at any location along the circumference of the
shell. This fact has not been fully explained in the previous studies.

Before inserting Eq. (6) into Eqs. (1) and (5), let us introduce non-dimensional variables for the ease of
numerical analysis.

x ¼ x=L; a ¼ L=R; b ¼ h=R (8a2c)

Considering that the displacements are expressed in terms of n functions corresponding to each
circumferential mode, the kinetic and potential energies can be also expressed as

T ¼
X1
n¼0

Tn; V ¼
X1
n¼0

V n (9a,b)

where Tn and Vn are the kinetic and potential energies corresponding to the nth circumferential mode,
respectively. Considering Eq. (8) and inserting Eq. (6) into Eqs. (1) and (5), the kinetic and potential energies
corresponding to the n(X1)th circumferential mode can be derived as follows:

Tn ¼
1

2
rRhLpð _qT

nucMuu _qnuc þ _qT
nvsMvv _qnvs þ _qT

nwcMww _qnwc

þ _qT
nusMuu _qnus þ _qT

nvcMvv _qnvc þ _qT
nwsMww _qnwsÞ (10)
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nvsKnvvqnvs þ
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2
qT

nwcKnwwqnwc

�
þ qT

nucKnuvqnvs þ qT
nvsKnvwqnwc þ qT

nucKnuwqnwc

þ
1

2
qT

nusKnuuqnus þ
1

2
qT

nvcKnvvqnvc þ
1

2
qT

nwsKnwwqnws

þqT
nusKnuvqnvc þ qT

nvcKnvwqnws þ qT
nusKnuwqnws

�
(11)
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where

Muu ¼ Fuu; Mvv ¼ Fvv; Mww ¼ Fww (12a2c)

Knuu ¼ F̄uu þ ð1� nÞa2n2Fuu=2; Knvv ¼ a2n2Fvv þ ð1� nÞF̄vv=2 (12d,e)

Knww ¼ a2Fww þ
b2

12

F̂ww

a2
þ a2n4Fww � 2nn2F̃ww þ 2ð1� nÞn2F̂ww

 !
(12f)

Knuv ¼ nnaF̃uv �
ð1� nÞan

2
F̂uv; Knuw ¼ naF̃uw; Knvw ¼ a2nFvw (12g2i)

in which

Fuu ¼

Z 1

0

FT
u Fu dx; Fvv ¼

Z 1

0

FT
v Fv dx; Fww ¼

Z 1

0

FT
wFw dx; Fvw ¼

Z 1

0

FT
v Fw dx (13a2d)

F̄uu ¼

Z 1

0

F0Tu F0u dx; F̄vv ¼

Z 1

0

F0Tv F0v dx; F̄ww ¼

Z 1

0

F0Tw F0w dx; F̃uv ¼

Z 1

0

F0Tu Fv dx (13e2h)

F̃uw ¼

Z 1

0

F0Tu Fw dx; F̃ww ¼

Z 1

0

F00Tw Fw dx; F̂uv ¼

Z 1

0

FT
u F
0
v dx; F̂ww ¼

Z 1

0

F00Tw F00w dx (13i2l)

3. MFC actuator and sensor modelling

The MFC actuator considered in this study can be assumed as a unidirectional actuator since it consists of
piezoceramic rods and therefore, it can be modelled as a pin-force model [11]. Due to the direction of the pin
force, the actuating force generated by the MFC on the vibration mode of the shell varies with the orientation
of the MFC actuator, as shown in Fig. 2. In this study, two cases in which the MFC actuator is glued to a
cylindrical shell in either longitudinal or circumferential directions are considered, and the corresponding
piezoelectric sensor and actuator equations are to be derived.

