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Abstract

Deep hole drilling methods are used for producing holes with a high length-to-diameter ratio, good surface finish and

straightness. The process is subject to dynamic disturbances that is classified as either chatter vibration or spiralling. In this

work, nonlinear time series modeling is used to setup an on-line modeling approach of the time varying dynamics of the

process. An on-line monitoring strategy, based on control charts, is formed to detect chatter vibration. The results show

that the proposed modeling approach provides an on-line procedure that can answer questions about the time varying

dynamics of the process. The proposed on-line monitoring strategy can detect the start of the transition from stable drilling

to chatter vibration and some alarm signals are related to changing physical conditions of the process.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Deep hole drilling methods are used for producing holes with a high length-to-diameter ratio, good surface
finish and straightness. For drilling holes with a diameter of 20mm and above, the BTA (Boring and
Trepanning Association) deep hole machining principle is usually employed. The process is subject to dynamic
disturbances that is classified as either chatter vibration or spiralling. Chatter vibration leads to excessive wear
of the cutting edges of the tool which has an undesirable effect on the tool life. In extreme cases, it damages the
boring wall by causing marks, called chatter marks, on the cylindrical surface of the bore hole, see Fig. 1.

Concerning spiralling, it damages the workpiece severely. It leads to a multilobe-shaped deviation of the
cross section of the hole from absolute roundness. The defect of shape and surface quality constitutes a
significant impairment of the workpiece. Process reliability is of primary importance and disturbances should
be avoided as the deep hole drilling process is often used during the last production phases of expensive
workpieces. For example, axial bores in turbines or compressor shafts are made with this process.

The purpose of this work is to develop such real-time monitoring strategy to detect chatter vibration in
order to allow the engineers to know when and how to adjust the process. For this reason, amplitude-
dependent exponential autoregressive (ExpAr) time series models are used to describe the dynamics of the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Radial chatter marks.
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process. This modeling approach provides the basis of an on-line monitoring strategy based on control charts.
ExpAr time series modeling was used by Shi et al. [1] to detect machine tool chatter and by Shi et al. [2] to
monitor the dynamics evolution of boiling water reactor (BWR) oscillation.

In Section 2, models that describe the time varying dynamics of the process are reviewed. In Sections 3 and 4,
the ExpAr time series models and their estimation are discussed, respectively. In Section 5, ExpAr time
series model-based control chats are proposed. In Section 6, the proposed monitoring strategy is applied
to real data.
2. Nonlinear time varying process dynamics of the BTA deep hole drilling process

Several drilling experiments are conducted according to a given experimental design in order to study the
dynamics of the process. The results show that using constant cutting parameters, time varying dynamics with
alternating chatter and nonchatter phases is observed. Also, sudden changes of frequency during chatter
phases occurred. During these experiments, several on-line measurements were sampled, see Weinert et al. [3].
Chatter is easily recognized in the on-line measurements by a fast increase of the dynamic part of the torque,
force and acceleration signals. However, the drilling torque measurements yield the earliest and most reliable
information about the transition from stable operation to chatter.

Weinert et al. [3] used dynamical systems to model the process. At a first stage, they are not interested
in an exact and global modeling of all microscopic details of the drilling process, but only in a local
description of adequate accuracy to predict disturbances sufficiently early and to provide insights into how to
react in order to prevent them. Therefore, they proposed a phenomenological approach with a special
emphasis on the temporal neighborhoods of instabilities or state transitions from stable drilling to chatter
vibration and back.

The authors proposed a phenomenological model based on the van der Pol equation

€xðtÞ þ �ðb2
� xðtÞ2Þ _xðtÞ þ w2xðtÞ ¼ 0 (1)

to describe the transition from stable drilling to chatter in one frequency. They have noted that the different
kinds of solutions of Eq. (1) qualitatively coincide with the experimentally observed states in the drilling
process. They have proposed to model the transition by a Hopf bifurcation in the van der Pol equation.
Therefore, the drilling torque is described by

€xðtÞ þ �ðtÞðb2
� xðtÞ2Þ _xðtÞ þ w2xðtÞ ¼W ðtÞ, (2)

where xðtÞ is the drilling torque, b and w are constants, �ðtÞ is a bifurcation parameter and W ðtÞ is a white noise
process. Here w describes the behavior of a prominent frequency component at 703Hz. W ðtÞ is included in
order to model all the uncontrollable parameters of a drilling experiment as well as the microscopic details of
the drilling process. In this case, Hopf bifurcation occurs in the system when a stable fixed point becomes
unstable to form a limit cycle, as �ðtÞ vary from positive to negative values. That is, the solution of Eq. (2)
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changes from a stable fixed poind to a limit cycle as the process changes from stable drilling to chatter,
respectively. Weinert et al. [3] elaborates the details and motivate the choice of this model.

