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Abstract

The stochastic response of a piezoelectric thick axisymmetric hollow cylinder in plane strain under boundary stochastic
excitations is analyzed and calculated. The stochastic stress and electric-potential boundary conditions of the piezoelectric
hollow cylinder are converted into homogeneous boundary conditions by transformations that yields the electrical and
mechanical coupling partial differential equations of motion with damping and stochastic excitations. The equation for
electric potential is integrated radially to obtain the electric potential as a function of displacement, and the displacement is
expanded as a series in terms of the Legendre polynomials. The partial differential equation for displacement is further
converted into ordinary differential equations by using the Galerkin method, which represent a stochastic multi-degree-of-
freedom system with asymmetric stiffness matrix due to the asymmetric electrical and mechanical coupling and the
transformed boundary conditions. The frequency-response function matrix and correlation function matrix of the system
response are derived from these equations based on the theory of random vibration. The expressions of mean-square
displacement and electric potential of the piezoelectric hollow cylinder are finally obtained and illustrated by numerical
results for non-white stochastic excitations. The frequency-response characteristics and electrical and mechanical coupling
properties are explored.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric structures as smart sensors or controllers have a potential application in engineering [1]. The
free vibration and dynamic characteristics of piezoelectric and composite structures such as beam, plate and
shell have been studied extensively [2—12]. The non-homogeneous boundary effects on the electrical and
mechanical coupling dynamics were not considered generally. The transient and steady-state vibration
responses of piezoelectric and composite structures subjected to external voltage or pressure excitations have
been analyzed [13-18]. Several numerical methods for the dynamic response of piezoelectric and composite
structures have been presented based on the finite elements, difference equation, Galerkin procedure and
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Laplace transformation [13,19-21]. Much researches on the vibration control of composite structures with
piezoelectric material as sensors and controllers have been further made, for instance, the selective modal
control, linear quadratic control and bang—bang control [19-27]. Although the results on natural frequencies
of the stiffened plate with piezoceramic sensors and actuators in Ref. [9] revealed a slight asymmetry, the non-
symmetry dynamics of piezoelectric structure systems have not been recognized and taken into account.

In particular, the piezoelectric shell is regarded as a classical structure and then its dynamics have attracted
more attention. The free vibration of piezoelectric ceramic cylinders radially polarized [4-6], the torsional
wave motion of a finite inhomogeneous piezoelectric cylindrical shell [28], the axisymmetric and other
electroelastic waves of hollow piezoelectric ceramic cylinders [29,30] have been studied. The transient response
of axisymmetric piezoelectric hollow cylinders in plane strain has been solved by using the series expansion of
Bessel functions and the linear interpolation algorithm [16]. The electrical and mechanical coupling
component was implicitly included in a function of time and discretized numerically. The free and forced
vibrations of piezoelectric hollow spheres have also been analyzed [7,17,18]. In all those researches, the
dynamics problem of piezoelectric structures such as shells with external excitations was assumed as
deterministic, except the numerical analysis using the finite element method in Refs. [21,26]. However, a
realistic dynamic process of piezoelectric structures as the others inevitably includes random disturbances
which can affect the sensing and controlling results. Therefore, the stochastic vibration of piezoelectric
structures is a significant research subject.

The present paper focuses on the stochastic response analysis of a piezoelectric axisymmetric hollow
cylinder in plane strain. Firstly, the basic equations of the piezoelectric hollow cylinder subjected to boundary
stochastic excitations are given. Secondly, the stochastic electric boundary conditions are incorporated in the
differential equations of motion by using the transformation of electric potentials, and the equation for electric
potential is integrated to obtain the electric potential as a function of displacement. Thirdly, the stochastic
stress boundary conditions are converted into homogeneous ones by using the transformation of
displacements. Then the displacement is expanded as a series in terms of the Legendre polynomials, and
the partial differential equation for displacement is converted into ordinary differential equations according to
the Galerkin method, which represent a stochastically excited and damped multi-degree-of-freedom system
with asymmetric stiffness. Fourthly, the frequency-response function matrix and correlation function matrix
of the system response are derived from these equations based on the theory of random vibration. The
expressions of mean-square displacement and electric potential of the piezoelectric hollow cylinder are
obtained for non-white stochastic excitations. Finally, numerical results are given to illustrate the stochastic
displacement and electric-potential responses of the piezoelectric hollow cylinder to stochastic stress and
electric-potential excitations, and their varying with structure and excitation parameters.