Based on the pin-force model [11], the actuating force produced by the MFC actuator can be expressed as:

f i
pa ¼ Epd33Vi

pa (14)

where Ep is the Young’s modulus of the piezoelectric material, d33 is the piezoelectric constant, and Vi
pa is the

applied voltage to the MFC actuator, respectively.
L

C

Fig. 2. Orientations of the MFC actuator.
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3.1. MFC actuator aligned in the longitudinal direction

If the MFC actuator is glued to the cylindrical shell in the longitudinal direction, the surface displacement of
the shell corresponding to the actuator can be expressed as

ū ¼ u�
h

2

� �
qw

qx
(15)

Using Eqs. (14) and (15), the virtual work for the circumferential mode (nX1) can be expressed as

dW i
Ln ¼ dqT

nucðb
i
LanucÞ

T Vi
pa þ dqT

nwcðb
i
LanwcÞ

T V i
pa þ dqT

nusðb
i
LanusÞ

T V i
pa þ dqT

nwsðb
i
LanwsÞ

T V i
pa (16)

where

bi
Lanuc ¼

Epd33R

n
ðsin nyi

pae � sin nyi
pasÞ ½Fuðx

i
paeÞ � Fuðx

i
pasÞ� (17a)

bi
Lanwc ¼ �

Epd33Rh

2n
ðsin nyi

pae � sin nyi
pasÞ

dFwðx
i
paeÞ

dx
�

dFwðx
i
pasÞ

dx

" #
(17b)

bi
Lanus ¼ �

Epd33R

n
ðcos nyi

pae � cos nyi
pasÞ ½Fuðx

i
paeÞ � Fuðx

i
pasÞ� (17c)

bi
Lanws ¼

Epd33Rh

2n
ðcos nyi

pae � cos nyi
pasÞ

dFwðx
i
paeÞ

dx
�

dFwðx
i
pasÞ

dx

" #
(17d)

where xi
pas and xi

pae are the starting and ending positions of the ith MFC actuator in the x direction
and yi

pas and yi
pae are the angular positions of the ith MFC actuator. The piezoelectric sensor equation can be

expressed as

Vi
L ¼ �

1

Ci
c

X1
n¼1

ðbi
Lsnucqnuc þ bi

Lsnwcqnwc þ bi
Lsnusqnus þ bi

LsnwsqnwsÞ (18)

where Cc
i represents the capacitance of the charge amplifier and

bi
Lsnuc ¼

Epd33R

n
ðsin nyi

pse � sin nyi
pssÞ½Fuðx

i
pseÞ � Fuðx

i
pssÞ� (19a)

bi
Lsnwc ¼ �

Epd33Rh

2n
ðsin nyi

pse � sin nyi
pssÞ

dFwðx
i
pseÞ

dx
�

dFwðx
i
pssÞ

dx

" #
(19b)

bi
Lsnus ¼ �

Epd33R

n
ðcos nyi

pse � cos nyi
pssÞ ½Fuðx

i
pseÞ � Fuðx

i
pssÞ� (19c)

bi
Lsnws ¼

Epd33Rh

2n
ðcos nyi

pse � cos nyi
pssÞ

dFwðx
i
pseÞ

dx
�

dFwðx
i
pssÞ

dx

" #
(19d)

3.2. MFC actuator aligned in the circumferential direction

If the MFC actuator is glued to the cylindrical shell in the circumferential direction, the surface
displacement of the shell corresponding to the actuator can be expressed as

v̄ ¼ vþ wy�
h

2R

� �
qw

qy
(20)
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Using Eqs. (14) and (20), the virtual work done by the actuator for the nth (nX1) circumferential mode can
be expressed as

dW i
Cn ¼ dqT

nvsðb
i
CanvsÞ

T V i
pa þ dqT

nwcðb
i
CanwcÞ

T Vi
pa þ dqT

nvcðb
i
CanvcÞ

T V i
pa þ dqT

nwsðb
i
CanwsÞ

T Vi
pa (21)

where

bi
Canvs ¼ Epd33ðsin nyi

pae � sin nyi
pasÞ

Z xi
pae

xi
pas

Fv dx (22a)

bi
Canwc ¼ Epd33½ðy

i
pae cos nyi

pae � yi
pas cos nyi

pasÞ þ
nh

2R
ðsin nyi

pae � sin nyi
pasÞ�

Z xi
pae

xi
pas

Fw dx (22b)

bi
Canvc ¼ Epd33ðcos nyi

pae � cos nyi
pasÞ

Z xi
pae

xi
pas

Fv dx (22c)

bi
Canws ¼ Epd33½ðy

i
pae sin nyi

pae � yi
pas sin nyi

pasÞ �
nh

2R
ðcos nyi

pae � cos nyi
pasÞ�

Z xi
pae

xi
pas

Fw dx (22d)