3. Amplitude-dependent ExpAr time series models

ExpAr time series models are introduced by Ozaki and Oda [4] and Ozaki [5] in an attempt to reproduce
certain features of nonlinear random vibration theory. They are able to reveal certain types of nonlinear
dynamics such as fixed points and limit cycles. They have simple structure similar to autoregressive (AR)
models except for the state-dependent coefficients. An ExpAr model is given by

xt ¼ ðf1 þ p1 e�gx2
t�1 Þxt�1 þ � � � þ ðfp þ pp e

�gx2
t�1 Þxt�p þ et, (3)

where fetg is a sequence of i.i.d. random variables, usually with zero mean and finite variance. g, fi, pi,
i ¼ 1; . . . ; p, are constants, where p is the model order. The nonlinearity of the process comes from the
exponential form. This function renders the dynamics of the series locally to be linear but globally nonlinear.
The AR coefficients are amplitude dependent. They change from fi þ pi to fi as jxt�1j changes from zero to
þ1. The nonlinear coefficient g acts as a scaling factor. It modifies the effect of xt�1 in the term e�gx2

t�1 .
Haggan and Ozaki [6] showed that the ExpAr model exhibit a limit cycle behavior under the following

conditions:
(i)
 All the roots of the characteristic equation

lp
� f1l

p�1
� f2l

p�2
� � � � � fp ¼ 0 (4)

lie inside the unit circle. Therefore xt starts to damp out when jxt�1j becomes too large.

(ii)
 Some roots of the characteristic equation

lp
� ðf1 þ p1Þl

p�1
� ðf2 þ p2Þl

p�2
� � � � � ðfp þ ppÞ ¼ 0 (5)

lie outside the unit circle. Therefore, xt starts to oscillate and diverge for small jxt�1j.
The results of these two effects are expected to produce a sort of self-excited oscillation. The above two
conditions are necessary for the existence of a limit cycle but not sufficient. A sufficient condition is
(iii)

1�

Xp

i¼1

fi

 !,Xp

i¼1

pi41 or 1�
Xp

i¼1

fi

 !,Xp

i¼1

pio0. (6)
Condition (iii) guarantees that a fixed point does not exist for the ExpAr model. Some ExpAr models without
satisfying condition (iii) still have a limit cycle. Ozaki [7] noted that this is because the fixed points themselves
of the model are unstable. The following condition is used to check whether the fixed points are stable or not
whenever condition (iii) is not satisfied.
(iv)
 The fixed point of ExpAr model, if it exist, is stable if and only if the roots of the equation

lp
� b1l

p�1
� b2l

p�2
� � � � � bp ¼ 0 (7)

lie inside the unit circle, where bi’s is given by

b1 ¼
p1 þ f1

Pp
j¼1pj � p1

Pp
j¼1fjPp

j¼1pj

þ 2 1�
Xp

j¼1

fj

 !
log

1�
Pp

j¼1fjPp
j¼1pj

 !
,

bi ¼
pi þ fi

Pp
j¼1pj � pi

Pp
j¼1fjPp

j¼1pj

ði ¼ 2; 3; . . . ; pÞ. (8)



ARTICLE IN PRESS
A. Messaoud, C. Weihs / Journal of Sound and Vibration 321 (2009) 620–630 623
4. Estimation of the ExpAr model
4.1. Maximum likelihood estimate

The maximum likelihood estimates of the parameters are obtained by minimizing the variance of the
prediction errors, see Shi et al. [2]. Such estimation is, commonly, a time consuming nonlinear optimization
procedure. Moreover, it can be proved that the objective function for the nonlinear coefficient g is not convex
where multiple local optima may exist. Therefore, there is no guarantee that a derivative-based method will
converge to the global optimum. To overcome this problem, estimation procedures proposed by Haggan and
Ozaki [6], Shi and Aoyama [8] and Baragona et al. [9] can be used. Haggan and Ozaki [6] proposed an
approximate straightforward estimation method. First, a pre-specified interval for the g value is fixed. This
interval is divided into sub-intervals, so that a grid of candidates g values is built. Then, the parameters ffi; pig,
i ¼ 1; 2; . . . ; p, are estimated by linear least squares method on centered series. The order p of the fitted model
is selected by use of the Akaike information criterion (AIC), see Haggan and Ozaki [6], given by

AICðpÞ ¼ ðN � pÞ log ŝ2p þ 2ð2pþ 1Þ, (9)

where p is the order of the model to be considered, N is the total number of observations and ŝ2e is the least
square estimate of the residual variance of the model.