2. Basic equations

For an axisymmetric piezoelectric hollow cylinder in plane strain [16] under boundary stochastic excitations,
its differential equation of motion in the radius r direction can be expressed as
00, Oy —0 0%u, ou
rr rr 00 =p 21 + C,‘—r (1)
or r ot ot
where ¢,, = 0,,(r,t) and g99 = 0(r,t) are, respectively, the radial and circular stresses, u, = u,(r,t) is the radial
displacement, p and ¢, are, respectively, the mass density and damping coefficient. The constitutive relations of
orthotropic and radially polarized piezoelectric medium are

()]

Gog = C117gg + C137, + €31 o )
0P

Orr = C1379p + €337, + €33 E (2b)
0P

D, = e31y99 + €337, — €33 > (20)
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where yg9 and 7, are, respectively, the circular and radial strains, ¢;;, e; and ¢; (i,j = 1,3) are, respectively,
elastic, piezoelectric and dielectric constants, D, = D,(r,?) is the radial electric displacement, and @ = ®(r,¢) is
the electric potential. The strain—displacement relations for the axisymmetric plane strain problem are

Ou, U
Ve =—=—> Yoo =— 3a,b
Vir or Y60 r ( )
and the other displacements in cylindrical coordinates (r, 0, z) uyp = u. = 0. In absence of free charge density,
the charge equation of electrostatics is

19
T P =0 @)

By substituting strains (3) into Eq. (2), Egs. (1), (2) and (4) can be rewritten in the dimensionless form as
follows:

0o, o,— 0y ’u Ou

_Oou, ou 5
Tt 1 Tt )
u ou 0
69=C11+63a+e1£ (6a)
u Ou 0¢
Jr—C3z+a+63a (6b)
u ou 0¢
D_e11+e3a—§ (7N
10 .
Ia(ﬂD)—O (®)
where
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€33 ( ) b A/€33633 ¢ b\ e
Gl Lt fes _ be o _en a3
T b\ p° N/ T U e
o = e3 o5 = e33 ©)

JC33833° JC33€33
in which b is the outer radius of the hollow cylinder. The stochastic boundary conditions for stress and electric
potential corresponding to Egs. (5)—(8) are

7,(5,7) = Ca(7),  0:(1,7) = &y(7) (10a,b)
P(s,7) = n,(1), (1, 7) = n,(7) (11a,b)

where s = a/b, a is the inner radius of the hollow cylinder, £,(7), &,(t), n.(7) and 5,(t) are the independent
stochastic processes with power spectral densities Sg,(w), Sep(), Syo(w) and S,;(w), respectively. The initial
displacement and velocity of the cylinder are assumed as zeros.

Substituting stresses (6) into Eq. (5) and electric displacement (7) into Eq. (8) yield the differential equations
of motion for displacement u and electric potential ¢ as follows:

Cu 1w, P el Tu, O
o2 T a0a 1 2THG2 04 o2 ot

(12)
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o2 A 0L 9)r L04 0 (13)
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It can be observed from Egs. (12) and (13) that the coupling terms of 0u/0/ and 0¢ /04 have asymmetric
coefficient matrix. In general, those equations need to be converted into the state equations to solve. However,
note that Eq. (13) can be integrated directly. The boundary conditions (10) become correspondingly

ou 0
o—,(s,r)=( L saf) e (14a)
o1, ) = (C%;l-i-gz-i- gf) e (14b)

3. Electric potential expressions

The following electric potential transformation is introduced:

1

¢ = m[(l — Dy + (A=)l + ¢ (15)

Substituting transformation (15) into Eqgs. (12) and (13), yields

®u 10u u az¢0 e3—e 0¢y e3—e Qu Ou

b Ik - =+ c— 16
o2 i apTe T m Taasy T = ga Ty, (16)

Pu es+teou O 10 1
stadu D9 196 _ 1y~ 1) = 0 (17

SR T a2 Aok Mi—s
The boundary conditions of electric potential become correspondingly homogeneous, i.e.,
Po(s,7) = Po(1,7) =0 (18)