And the piezoelectric sensor equation for this case can be expressed as

Vi
C ¼ �

1

Ci
c

X1
n¼1

ðbi
Csnvsqnvs þ bi

Csnwcqnwc þ bi
Csnvcqnvc þ bi

CsnwsqnwsÞ (23)

where

bi
Csnvs ¼ Epd33ðsin nyi

pse � sin nyi
pssÞ

Z xi
pse

xi
pss

Fv dx (24a)

bi
Csnwc ¼ Epd33½ðy

i
pse cos nyi

pse � yi
pss cos nyi

pssÞ þ
nh

2R
ðsin nyi

pse � sin nyi
pssÞ�

Z xi
pse

xi
pss

Fw dx (24b)

bi
Csnvc ¼ Epd33ðcos nyi

pse � cos nyi
pssÞ

Z xi
pse

xi
pss

Fv dx (24c)

bi
Csnws ¼ Epd33½ðy

i
pse sin nyi

pse � yi
pss sin nyi

pssÞ �
nh

2R
ðcos nyi

pse � cos nyi
pssÞ�

Z xi
pse

xi
pss

Fw dx (24d)

4. Equations for motion and sensing

Inserting Eqs. (9), (10) and (11) and either (16) or (21) into Lagrange’s equation, the equations of motion of
the cylindrical shell for the nth circumferential mode can be derived.

M� €qn þ K�nqn ¼ B�nV pa; n ¼ 1; 2; . . . (25)

where qnðtÞ ¼ ½q
T
n1 qT

n2�
T is the generalized coordinate vector consisting of qn1ðtÞ ¼ ½q

T
nuc qT

nvs qT
nwc�

T and qn2ðtÞ ¼

½qT
nus qT

nvc qT
nws�

T and

M� ¼ rRhLp
M 0

0 M

� �
; K�n ¼

ERhp
ð1� n2ÞL

Kn 0

0 Kn

" #
(26)
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are mass and stiffness matrices. Identical matrices appear in the mass and stiffness matrices of Eq. (26) because
they belong to the sine and cosine modes, respectively. Furthermore,

M ¼

Muu 0 0

0 Mvv 0

0 0 Mww

2
64

3
75; Kn ¼

Knuu Knuv Knuw

KT
nuv Knvv Knvw

KT
nuw KT

nvw Knww

2
64

3
75 (27a,b)

and B�n is the force participation matrix, which reflects the effect of the applied voltage on each mode. For
example, if the first actuator is attached to the cylindrical shell in the longitudinal direction and the second
actuator is attached to the cylindrical shell in the circumferential direction, then the force participation matrix
can be expressed as

B�n ¼

ðb1
LanucÞ

T 0 � � �

0 ðb2
CanvsÞ

T
� � �

ðb1
LanwcÞ

T
ðb2

CanwcÞ
T
� � �

ðb1
LanusÞ

T 0 � � �

0 ðb2
CanvcÞ

T
� � �

ðb1
LanwsÞ

T
ðb2

CanwsÞ
T
� � �

2
666666666664

3
777777777775

(28)

It becomes evident from Eqs. (25) and (26) that all cosine and sine modes are necessary for control design
because the resulting displacements, u,v,w, are the combination of sine and cosine circumferential modes.
Using the piezoelectric sensor equations for the longitudinal and circumferential alignments, Eqs. (18) and
(23), the resulting piezoelectric sensor equation can be expressed as

Vps ¼
X1
n¼1

C�nqn (29)

where C�n is the mode influence matrix, which reflects the effect of each mode on the sensor voltage. For
example, if the first sensor is attached to the cylindrical shell in the longitudinal direction and the second
sensor is attached to the cylindrical shell in the circumferential direction, the mode influence matrix can be
expressed as

C�n ¼ �

b1
Lsnuc=Cc1 0 b1

Lsnwc=Cc1

0 b2
Csnvs=Cc2 b2

Csnwc=Cc2

..