Shi and Aoyama [8] and Baragona et al. [9] used a genetic algorithm to estimate the parameters of the
model. However, for large values of fxtg, the objective function may have a ‘‘golf-hole-like’’ problem, see
Messaoud [10]. Genetic algorithms are not applicable to this kind of hard problems.

4.2. Real-time estimate

The previous estimation procedures involve computation difficulties and are not suitable for use in
manufacturing systems (real-time), where CPU-time and memory are important. The main task of a real-time
estimation procedure is the fast determination of the nonlinear coefficient g. The estimation of the other
coefficients ffi;pig, i ¼ 1; 2; . . . ; p, in the model is only a linear least squares problem whenever g is determined.
Shi et al. [2] proposed a heuristic determination of the nonlinear coefficient g from the original data set,

g0 ¼ �
log d
maxx2

i

, (10)

where d is a small number (i.e., d ¼ 0:0001), 1pioN and N is the length of the data series. The idea behind
this setting is that the model coefficients can approach constants values fi or fi þ pi if the observation moves
far away from equilibrium or zero, respectively. The ExpAr model will definitely reveal the limit cycle behavior
of underlying time series by fixing g ¼ g0 even it is not an optimum condition.

5. ExpAr time series based control charts

5.1. Introduction to control charts

Process variation is inevitable and can be classified as either common causes of variation or special causes of
variation. Common or chance causes of variation are considered to be due to the inherent nature of the
process and cannot be altered without changing the process itself. Assignable or special causes of variation are
unusual shocks or other disruptions to the process. These causes can and should be removed. A process is said
to be in a state of statistical control if it operates under common causes of variation and the probability
distribution representing the quality characteristic is constant over time. If there are some changes over time in
this distribution, the process is said to be out of control.

Control charts are used to detect the presence of assignable causes of variation so that corrective actions, if
necessary, can be taken as soon as possible. Fig. 2 shows a typical Shewhart X control chart. It is one of the
most frequently used statistical process control tools. Samples are taken at equally spaced intervals. Control
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Fig. 2. An illustration of a Shewhart control chart (UCL: upper control limit and LCL: lower control limit).
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statistic X of each sample, meant to summarize process behavior at the period in question, is computed and
plotted against time.

As long as the plotted points remain inside the control limits, it is assumed that the process is in state of
statistical control. An out-of-control signal is given by the chart as soon as a point falls outside the upper and
lower control limits, labelled UCL and LCL, respectively.

Shewhart X control charts use only the current observation or sample to monitor the process. Other control
charts, such as cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts,
accumulate information across successive observations. That is, they not only use the current sample statistic,
but incorporate the information that can be gained from the previous sample statistics in some fashion. For
further details, see Montgomery [11].

A basic assumption, used in the development of many control charts, is that the underlying distribution of
the process is normal. The statistical properties of these charts are exact only if this assumption is satisfied. In
practice, it is well known that this assumption rarely holds. Therefore, distribution-free or nonparametric
control charts are used. For further details, see Chakraborti et al. [12].

5.2. The proposed control charts

In this work, ExpAr time series based control charts are proposed. Usually, time series based control charts
are used to monitor the residuals, where a time series model is used to fit the data and to calculate the
residuals. However, the drilling process is characterized by large amounts of data and therefore residuals, see
Section 6.1. This causes the inapplicability of monitoring the residuals. Therefore, monitoring the parameters
ŝ2e and ĝ of the estimated ExpAr time series models is considered.

In the following, let rEWMAŝ and rEWMAĝ refer to the nonparametric EWMA control charts based on
sequential ranks that are used to monitor fŝ2e;tg and fĝtg, t ¼ 1; 2; . . . ; respectively. These charts were proposed
by Hackl and Ledolter [13].