By integrating Eq. (17) with respect to / and using conditions (18), the electric potential ¢, is expressed by
displacement u as follows:

i ‘u In 2\ ['u Ini 1-12
by = €3 u—ub—m(ua—ub)}—i-el{/sZdA—(l—l—)/szdi}+(11a 11,,)[ l—s} (19)

ns
where boundary displacements

U, = M(S, T)’ up = u(lrf) (20a5b)

By using expression (19), Eq. (16) is converted into the following differential equation only for displacement u:

2

Ou 1+ e30u u e Yu eres
1 = — —dA— B
( +e 3)612 A a} (1+e)},2 ;LzlnS[ 2 ( 7’][,) In s +(H ub) 1
0%u ou
The boundary conditions (14) become as
DT +@rae)] —aw (220
[(1 + 63) + (¢c3 + ere3) } = &(1) (22b)
=1
with stochastic processes
1 2
e3 e1e3 u ., ey . _
= — — _— — - a — 2 c
b=t = m) = [ S @ ) (23a)
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e|e 1 u €2
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lns Ins [, 2 Ins

Eq. (21) has the coupling terms of coordinate A and time function such that the separating variable technique
cannot be used directly.

4. Displacement transformation and ordinary differential equations

To convert the boundary conditions (22) into homogeneous ones and expand the displacement as a series in
radial functions, the following displacement transformation is further introduced:

u= Ao(2—17& + Bo(h— 5’8 + uo (24)
where constants
1
2(1 4 e})(s — 1) + (¢35 + erez)(s — 1)* /s

Ay = (252)

1
T 2(1+ )1 —9) + (3 + eres)(1 — 5)

Substituting transformation (24) into Eq. (21) yields the differential equation for displacement u,
as follows:

(25b)
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where uy, = uy(s, 7) and ugp, = uo(1, 7) are transformed boundary displacements. The boundary conditions (22)
for displacement become correspondingly

[(1 +e ;) + (c3 + elez) /1 =0 27
A=s,1

The expressions of &, and &, are

1
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= ) o s 7 3 gy Mol =96 = 3) = 210 516+ Bl = (1 = 39)
e
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Ins Ins/, 2 2In
2
e

=257 In s]6o} + 2 [Ao(1 = 8)7¢r = Bo(1 = )& + Tioa — o] (28b)

Eq. (28) can be solved to obtain &; and &,, and then the stochastic excitations in Eq. (26) due to the stress
boundary conditions are determined. On the left side of Eq. (26), the terms involving e; and e; stems from the
electrical and mechanical coupling, which represent the coupling stiffness.

The Legendre polynomials are used for constructing a series of functions of the radial coor-
dinate, N4(/), which satisfy the homogeneous boundary conditions (27). Then the displacement u, is
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expanded as

up(4,7) = Y Ni(A)g(x) (29)
=1
where g(7) is a function of time, and the spacial function
N;(2) = pyi(kj, —=1)Pi(k;x) — pik;, —1) Pji1(k;x) (30)
with coefficients
2k; , c3 + ee;
%%y—D:1;%U+%®%@kﬂ+j—;LlﬂFkﬂ (31a)
2k; , c3+ere
Piatky=1) = 7 (1 + )Py (=) + === Praa (k) (31b)

in which P;(k;x) and Pj;(k;x) are, respectively, the jth and j+ 1th Legendre polynomials, and the superscript
“’” denotes the derivative with respect to k;x. The relationship between variables x and 4 is

20 —
x=24=9 (32)
1—s

The constant k; is determined by the following algebraic equation:

Piv1(k, = Dpi(k;, 1) — pi(kj, —Dpjy (K, 1) = 0 (33)
with coefficients
2kj 2\ p/ X
pilk;, 1) = T s(l + e3)Pi(k;) + (c3 + ere3) Pi(k;) (34a)
2k; -

Piwilkp 1) = — S+ e3P (k) + (c3 + ere3) Py (k)) (34b)

It can be obtained that the function N,(2) satisfies the boundary conditions (27) by substituting Eqgs. (29) and
(30) into Eq. (27) and using Eq. (33), and N;(4) = 0 due to real constant k; = 0 by solving Eq. (33) under
certain conditions, for instance, s>0.186.