. ..
. ..

.

2
664

b1
Lsnus=Cc1 0 b1

Lsnws=Cc1

0 b2
Csnvc=Cc2 b2

Csnws=Cc2

..

. ..
. ..

.

3
775 (30)

5. Eigenvalue analysis and experiment

Eq. (25) results in an eigenvalue problem for the nth circumferential mode.

jK�n � o2M�j ¼ 0 (31)

Eq. (31) reduces to the following equation because of the duplicates in the mass and stiffness matrices.

jKn � ō2Mj ¼ 0 (32)

where ō ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� n2ÞL2=E

q
represents the non-dimensionalized natural frequency. The dimension of the

matrices in Eq. (32) is half of the dimension of the matrices in Eq. (31). Hence, the free vibration analysis
based on Eq. (32) is preferred.

An aluminium cylindrical shell shown in Fig. 3 was manufactured for this study. Its thickness, inner
diameter, and length are 2, 250, and 500mm, respectively. The material properties of the aluminium used in
this study are r ¼ 2770 kg/m3, n ¼ 0.3, E ¼ 70GPa. As shown in Fig. 3, the supporting thick circular plates
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Fig. 3. Aluminium cylindrical shell.

(3,1) 479Hz (4,1) 549 Hz (2,1) 767 Hz 

Fig. 4. Natural mode shapes.
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are mounted on the flanges of the cylindrical shell so that the shear diaphragm boundary condition at both
ends is assumed for the theoretical analysis, i.e.,

v ¼ w ¼Mx ¼ Nx ¼ 0 (33)

The admissible functions which satisfy the above boundary conditions can be expressed as [2]

FuiðxÞ ¼
ffiffiffi
2
p

cos
ipx

L
; FviðxÞ ¼ FwiðxÞ ¼

ffiffiffi
2
p

sin
ipx

L
; i ¼ 1; 2; . . . ;m (34)

Inserting Eq. (34) into Eq. (13) and inserting the results into Eq. (12) ,we can obtain the mass and stiffness
matrices of Eq. (27) for each nth circumferential mode. Numerical results showed that the natural frequencies
of the cylindrical shell were 479Hz (3,1), 549Hz (4,1), 767Hz (2,1), 792Hz (5,1), 1005Hz (5,2), 1342Hz (3,2),
1124Hz (6,1), where the numbers in the parenthesis represent the nth circumferential mode and the order in
that mode. Fig. 4 shows the first three natural modes. Modal testing was carried out using an accelerometer
and impact hammer. Fig. 5 shows the frequency response curve obtained by experiments. The natural
frequencies obtained by experiment were 486, 616, 690, 912, 1028, and 1128Hz. The first and second
theoretical natural frequencies are close to the experimental ones but the higher theoretical natural frequencies
are not in good agreement with experimental ones, which seems due to the incompleteness of the shear
diaphragm boundary condition. The same observation was made by the finite element analysis [10] for the
end-capped shell.
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Fig. 6. MFC actuators mounted on the aluminium shell.

Fig. 5. Experimental frequency response curve.
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6. Controller design and experiment

In this study, the first two natural modes of vibration are to be controlled. To this end, two MFC actuators
were glued to the cylindrical shell, as shown in Fig. 6, in circumferential direction because the circumferential
modes are dominant due to the high radius-to-length ratio so that the piezoelectric actuator attached in the
circumferential direction is more effective than the one attached in the longitudinal direction. The MFC
actuator used in this study is the M8557S1 actuator of Smart Materials Inc. [9] and its piezoelectric type is
Navy Type II. The dimension of the MFC actuator is 110mm� 75mm and consists of an actuator
(110mm� 75mm) and sensor (85mm� 50mm). The material properties of the MFC actuator are
E1 ¼ 30.34GPa, E2 ¼ 15.86GPa (electrode direction), n12 ¼ 0.31, n21 ¼ 0.16, G12 ¼ 5.52GPa. The most
important parameter is the piezoelectric constant. The MFC actuator uses d33 to produce more actuating force
than the one using d31. The piezoelectric constant found in the specification is d33 ¼ 4.6� 102 pm/V.