At time t, RSŝ ¼ fŝ2e;t�mþ1; . . . ; ŝ
2
e;tg and RSĝ ¼ fĝt�mþ1; . . . ; ĝtg denote the reference samples composed of

m41 most recent estimated values of s2e and g. They are used to decide whether or not the process is still in-control
at time t. Note that the monitoring procedure starts at t ¼ m. The sequential rank of ŝ2e;t among RSŝ is given by

Q�ŝ;t ¼ 1þ
Xt

i¼t�mþ1

Iðŝ2e;t4ŝ2e;iÞ, (11)

where Ið�Þ is the indicator function. Similarly, the sequential rank of ĝt among RSĝ is given by

Q�ĝ;t ¼ 1þ
Xt

i¼t�mþ1

Iðŝ2e;t4ŝ2e;iÞ. (12)
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Q�ŝ;t and Q�ĝ;t are uniformly distributed on the m points f1; 2; . . . ;mg. The standardized sequential rank Qm
t is

given by

Qm
ŝ;t ¼

2

m
Q�ŝ;t �

mþ 1

2

� �
and

Qm
ĝ;t ¼

2

m
Q�ĝ;t �

mþ 1

2

� �
. (13)

They are uniformly distributed on the m points

1

m
� 1;

3

m
� 1; . . . ; 1�

1

m

� �
(14)

with mean mQm
t
¼ 0 and variance sQm

t
¼ ðm2 � 1Þ=3m2. For more details, see Hackl and Ledolter [13].

For the rEWMAŝ control chart, the control statistic T ŝ;t is the EWMA of standardized sequential ranks.
It is computed as follows:

T ŝ;t ¼ maxfA; ð1� lŝÞT ŝ;t�1 þ lŝQm
ŝ;tg, (15)

t ¼ 1; 2; . . . ; where 0olŝp1 is a smoothing parameter, A is a lower reflection boundary and T ŝ;0 is a starting
value usually set equal to 0. The process is considered in-control as long as T ŝ;tphŝ, where hŝ40 is an upper
control limit. Note that the upper-sided rEWMAŝ control chart is considered because the statistic Qm

ŝ;t is
‘‘lower the better’’. Indeed, a decrease in ŝ2e;t means a process improvement.

For the rEWMAĝ control chart, the control statistic T ĝ;t is given by

T ĝ;t ¼ minfB; ð1� lĝÞTt�1 þ lĝQm
ĝ;tg, (16)

t ¼ 1; 2; . . . ; where 0olĝp1 is a smoothing parameter, B is an upper reflection boundary and T ĝ;0 is a starting
value usually set equal to 0. The process is considered in-control as long as T ĝ;tXhĝ, where hĝo0 is a lower
control limit. Note that the lower-sided rEWMAĝ control chart is considered because the statistic Qm

ĝ;t is
‘‘higher the better’’. Indeed, an increase in ĝt means a process improvement.

The parameters of the two control charts are selected according to a performance criterion of the charts.
Usually, the performance of control charts are evaluated by the average run length (ARL). The run length is
defined as the number of observations that are needed to exceed the control limit for the first time. The ARL
should be large when the process is statistically in-control, in-control ARL, and small when a shift has
occurred, out-of-control ARL.

6. Monitoring the BTA deep hole drilling process

6.1. Modeling the nonlinear time varying dynamics of the process using ExpAr time series models

In this section, ExpAr time series models are used to describe the evolution of the drilling torque and to
characterize the time varying dynamics of the process in an experiment with a feed f ¼ 0:120mm, a cutting
speed of vc ¼ 90mmin�1 and an amount of oil of _Voil ¼ 300 lmin�1. The data are recorded with a sampling
rate of S ¼ 20 000Hz and consist of 10 506 240 observations that are shown in Fig. 3. This experiment is the
most stable experiment of the experimental design and only slight chatter marks are observed on the bore hole
wall at the end of process after depth 400mm. This may be explained by the low cutting speed used.

A common way to solve the problem of on-line monitoring of the drilling process is to segment on-line
measurements of the drilling torque, where it becomes very important to achieve a fast decision-making about
the dynamics of the process through inference and analysis of the estimated ExpAr models in each segment.
The data are divided into segments of length 4096 observations, which is used by Theis [14] to calculate the
periodograms. In each segment, the ExpAr(p) time series model, given by Eq. (3), is fitted to centered data.
The parameters are estimated using the real-time estimation procedure with d ¼ 0:0001 in Eq. (10). The choice
of a proper model order p is not an easy task. Fig. 4 shows the AIC criterion for two time series segments
before and after chatter. The decrease of AIC criterion as p increases may be explained by the autocorrelation
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Fig. 3. Time series of the drilling torque.