According to the Galerkin method, substituting displacement (29) into Eq. (26), multiplying Eq. (26) by
AN{(4) and integrating it with respect to 4 on [s,1] yield ordinary differential equations for g4t), which can be
rewritten in the following matrix form:

MQ + CQ + KQ = F() (35)

where the superscript *.”” denotes the derivative with respect to 7, generalized coordinate vector Q, generalized
mass matrix M, generalized damping matrix C, generalized stiffness matrix K and generalized stochastic
excitation vector F are, respectively,

d d d
qi myy mp - My i1 €2 o Oy
d.d ..
9 my mpy - My 1 Con
Q=< . 7, M= . : ., C= . . . (36a,b,c)
qn myy My -+ Mpy CZI CZZ s Cflln
ki ki oo ki i
kyy kxn oo ko />
K=| . . ., F=4q . (36d,e)

knl kn2 o knn fn
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with elements

1 1 1 2 2
m,,:/ ;.Ni(z)Nj(x)d;,—/ Nfu)dx-/ { Aod — 1) (5 -2 )+ Bl — 9
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Eq. (35) represents a multi-degree-of-freedom system subjected to stochastic excitations. This system has
asymmetric stiffness and mass matrices due to the boundary excitations and the electrical and mechanical
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coupling. Therefore, the conventional modal superposition method for symmetric systems is not usable to the
asymmetric system.

5. Stochastic response

The stochastic response of the asymmetric linear multi-degree-of-freedom system (35) can be estimated by
using the relationship between the correlation function in time domain and the power spectral density in
frequency domain. The frequency-response function matrix of the system (35) is

H(jw) = (K + joC — o*M)~! (38)
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where w is a frequency and j = +/—1. Then the power spectral density matrix of the system response is
correspondingly

So() = H(jw)Sp(w)H (jo) (39)
where Sp(w) is the power spectral density matrix of the stochastic excitation F(r), and the superscript “'”
denotes the conjugation and transposition operation of a matrix. Rewrite Eq. (37c) as
fi(@) = Cril(1) + Dii&y(x) + Coibo(v) + Dauly(0) + Ci& (1) + D3ily(t) + Cain () + Dainy(v) + Csii (1) + Dsiiy(7)

+ Ceito(t) + Deiil(7) (40)
where constants C; and D, (/=1,2,...,6) can be determined by comparing Egs. (40) and (37c). For
independent stationary non-white stochastic boundary excitations &,(7), &4(7), n.(t) and #n,(t) with,
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respectively, power spectral densities Sg,(w), Szp(@), Sya(w) and S,;(w), the element in the power spectral
density matrix SH{(w) of the system excitation is

[Se@)]y = D {[Cliclk +(Cr1iCriik = CiCriok — Cr12;C)” + CriaiCriago* + (CiCryng

=14

: [T+ (=) L+ (=1
= Cri1iCr)jo + (Cry1,i Cring — Cl+2,iC1+1,k)Jw3] [# Y Sna(w)
+ DD + (Dis1,Dis1k — DiiDisay — Dig2iDy)* + DiyaiDioj* + (DyDit1x — Dig1iDy)jo

1 + (_l)i—l
2

Sfa(w)+

, 1+ (=1
+ (Di31,:D12 — Diy2,iDig1 4)jo’] [ Sep(w) + # Snb(w)} } (41)



Z.G. Ying et al. | Journal of Sound and Vibration 321 (2009) 735-761

0.0050
0.0045 I
0.0040 I
0.0035 I

[Hoa()|&|Hzp(w)]

0.0010
0.0005
0.0000

Fig. 7.

0.21

0.18

0.15

0.12

0.09

0.06

[Hy1(@)|&|Hoo()|&|Ha3(w)]

0.03

0.00

Fig. 8. Damped frequency-response functions H,(w), Hx(w) and Hi3(w).