The equations of motion of the cylindrical shell given by Eq. (25) and the piezoelectric sensor equations
given by Eq. (29) include infinite number of modes and thus are not suitable for control design. In addition,
natural frequencies found both theoretically and experimentally are very high for digital control
implementation; therefore, many natural modes of the cylindrical shell structure are uncontrollable
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practically. Therefore, the reduced-order dynamic model is preferred for efficient control design. After solving
the eigenvalue problem corresponding to the nth circumferential mode independently, the eigenvalue and
eigenvector are obtained. They satisfy the orthonormality condition.

UT
n M�Un ¼ I ; UT

n K�nUn ¼ Ln (35)

where Ln ¼ diagð½o2
n1o

2
n1o

2
n2 o

2
n2 . . .�Þ is the eigenvalue matrix and Un is the eigenvector matrix. Using Eq. (35)

and the modal transformation, qn ¼ Un pn, Eqs. (25) and (29) can be converted to the modal equations of
motion and modal sensor equation

€pn þ Lnpn ¼ B
�

nVpa; n ¼ 1; 2; . . . ; V ps ¼
X1
n¼1

C
�

npn (36a,b)

where B
�

n ¼ UT
n B�n and C

�

n ¼ C�nUn. After rearranging Eq. (36) in the ascending order of natural frequency, let
us consider m vibration modes to be controlled and add damping terms to the equations of motion. Then, we
can obtain the following reduced-order modal equations of motion and the modal sensor equation.

€xþ 2ZO_xþ Lx ¼ Bava; vs ¼ Csx (37)

where x ¼ [x11 x12 x21 x22?xm1 xm2]
T represents the generalized coordinate for the vibration mode, Z is the

matrix consisting of damping factors, O is the diagonal matrix consisting of natural frequencies, L is the
diagonal matrix consisting of the square of the natural frequency, Ba and Cs are the matrices of force
participation and mode influence, respectively. Since the same natural frequency and mode belong to the sine
and cosine circumferential modes, a pair of generalized coordinates belongs to the same natural frequency.
Therefore, Z, O, L in Eq. (37) are expressed as follows:

Z ¼

z1 0 0 0 � � � 0

0 z1 0 0 � � � 0

0 0 z2 0 � � � 0

0 0 0 z2 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 zm

2
66666666664

3
77777777775
; O ¼

o1 0 0 0 � � � 0

0 o1 0 0 � � � 0

0 0 o2 0 � � � 0

0 0 0 o2 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 0 om

2
6666666664

3
7777777775
; L ¼ O2 (38a2c)

If a small number of natural modes is to be controlled, Eq. (37) represents the reduced-order
equations of motion for the shell structure. Eq. (37) is a new kind of structural vibration control
problem because of duplicate natural modes. For instance, the resulting equations of motion turn out
to be a four degrees-of-freedom model for the control of two natural modes with two sensors and two
actuators.

Let us design the active vibration controller based on Eq. (37) which can suppress the first two natural
modes with two sensors and two actuators. The control algorithm adopted in this study is the MIMO PPF
control based on the block-inverse technique [12], which proved to be useful in controlling more modes with a
limited number of sensors and actuators. In this case, we can rewrite Eq. (37) as

€x1
€x2

( )
þ

2Z1O1 0

0 2Z2O2

" # _x1
_x2

( )
þ

L1 0

0 L2

" #
x1

x2

( )
¼

Ba1

Ba2

" #
va1

va2

( )
,

vs1

vs2

( )
¼ ½Cs1 Cs2�

x1

x2

( )
(39)

where xi ¼ [xi1 xi2], i ¼ 1,2 and

Zi ¼
zi 0

0 zi

" #
; Oi ¼

oi 0

0 oi

" #
; Li ¼

o2
i 0

0 o2
i

" #
; i ¼ 1; 2 (40a2c)
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Based on the result of Kwak and Heo [12], the MIMO PPF controller for Eq. (39) in the s domain can be
expressed as