Fig. 4. AIC criterion of two time series segments: (a) before chatter and (b) after chatter.

A. Messaoud, C. Weihs / Journal of Sound and Vibration 321 (2009) 620–630626
function. Fig. 5 shows the autocorrelation function for the two time series segments. It shows that for the first
segment the autocorrelation decreases as p increases. For the second segment, the autocorrelation shows the
existence of a periodic behavior. A time lag p ¼ 40 is selected. It is a reasonable choice but not optimal. In
practice, it is easy to justify the use of a model with 81 parameters for 4096 observations. Moreover, the nature
of collected data in this process, ‘‘data rich’’ problems in industry, justifies the use of such models.

For model diagnostic, the residuals are plotted against hole depth in mm in Fig. 6. Note that there is a slight
increase in the variance of the residuals after depth 400mm, which is during chatter vibration. This increase is
clear in Fig. 7 where the least square estimate of the residual variance, ŝ2e , of the model is plotted with the hole
depth in mm. Fig. 8 shows the histograms of the errors over two segments during stable drilling and chatter.
They have a symmetric shape around zero and Gaussian appearance. As a final check, the fitted model is
simulated using the estimated coefficients and residual variance. The first p ¼ 40 values of the drilling torque
in each segment are used as initial values. In fact, a model which cannot reproduce a similar series by
simulation is certainly not interesting to statisticians and engineers. The results show that the simulated values
behave similar to the observed data. In conclusion, the estimated ExpAr(40) model provides a good fit to the
drilling torque measurements.

An important question is whether the ExpAr(40) time series model describes the nonlinear time varying
dynamics of the process, see Section 2. In Section 3, it is mentioned that the ExpAr model exhibits the limit
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Fig. 5. Autocorrelation function of two time series segments: (a) before chatter and (b) after chatter.

Fig. 6. Plot of the residuals.

Fig. 7. The least square estimate of the residual variance, ŝ2e .
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cycle behavior under some conditions. These conditions are checked in each data segment. Fig. 9 shows the
results. It is clear that these conditions are satisfied after depth 400mm, during chatter vibration. This result is
obvious for engineers, and Weinert et al. [3] used it to propose the model that describes the transition from
stable drilling to chatter, see Section 2. In fact, it is known that machine tool chatter is a nonlinear oscillation
of the limit cycle type, which can be regarded as an intrinsic property independent of process working
conditions and measuring noise, see Tobias [15].

As a conclusion, the use of the ExpAr(40) time series model provides an on-line procedure that can be used
to answer questions about the nonlinear time varying dynamics of the process. Its real-time implementation
can be guaranteed. Furthermore, it can be used to decide whether the process is stable or not.
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Fig. 8. Histograms of the residuals: (a) before chatter and (b) after chatter.

Fig. 9. Description of the time varying dynamics of the drilling torque.
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6.2. Monitoring the process: experimental results

In this section, the estimated values of s2e and g, see Section 6.1, are monitored using different rEWMAŝ and
rEWMAĝ control charts. The parameters of these charts are selected so that they have the same in-control
ARL equal to 370. This choice should avoid excessive false alarm signals because all control charts are applied
to 2000 observations. The values 0.1, 0.3 and 0.5 are chosen for the smoothing parameters lŝ and lĝ. Table 1
gives the values of hŝ, hĝ, A and B.

Note that the control limits are adjusted using simulations, see Messaoud [10]. The standardized sequential
ranks are calculated with respect to the m ¼ 100 recent observations, ŝ2e;t�100; . . . ; ŝ

2
e;t�1. For further details

about the motivation of this choice see Messaoud [10].
Table 2 shows the results for depthp400mm. First, the ability of the different control charts to quickly

detect the known changes in the dynamics of the process is investigated. Table 2 shows that the control charts,
except the rEWMAŝ (lŝ ¼ 0:5) control chart, produce many out-of-control signals at 32pdepthp50mm. In
fact, it is known that approximately at depth ¼ 32mm the guiding pads of the BTA tool leave the starting
bush. This induces a sudden change in the dynamics of the process caused by the tool being freed. From
previous experiments, the process has been observed to either stay stable or start with chatter vibration. The
second known change in the dynamics of the process occurs approximately at depth 110mm. It is the position
where the tool enters the bore hole completely. Theis [14] noted that this might lead to changes in the dynamics
of the process because the boring bar is slightly thinner than the tool and therefore the pressures in the hole
may change. The rEWMAŝ (lŝ ¼ 0:1) and rEWMAĝ (lĝ ¼ 0:1 and 0.3) control charts detect this change and
signal at 100pdepthp125mm.