0.0030 I
0.0025 I
0.0020 I
0.0015 I

|Hoa()|
- = = = |Hsp(w)|

Frequency-response functions without damping H,3(w) and Hzy(®).

|H11(f0)|

~ =~ |Hg(o)]

—_— |Hgz(w)]

0

1=
3

6

9

12

15

(&)

745

The natural frequencies of system (35) or the piezoelectric hollow cylinder can be obtained by the peak-
value characteristics of the frequency-response function matrix H(jw), and the response spectrum is
determined by the power spectral density matrix Sg(w). The correlation function matrix of the system

response Q can be expressed as

Ro) = [

So(w)dw

(42)

The mean-square response E[g;] of the multi-degree-of-freedom system (35) is determined by the diagonal
elements of the correlation function matrix Ry(0). By using Egs. (29) and (42), the mean-square transformed



746 Z.G. Ying et al. | Journal of Sound and Vibration 321 (2009) 735-761

0.014
|Hyo ()]

0.012 - - = = IHylell

0.010

0.008

0.006

[Hi2()|&IHaq ()]

0.004

0.002

0.000

Fi

g. 9. Damped frequency-response functions H;>(w) and Hy(®).

0.010 F
|H13(<U)|

0.009 + ___ — |Hz4 ()|

0.008
0.007 I
0.006 I
0.005 I
0.004 I

|H13(w)I&|H31 ()]

0.003
0.002
0.001

0.000 :
0 3 6 9 12 15 18 21 24 27 30

Fig. 10. Damped frequency-response functions Hi3(w) and Hsz(w).

displacement of the piezoelectric hollow cylinder can be obtained as

E[g](2) = > Ni(W[R(0)];N;(2) (43)

i=1 j=1

Further, substitute Eq. (29) and &; and &, from Eq. (28) into Eq. (24), and rewrite it as

(2, 7) = C1(DE(T) + Co(DET) + C3(In (1) + CaliIng(t) + Y DilA)g(x) (44)

i=1
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simulation).

where coefficients C(A) (i = 1,2,3,4) and D{(4) (i = 1,2,...,n) are determined by comparing Eqs. (44) and (24).
Then the power spectral density function of the structural displacement response is

Suls ) = CY2)Szul) + CYASep(®) + CYASa) + CHASp(@) + > DN CL (DS geal)

i=1

+ Sgea(—m)]; + C2(A)[Sezp(®) + Seep(—w)]; + C3(A[Sgpa(®) + Sgpa(—w)];

+ Co(DS (@) + Sop(—o)l) + 3 3 DiAHD(DIS o)) (43)
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where the cross power spectral density vectors of the system response Q and boundary excitations &,, &, 1,
and 7, as follows:

Sgza(®) = H(—jw)Srza(@),  Sgen(w) = H(—jw)Sren(w) (46a.b)

Sgna(®) = H(=j®)SFya(®),  Sgyp(w) = H(=jw)SFy(w) (46c.d)
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Fig. 16. Mean-square radial displacement E[u”] versus radial coordinate A for different boundary-pressure damping coefficient 7

[Srea(@)]; = (C1i — joCoi — * C3)Sea(®)

[Srep(@)]; = (D1; — joDa; — *D3;)Sep(w)

(47a)
(47b)
[Skna(®)); = (Cai — jorCsi — @ Cei)Syalw) (47¢)
[Sen(@)); = (Dai — jooDs; — @ De;)Syp(w)

(47d)
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Fig. 18. Mean-square radial displacement E[u*] versus radial coordinate A for different structural damping coefficient ¢ (so = 0.05).

By using Eqgs. (44) and (45), the displacement correlation function or the mean-square displacement of the
piezoelectric hollow cylinder can be expressed as

E[A)(7) = Ru(2,0) = +Oo S, (2, w)dw (48)

—00

Based on expressions (19) and (15), Egs. (38), (39), (45) and (46), the power spectral density function,
correlation function and mean-square value of the electric potential of the piezoelectric hollow cylinder can be
obtained similarly. Eqs. (43) and (48) represent the mean-square displacements (as well as the mean-square
electric potentials) as functions of dimensionless radial coordinate A, which can be used for exploring the
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Fig. 20. Mean-square electric potential E[¢*] versus radial coordinate A for different boundary pressure intensity so (® by numerical
simulation).

response characteristics to boundary stochastic excitations and the electrical and mechanical coupling
properties of the piezoelectric hollow cylinder.