V aðsÞ ¼ B�aG1=2L�Hppf ðsÞG
1=2C�s V sðsÞ (41)

where G is the 4� 4 gain matrix and

B�a ¼ ½B
�1
a1 B�1a2 �; C�s ¼

C�1s1

C�1s2

" #
(42a,b)

L� ¼
L1 0

0 L2

" #
; Hppf ðsÞ ¼

H1ðsÞ 0 0 0

0 H1ðsÞ 0 0

0 0 H2ðsÞ 0

0 0 0 H2ðsÞ

2
66664

3
77775 (42c,d)

in which

HiðsÞ ¼
o2

fi

s2 þ 2zf ofisþ o2
fi

; i ¼ 1; 2 (43)

is the single-input and single-output PPF controller for each mode. zf, ofi are the filter damping factor and
frequency of the single-input and single-output PPF controller. In the experiment, the filter frequencies of the
PPF controllers were tuned to the natural frequencies of the cylindrical shell, which were found
experimentally. In general, the filter damping factor, zf, is set to 0.3, which was also used in this study.
Fig. 7. Simulink block diagrams for MIMO PPF control.
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Fig. 8. Uncontrolled and controlled frequency response plots from experiments.
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The matrices of force participation and mode influence are computed theoretically as follows based on the
dimensions and material properties of the cylindrical shell and the MFC actuator.

B�aGL� ¼ 105
�1:9873 3:6295 �1:3862 �0:3931

0 �0:9391 0 �0:2684

" #
,

C�s ¼ 10�5

�0:2158 0

0:3942 �0:1020

�0:1314 0

�0:0372 �0:0254

2
666664

3
777775 (44a,b)

The active vibration controller, Eq. (41), along with Eq. (44) was implemented digitally by using the DS1103
of dSpace Inc [13] with 5 kHz sampling rate. Fig. 7 shows the Simulink [14] block diagram for the active
vibration controller given by Eqs. (41) and (44). Fig. 8 shows the uncontrolled and controlled frequency
response curves obtained by experiments. Fig. 8 shows that about 20 dB reductions are obtained for the
natural frequencies at 479 and 549Hz. Hence, it can be concluded that the active vibration controller
developed in this study was successful in suppressing the vibrations of the cylindrical shell. Fig. 9 shows the
time response of the sensor output, when the actuator was powered approximately 0.2 s after impact. The
response was suppressed rapidly after the control was applied, as shown in Fig. 9.

7. Summary and conclusions

In this study, dynamic modelling and active vibration control design for the cylindrical shell structure
equipped with piezoelectric sensors and actuators were discussed. The equations of motion for the cylindrical
shell and the piezoelectric sensor equations in matrix forms, which are suitable for control design, were derived
using the Rayleigh–Ritz method by assuming the piezoelectric actuator as a pin-force model. Free vibration
analysis on the cylindrical shell was carried out, and its results were compared to experimental results, which
showed that the first two natural frequencies of the theoretical model are in good agreement with the measured
natural frequencies but the higher natural frequencies of the theoretical model differ from the measured
natural frequencies. The discrepancy between the theoretical and experimental results seems to be due to
incompleteness of the shear diaphragm boundary condition considered in the theoretical model. In fact, the
flanges and cover plates give more constraint on the boundary of the cylindrical shell than the shear
diaphragm does.
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Fig. 9. (a) Uncontrolled and (b)controlled time responses of accelerometer output.
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A reduced-order model was derived considering the lowest natural modes from the equations of motion for
each circumferential mode because the infinite number of equations of motion is not suitable for control
design. The procedure for reducing the equations of motion for the cylindrical shell structure is explained in
detail. Also, a newMIMO PPF control scheme was proposed to suppress modes belonging to the same natural
frequency.

The MFC actuator which consists of piezoelectric sensor and actuator in one wafer was considered in
experiment. Two MFC actuators were glued to the aluminium shell for active vibration control and the
MIMO PPF controller was designed and implemented digitally using the DSP board. The experimental results
showed that vibrations of the cylindrical shell were suppressed successfully by the piezoelectric sensors and
actuators.
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