Messaoud [10] showed that a change in the boundary conditions occurs approximately after depth 250mm.
The three rEWMAŝ control charts produce many out-of-control signals. However, the rEWMAĝ did not
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Table 2

Out-of-control signals of the different control charts.

Hole depth (mm) rEWMAŝ rEWMAĝ

lŝ lĝ

0.1 0.3 0.5 0.1 0.3 0.5

p32 0 0 0 0 0 0

32–50 39 7 0 21 4 2

50–75 0 0 0 0 0 0

75–100 0 0 0 0 0 0

100–125 1 0 0 6 1 0

125–150 0 0 0 2 2 1

150–175 0 0 0 4 1 0

175–200 0 0 0 0 0 0

200–225 0 0 0 0 0 0

225–250 0 0 0 0 0 0

250–275 12 8 3 0 0 0

275–300 72 37 13 13 4 3

300–325 53 21 8 12 4 2

325–350 1 0 0 0 0 0

350–375 0 1 1 25 11 9

375–400 38 38 30 91 50 30

Table 1

Adjusted control limits of the rEWMAŝ and rEWMAĝ control charts.

rEWMAŝ rEWMAĝ

lŝ lĝ

0.10 0.30 0.50 0.10 0.30 0.50

Control limit 0.318 0.593 0.756 �0.318 �0.593 �0.756

Reflection boundary �0.318 �0.593 �0.756 0.318 0.593 0.756
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produce any signal. A second change in the dynamics of the process is observed at 275pdepthp350mm, see
Messaoud [10]. This explains the observed out-of-control signals at 275pdepthp350mm. The transition from
stable drilling to chatter vibration starts approximately after depth 350mm. All control charts detect this start
of transition and many out-of-control signals are produced until depth 400mm. Note that the rEWMAŝ

(lŝ ¼ 0:1) produces an early out-of-control signal at 342mm and more out-of-control signals are produced by
the rEWMAĝ than rEWMAŝ control charts as well. In this experiment chatter vibration may be avoided if
corrective actions are taken after these signals.

Table 2 shows that only nine out-of-control signals are produced by the rEWMAĝ control charts at
125pdepthp175mm. These signals are not explained by any known change in the dynamics of the process.
Note that a successful monitoring procedure should produce few false alarms during stable drilling in order to
avoid unnecessary process adjustments.

As a conclusion, the results show that the proposed monitoring strategy quickly detect the start of the
transition from stable drilling to chatter vibration in the considered experiment. That is, chatter may be
avoided if corrective actions are taken after these signals. Furthermore, most of the out-of-control signals
produced by the different control charts are related to known changes in the dynamics of the process.
Furthermore, the performance of the proposed monitoring strategy is investigated using data sets from
six experiments, see Messaoud [10]. The results show that the proposed control charts detect the start of
the transition from stable drilling to chatter vibration. However, in some experiments they produce many
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out-of-control signals that are not related to known changes in the dynamics of the process. This may be due
to the ‘‘nonoptimal’’ estimation procedure of g and choice of the time lag p ¼ 40 of the ExpAr time series
models.

In this work, the values 0.1, 0.3 and 0.5 are considered for the smoothing parameters lŝ and lĝ of the
rEWMAŝ and rEWMAĝ, respectively. However, in practice a procedure to choose these parameters is needed.

7. Conclusion

The main objective of this work is to develop an on-line monitoring strategy of the BTA deep hole drilling
process. This work shows that ExpAr time series models can be used to setup an on-line modeling approach of
the time varying dynamics of the process. This modeling approach provides the basis of an on-line monitoring
strategy based on control charts. The results show that it can detect the start of the transition from stable
drilling to chatter vibration and that some out-of-control signals are related to changing physical conditions of
the process (i.e., guiding pads leave the starting bush, the tool is completely in the hole).
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