6. Numerical results
For the PZT-4 piezoelectric axisymmetric hollow cylinder subjected to boundary stationary stochastic

pressures and electric potentials with structural parameters [31] c¢;; = 139.0GPa, c¢;3 =74.3GPa,
¢33 = 115.0GPa, e3; = —5.2C/m°, e35 = 15.1C/m?, &33=5.62x 1077 C*)/Nm?, s=a/b=0.5, ¢=1.0 and
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excitation parameters Sg(w) = S, (@) =0,

Sen() = (w%_wz)i?+ Gy Sw@ =0 (49)
or
Sep(@) =0, Sy() = . (50)

(@f — ) + 2no)’
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Fig. 24. Mean-square electric potential E[¢p*] versus radial coordinate / for different boundary-pressure damping coefficient 5 (so = 0.05).

in which wy = 8.0 and # = 0.07, numerical results on the vibration modes, frequency-response functions,
mean-square displacements and mean-square electric potentials have been obtained and shown in Figs. 1-37.

Figs. 2-7 illustrate the frequency-response functions H;i(w), Hx(w), Hi(w), Hix(w), Hri(w), Hiz(w),
H3(w), Hyz(w) and Hi»(w) in matrix H(w) varying with frequency w on the interval [0,30] for the piezoelectric
hollow cylinder without damping, respectively. It can be seen that the first three natural frequencies are
wy = 6.545 (4.08/b Hz), w, = 14.785 (9.21/b Hz) and w3 = 22.063 (13.75/b Hz), which are in agreement with
the results given in Ref. [4]. The corresponding vibration modes are shown in Fig. 1 in terms of the right eigen-
problem. The domains of the natural frequencies w;, w, and ws; are dominant in the frequency-response
functions Hii(w), Hy»(w) and Hiz(w), respectively. The frequency-response functions Hi»(w) and Hyi(w),
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Fig. 25. Mean-square electric potential E[$?] versus radial coordinate A for different piezoelectric constant es3 (so = 0.05).
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Fig. 26. Mean-square electric potential E[¢?] versus radial coordinate /4 for different structural damping coefficient ¢ (so = 0.05).

H3(w) and H3(w), Hy(w) and Hs(w) demonstrate the non-symmetry of the frequency-response function
matrix H(w) or the structural system (35). Figs. 8-11 show the frequency-response functions H1(w), Hy(w),
Hi3(w), Hix(w), Hy(w), Hiz(w), Hz(w), Hy(w) and Hi(w) of the damped piezoelectric hollow cylinder,
which verify the above observation once more.

Figs. 12-19 display the mean-square radial displacement E[u°] varying with the radial coordinate / for the
piezoelectric hollow cylinder subjected to outer-boundary stochastic pressure with the power spectral density
(49). The mean-square displacement E[°] obtained by numerical simulation is given in Fig. 12, which very
agrees with the result by using the proposed analysis method. Figs. 12 and 16 illustrate the mean-square
displacement E[u%] increasing with the enhancement of the stochastic pressure intensity s, and the decrease of
the pressure damping coefficient 1, respectively. However, the mean-square displacement E[u%] is always close
to zero at A~0.75 for different intensity sy and damping 7. Figs. 13—15 show the mean-square displacement
E[u?] varying for different dominant excitation frequency w, around the Ist, 2nd and 3rd natural frequencies,
respectively. It can be seen that the mean-square displacement E[u°] decreases as the domain of the dominant
frequency o, rises. Figs. 17 and 18 illustrate the mean-square displacement E[u°] slightly varying for different
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Fig. 28. Mean-square radial displacement E[u*] versus radial coordinate A for different boundary electric-potential intensity s,
(® by numerical simulation).

piezoelectric constant es33 and structural damping coefficient ¢, respectively. Fig. 19 shows the mean-square
displacement E[u°] varying for different ratio s of inner to outer radii. It is observed again that E[u*]~0 at the
mid-layer of the piezoelectric hollow cylinder.

Figs. 20-27 display the mean-square electric potential E[¢?] varying with the radial coordinate 4 for the
piezoelectric hollow cylinder subjected to outer-boundary stochastic pressure with the power spectral density
(49), or the electrical and mechanical coupling properties. The mean-square electric potential E[¢p?] obtained
by numerical simulation is given in Fig. 20, which very agrees with the result by using the proposed analysis
method. Figs. 20 and 24 illustrate the mean-square electric potential E[¢?] increasing with the enhancement of
the stochastic pressure intensity s, and the decrease of the pressure damping coefficient #, respectively. It can
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Fig. 29. Mean-square radial displacement E[u] versus radial coordinate A for different boundary electric-potential dominant frequency wy
around the 1st natural frequency w; (so = 0.01).
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Fig. 30. Mean-square radial displacement E[u°] versus radial coordinate A for different boundary electric-potential dominant frequency e,
around the 2nd natural frequency w, (so = 0.01).

be seen that the mean-square electric potential E[¢?] approaches a maximum value at 1~0.85. Figs. 21-23
show the mean-square electric potential E[¢?] for different dominant excitation frequency w,. Figs. 25-27
show the mean-square electric potential E[¢*] varying for different piezoelectric constant ess, structural
damping coefficient ¢ and ratio s of inner to outer radii, respectively. The peak value of E[¢?] is observed again
and E[¢?] increases as the thickness of the piezoelectric hollow cylinder decreases.

For the piezoelectric hollow cylinder subjected to outer-boundary stochastic electric-potential with the
power spectral density (50), Figs. 28-32 illustrate the mean-square radial displacement E[u°] varying with the
radial coordinate A under various stochastic electric-potential intensities sy, dominant excitation frequencies
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w, and ratios s of inner to outer radii, respectively. It can be seen that the mean-square displacement E[u”] has
a minimum value and increases with intensity so. The E[°] for the dominant excitation frequency wy close to
the 1st structural natural frequency w; is larger than that for the other wy. The mean-square displacement
E[1%] by numerical simulation given in Fig. 28 is in good agreement with that by using the proposed analysis
method.

For the piezoelectric hollow cylinder subjected to outer-boundary stochastic electric-potential with the
power spectral density (50), Figs. 33-37 illustrate the mean-square electric potential E[¢*] monotonically
increasing with the radial coordinate A under various stochastic electric-potential intensities sy, dominant
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Fig. 33. Mean-square electric potential E[$?] versus radial coordinate A for different boundary electric-potential intensity s,
(® by numerical simulation).
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Fig. 34. Mean-square electric potential E[¢?] versus radial coordinate / for different boundary electric-potential dominant frequency
around the st natural frequency w; (so = 0.01).

excitation frequencies w, and ratios s of inner to outer radii, respectively. It can be seen that the mean-square
electric potential E[¢?] increases with the enhancement of the excitation intensity s, and the decrease of
thickness of the piezoelectric hollow cylinder. The E[¢?] for the dominant excitation frequency wj close to the
Ist structural natural frequency w, is larger than that for the other wy. The mean-square electric potential
E[$?] by numerical simulation given in Fig. 33 is in good agreement with that by using the proposed analysis
method.

7. Conclusions

A stochastic response analysis method for piezoelectric thick axisymmetric hollow cylinders subjected to
boundary stochastic excitations has been proposed based on the transformations of electric potentials and



Z.G. Ying et al. | Journal of Sound and Vibration 321 (2009) 735-761 759

0.0014

| »(=13.0
- - - —w=14.785
0.0012 - =170

0.0010 -

0.0008 -

E[¢?)(4)

0.0006 -

0.0004

0.0002 -

-
—=

0.0000 skl R P R S R U B
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A

Fig. 35. Mean-square electric potential E[¢°] versus radial coordinate 4 for different boundary electric-potential dominant frequency wy
around the 2nd natural frequency w; (so = 0.01).
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Fig. 36. Mean-square electric potential E[¢*] versus radial coordinate 4 for different boundary electric-potential dominant frequency w,
around the 3rd natural frequency ws (so = 0.01).

displacements, the Galerkin method and the theory of random vibration. The proposed analysis method is
applicable to the hollow cylinders with arbitrary thickness under various non-white stochastic excitations of
inner and/or outer pressures and electric potentials. The electrical and mechanical coupling properties and the
non-symmetry of the discretized multi-degree-of-freedom system have been explored theoretically and
numerically. The dynamic characteristics of the frequency-response function, mean-square displacement and
mean-square electric potential have been illustrated with a great deal of numerical results on the piezoelectric
hollow cylinder subjected to boundary stochastic excitations.
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